Model Checking TLA™ Specifications
Yuan Yu, Panagiotis Manolios, and Leslie Lamport

25 June 1999

Appeared in Correct Hardware Design and Verifica-
tion Methods (CHARME ’99), Laurence Pierre and
Thomas Kropf editors. Lecture Notes in Computer Sci-
ence, number 1703, Springer-Verlag, (September 1999)
54-66.



Table of Contents

Introduction

TLA*

Checking Models of a TLAT Specification
How TLC Works

Representing States

Using Disk

Experimental Results

Status and Future Work

54

57

58

60

62

63

64

64



Model Checking TLA™ Specifications

Yuan Yu!, Panagiotis Manolios?, and Leslie Lamport!

1 Compaq Systems Research Center
yuanyu@pa.dec.com, lamport@pa.dec.com
2 Department of Computer Sciences, University of Texas at Austin
pete@cs.utexas.edu

Abstract. TLA™T is a specification language for concurrent and reactive
systems that combines the temporal logic TLA with full first-order logic
and ZF set theory. TLC is a new model checker for debugging a TLA™
specification by checking invariance properties of a finite-state model
of the specification. It accepts a subclass of TLA™ specifications that
should include most descriptions of real system designs. It has been used
by engineers to find errors in the cache coherence protocol for a new
Compaq multiprocessor. We describe TLA™T specifications and their TLC
models, how TLC works, and our experience using it.

1 Introduction

Model checkers are usually judged by the size of system they can handle and the
class of properties they can check [3, 16, 4]. The system is generally described in
either a hardware-description language or a language tailored to the needs of the
model checker. The criteria that inspired the model checker TLC are completely
different. TLC checks specifications written in TLA™, a rich language with a
well-defined semantics that was designed for expressiveness and ease of formal
reasoning, not model checking. Two main goals led us to this approach:

— The systems that interest us are too large and complicated to be completely
verified by model checking; they may contain errors that can be found only
by formal reasoning. We want to apply a model checker to finite-state models
of the high-level design, both to catch simple design errors and to help us
write a proof. Our experience suggests that using a model checker to debug
proof assertions can speed the proof process. The specification language must
therefore be well suited to formal reasoning.

— We want to check the actual specification of a system, written by its de-
signers. Getting engineers to specify and check their design while they are
developing it should improve the entire design process. It will also eliminate



55

the effort of debugging a translation from the design to the model checker’s
language. Engineers will write these specifications only in a language pow-
erful enough to express the wide range of abstractions that they normally
use.

We want to verify designs of concurrent and reactive systems such as com-
munication networks and cache coherence protocols. These designs are typically
one or two levels above an RTL implementation. Their specifications are usually
not finite-state, often containing arbitrary numbers of processors and unbounded
queues of messages. Ad hoc techniques for reducing such specifications to finite-
state ones for model checking are sensitive to the precise details of the system
and are not robust enough for industrial use. With TLC it is easy to choose a
finite model of such a specification and to check it exhaustively.

The language TLAT is based on TLA, the Temporal Logic of Actions. TLA
was developed to permit the simplest, most direct formalization of assertional
correctness proofs of concurrent systems [11, 12]. More than twenty years of
experience has shown that this style of proof, based on the concept of invari-
ance [2, 15], is a practical method of reasoning about concurrent algorithms.
Good programmers (an unfortunately rare breed) routinely think in terms of
invariants when designing multithreaded programs.

TLA assumes an underlying formalism for “ordinary mathematics”. TLA™
embodies TLA in a formal language that includes first-order logic and Zermelo-
Frankel set theory along with support for writing large, modular specifications.
It can be used to describe both low-level designs and high-level correctness prop-
erties. TLA™T is described in [13]; recent developments in TLA and TLA™ are
posted in [9].

Any language that satisfies our needs will be too expressive to allow all
specifications to be model checked. TLC can handle a subclass of TLA™ speci-
fications that we believe includes most specifications of actual system designs.!
This subclass also seems to include many of the high-level specifications that
characterize the correctness of a design. However, it might not be able to han-
dle a large enough model of such a specification to detect any but the simplest
errors.

In TLA, specifications are formulas. Correctness of a design means that its
specification implies the high-level specification of what the system is supposed
to do. The key step in proving correctness is finding a suitable invariant—that is,
a state predicate true of all reachable states. Experience indicates that verifying
invariance is the most effective proof technique for discovering errors. We believe
that it is also the most effective way to find errors with a model checker. TLC
can also be used to check step-simulation under a refinement mapping [12], the
second most important part of a TLA proof. This requires checking that every
step of the implementation is an allowed step of the specification, after appro-
priate state functions are substituted for the specification’s internal variables.

1 A simple explanation of how TLC evaluates expressions and computes successor
states makes it clear what specifications TLC can handle; TLC generates an ex-
planatory error message when it encounters something that it can’t cope with.



56

This substitution is expressed in TLAT by an INSTANCE construct, which will
be supported only in the next version of TLC. With the current version, the
substitution must be done by hand to check step-simulation.

TLC does not yet check liveness properties. We hope to add liveness checking
in the future, but we do not yet know if it will be practical for real industrial
examples.

The design and implementation of TLC were partly motivated by the expe-
rience of the first and third authors, Mark Tuttle, and Paul Harter in trying to
prove the correctness of a complicated cache coherence protocol. A two man-
year effort generated a 1900-line TLA™ specification of the protocol and about
6,000 lines of proof—mostly, proofs of invariance. We saw that a model checker
could be used to check proposed invariants. Our first thought was to translate
from TLA™ to the input language of an existing model checker. A translator from
TLA specifications to S/R, the input language of COSPAN [6], already existed [7].
However, it required specifications to be written in a primitive language that was
far from TLA™, so it was no help. We considered using SMV [14] and Muryp [5],
but neither of them were up to the task. Among their problems is that their in-
put languages are too primitive, supporting only finite-state programs that use
very simple data types. It was tedious, and in some cases seemed impossible, to
translate the mathematical formulas in the TLA™T specification into these lan-
guages. For nontechnical reasons, we did not try to use COSPAN, but we expect
that S/R would have presented the same problems as the input languages for
the other model checkers. Translating from TLAT into a hardware-description
language seemed like an unpromising approach.

Because the goal of TLC is finding errors in the specification of an actual
design rather than completely verifying a specially-written model, we are will-
ing to sacrifice some speed in order to handle a reasonably large class of TLAT
specifications. TLC therefore simulates the specification rather than compiling
it. It is also coded in Java, rather than in language like C that would be more
efficient but harder to program. Despite these inefficiencies, TLC is still accept-
ably fast. Preliminary tests have found that, depending on the example, TLC
runs between two and ten times slower than Mury, which is coded in C and
compiles the specification.? TLC is also multithreaded and can take advantage
of multiprocessors.

While willing to compromise on speed, we do not want to limit the size of
specifications that TLC can handle. Model checkers that keep everything in main
memory are usually limited by space rather than time. TLC therefore keeps all
data on disk, using main memory as a cache. It makes efficient use of disk with
sophisticated disk access algorithms. As far as we know, TLC is the first model
checker that explicitly manages all disk access. Murp [20] uses disk, but relies
on virtual memory to handle the state queue, a data structure which contains
the unexamined states. As noted by Stern [19] and by us in Section 7, this queue
can get very large.

2 The comparison with Mure is for a single-threaded version of TLC.



57

This paper is organized as follows. Sections 2 and 3 describe TLAT speci-
fications and their TLC models. Section 4 sketches how TLC works. Section 5
describes a compact method of representing states, and Section 6 describes how
TLC accesses the disk. Section 7 discusses our initial experience using TLC and
presents some preliminary performance data. Finally, Section 8 describes TLC’s
current status and our plans for it.

2 TLAT

Although TLA is expressive enough to permit a wide variety of specification
styles, most TLA system specifications have the form Init A O[Next], A L, where
Init specifies the initial state, Next specifies the next-state relation, v is the
tuple of all specification variables, and L is a liveness property written as the
conjunction of fairness conditions on actions.? TLC does not yet handle liveness
properties, so Init and Next are all that concern us.

We do not attempt to describe TLAY here, but give an idea of what it is like
by presenting small parts of an imaginary system specification. The specification
includes a set Proc of processors and variables st and ing, where st[p] is the
internal state of processor p and ing[p] is a sequence of messages waiting to be
received by p. Mathematically, st and inq are functions with domain Proc. Since
TLAT is untyped, this means that the values of st and ing in any reachable
state are functions. The specification also uses a constant N that is an integer
parameter and a variable z whose purpose we ignore. The specification consists
of a module, which we name ImSystem, that begins:

EXTENDS Naturals, Sequences

This statement imports the standard modules Naturals, which defines the set of
natural numbers and operations like 4+, and Sequences, which defines operations
on sequences. A large specification might be broken into several modules. Next
come two declaration statements:

CONSTANT Proc, N VARIABLE st, ingq,

The rest of the specification is a series of definitions. After defining the constant
expressions stInit and zInitSet, the module defines Init by

Init = A st = stlnit
A ing = [p € Proc — ()]
A x € xInitSet

This predicate, which specifies the initial state, asserts that st equals the value
stInit; that ing[p] equals the empty sequence (), for all p € Proc; and that z
may equal any element of the set zInitSet. The A-list denotes the conjunction of

3 The specification may also use temporal existential quantification 3 to hide some
variables; such hiding is irrelevant here and will be ignored.



58

the three subformulas; indentation is used to eliminate parentheses when con-
junctions and disjunctions are nested. (We show “pretty-printed” specifications.
The actual TLA™ input is an ascii approximation—for example, one types /\
for A and \in for €.)

The bulk of the specification is a sequence of definitions of parts of the next-
state relation Next. One part is the subaction RevUrgent(p) that represents the
receipt by processor p of the first message of type Urgent in ing[p]. The action
removes the message from ing[p], makes some change to st[p], and leaves z
unchanged. A sequence of length n is a function whose domain is 1 .. n, the set
of integers 1 through n. A message is represented as a record with a type field
that is a string. (Mathematically, a record is a function whose domain is a set of
strings, and r.type stands for r[“type”].) The action RcvUrgent(p) is a predicate
on state transitions. Unprimed occurrences of a variable represent its value in
the starting state and primed occurrences represent its value in the ending state.
The definition of RevUrgent(p) has the form:

RevUrgent(p) =
Jiel.. Len(ing[p]) :

A ing|p][i]-type = “Urgent”
AVjel..(i—1) : ing[p][j].type # “Urgent”
A ing’ = [ing EXCEPT ![p] =[j € 1 .. (Len(ing[p]) — 1) —
IF j < ¢ THEN Q[j] ELSE Q[j + 1]]]
A st' = [st EXCEPT ![p] =...]
/A UNCHANGED z

Module ImSystem defines a number of similar subactions. The next-state relation
Next is defined to be the disjunction of subactions:

Next = ...V (3p € Proc : RevUrgent(p)) V ...

How many subactions like RcvUrgent(p) there are, and how large their definitions
are, depend on the system. Here are the sizes (not counting comments) of a few
actual specifications:

— A specification of sequential consistency [10] for a simple memory with just
read and write operations is about two dozen lines.

— A simplified specification of the Alpha memory model [1] with the opera-
tions read, uncached read, partial-word write, memory barrier, write memory
barrier, load locked, and store conditional is about 400 lines.

— High-level specifications of the cache coherence protocols for two large Alpha-
based multiprocessors are about 1800 and 1900 lines.

3 Checking Models of a TLAT Specification

Traditional model checking works on finite-state specifications—that is, specifi-
cations with an a priori upper bound on the number of reachable states. The
specification in our example module ImSystem is not finite-state because:



59

— The set Proc of processors can be arbitrarily large—even infinite.
— The number of states could depend on the unspecified parameter N.
— The sequences ing[p] of messages may become arbitrarily long.

With TLC, one bounds the number of states by choosing a model. In our example,
a model instantiates Proc with a set consisting of a fixed number of processors;
it assigns a particular value to the constant N; and it bounds the length of the
sequences ing|[p].

To use TLC to check our example, we can create a new module MCImSystem
that EXTENDS the module ImSystem containing our specification. Module
MCImSystem defines the predicate Constr, which asserts that each sequence
inq[p] has length at most 3:

Constr = Yp € Proc : Len(ing[p]) <3

(We could declare a constant MazLen to use instead of 3, and assign it a value
along with the other constants Proc and N.)

The input to TLC is module MCImSystem and a configuration file that
tells it the names of the initial condition (Init), the next-state relation (Next),
and the constraint (Constr). The configuration file also declares values for the
constants—for example, it might assert

Proc = {p1, p2, p3} N=5

These declarations, together with the constraint, define the model that TLC
tries to check.* Finally, the configuration file lists the names of one or more
invariants—predicates that should be true of every reachable state.

TLC explores reachable states, looking for one in which (a) an invariant is not
satisfied or (b) deadlock occurs—meaning that there is no possible next state.
(Deadlock detection can be turned off.) The error report includes a minimal-
length trace that leads from an initial state to the bad state.> TLC stops when
it has examined all states reachable by traces that contain only states satisfying
the constraint. (TLC may never terminate if this set of reachable states is not
finite. In practice, it is easy to choose the constraint to ensure that the set is
finite.)

In addition to the configuration file and module MCImSystem, TLC also uses
the modules ImSystem, Naturals, and Sequences imported by MCImSystem. The
TLA™ Naturals module defines the natural numbers from scratch—essentially as
an arbitrary set with a successor function satisfying Peano’s axioms. A practical
model checker will not compute 2+2 from such a definition. TLC allows any
TLA™ module to be overridden by a Java class (using Java’s reflection) that
provides efficient implementations of the operators and data structures defined

4 TLC can also be used to do nonexhaustive checking by generating randomly chosen
behaviors, in which case no constraint is needed.

5 The trace is guaranteed to have minimal length only when TLC uses a single worker
thread. We can easily modify TLC to maintain this guarantee when using multiple
worker threads should nonminimality of the trace turn out to be a practical problem.



60

by that module. TLC provides Java classes for standard modules like Naturals
and Sequences; a sophisticated user could write them for her own TLA' modules.

4 How TLC Works

TLC uses an explicit state representation instead of a symbolic one like a BDD
because:

— Explicit state representations seem to work at least as well for the asyn-
chronous systems that interest us [20].

— A symbolic representation would require additional restrictions on the class
of TLA™ specifications TLC could handle.

— It is difficult to keep a symbolic representation on disk.

TLC maintains two data structures: a set seen of all states known to be reachable,
and a FIFO queue sq containing elements of seen whose successor states have
not been examined. (Another implementation using different data structures is
described in Section 6.) The elements of sq are actual states, while seen contains
only the fingerprints of its states. TLC’s fingerprints are 64-bit, probabilistically
unique checksums [17]. For error reporting, an entry in seen also has a pointer
to a predecessor state in seen. (The pointer is null for an initial state.)

TLC begins by generating and checking all possible states satisfying the
initial predicate and setting seen and sq to contain exactly those states. In our
example, there is one such state for each element of zInitSet.

TLC next rewrites the next-state relation as a disjunction of as many simple
subactions as possible. In our example, the subactions include RecvUrgent(pl),
RcvUrgent(p2), and RevUrgent(p3). (Recall that Proc equals {p1, p2, p3} in the
model.)

TLC then launches a set of worker threads, each of which repeatedly does
the following. It removes the state s from the front of sq. For each subaction
A, the worker generates every possible next state ¢ such that the pair of states
s, t satisfies A. To do this for action RcvUrgent(pl), it finds, for each ¢ in the
set 1 .. Len(ing[pl]), all possible values of the primed variables that satisfy the
subaction’s five conjuncts. (For this subaction, there is at most one i for which
there exists a next state ¢, and that ¢ is unique.) If there is no possible next
state ¢ for any subaction, a deadlock is reported. For each next state ¢ that it
generates, the worker does the following:

— Check if ¢ is in seen.

If it isn’t, check if ¢ satisfies the invariant.

If it does, add t to seen (with a pointer to s).

— If t satisfies the constraint, add it to the end of sq.

An error is reported if a next state ¢ is found that does not satisfy the invariant,
or if s has no next state. In this case, TLC generates a trace ending in ¢, or
in s if there is no next state t. Using the pointers in seen, TLC can generate a



61

sequence of fingerprints of states. To generate the actual trace, TLC reruns the
algorithm in the obvious goal-directed way.

A TLA™ specification can have any initial predicate and next-state relation
expressible in first-order logic and ZF set theory. Obviously, TLC cannot handle
all such predicates. It must be able to compute the set of initial states and the set
of possible next states from any given state. Space does not permit a description
of the precise class of predicates TLC accepts. In practice, TLC seems able to
handle specifications that describe actual systems, but not all abstract, high-level
specifications. For example:

— It cannot handle either of the two specifications of sequential consistency
in [8] because they are not written in TLA’s “canonical form” with a sin-
gle initial condition and next-state action. The specification SeqDB2, with
its use of temporal universal quantification, lies well outside TLC’s domain.
The specification SeqDB1 is the conjunction of two specifications in canoni-
cal form, which is easy to write in canonical form. (The initial condition or
next-state action of a conjunction is the conjunction of the initial conditions
or next-state actions, respectively.) TLC could then find simple errors by
checking simple invariance properties. However, it could not verify arbitrary
invariance properties because the specification is not machine-closed, mean-
ing that the liveness property constrains the set of reachable states. It could
therefore probably not find any subtle errors.

— It cannot not handle our original high-level specification of the Alpha mem-
ory model [1]. That specification uses a variable Before whose value is a
relation on the set of all requests issued so far; and it defines a complicated
predicate IsGood(Before) which essentially asserts that the results of those
requests satisfy the Alpha memory requirements. Actions of the specification
constrain the new value of Before with the conjunct

(x) (Before C Before') A IsGood(Before’)

TLC cannot compute the possible new values of Before from this expression.
However, the formula IsGood(Before’) contained the conjunct

Before' € SUBSET (Req’ x Req')

where Req is the set of possible sequences of requests, and SUBSET S is the
set of all subsets of S. Moving this conjunct from IsGood(Before') to the
beginning of formula (*) allowed TLC to handle the specification. However,
TLC finds possible next values of Before by first enumerating all the elements
of SUBSET (Req’ x Req’), and there are an enormous number of them for any
but the tiniest models. In a reasonable length of time, TLC can exhaustively
explore only a model with two processors, each of which issues at most one
request. Running TLC even on this tiny model led to the discovery of one
error in the specification.

The inability to exhaustively check an abstract specification does not inhibit
checking that a lower-level specification implements it. In that case, check-
ing step-simulation just requires that each pair of states that satisfies the



62

lower-level next-state relation also satisfies the higher-level one (under the
refinement mapping). For the Alpha memory model, TLC can check this us-
ing the original next-state action, without having to rewrite the formula (x).
— TLC has been applied to, and found errors in, one of the two specifications of
cache coherence protocols for Alpha-based multiprocessors mentioned above.
That specification was written by engineers with only a vague awareness of
the model checker. The only TLC-related instruction they received was to use
bounded quantification (3z € S : P) rather than unbounded quantification
(3z : P). We believe that TLC will be able handle the other cache coherence
protocol specification as well, and we intend to make sure that it does.® That
specification was written before the model checker was even conceived.

5 Representing States

Because TLA™ allows complex data structures, finding a normal form for repre-
senting states is nontrivial. The queue sq¢ must contain the actual unexamined
states, not just their fingerprints, and it can get very large [19]. We therefore felt
that compactness of the normal form was important. The compact method of
representing states that we devised could be used by other model checkers that
allows complex types, and it is described here.

Our representation requires the user to write a type invariant containing
a conjunct of the form z € T for every variable z, where T is a type. The
types supported by TLC are based on atoms. An atom is an integer, a string,
a primitive constant of the model (like pl, p2, and p3 in our example), or any
other Java object with an equality method. A type is any set built from finite
sets of atoms using most of the usual operators of set theory. For example, if S
and T are types, then SUBSET S and [S — T, the set of functions from S to T,
are types.

We first convert the value of each variable to a single number. We do this
by defining, for each type T, a bijection C'r from T to the set of natural num-
bers less than Cardinality(T). These bijections are defined inductively. We il-
lustrate the definition by constructing C'r when T is the type [Proc — St] of
the variable st in our example. In the model, the type of Proc is {p1, p2, p3},
so we define C p,oe to be some mapping from Proc to 0 .. 2. An element f of
[Proc — St] is represented as a triple. The jth element of this triple represents
fICL .(4)], which is an element of St. Therefore, f is represented by the triple
Cst(F1051(0))), Cse(FICp,o (L)), Cst(FICp L (2)). The value of C'r(f) is the
number represented in base Cardinality(St) by these three digits.

In a similar fashion, if 7' is the Cartesian product 77 x ... x T, we can
define C'r in terms of the Cr,. Since a state is just the Cartesian product of
the values of the variables, this defines a representation of any state as a natural
number. This representation uses the minimal number of bits. We use hash tables

5 The specification uses the TLAT action-composition operator, which is the only
built-in nontemporal TLA™ operator that TLC does not yet implement.



63

and auxiliary data structures to compute the representation efficiently. The full
details will appear elsewhere.

The compact representation did not provide as much benefit as we had ex-
pected for two reasons:

— Since the queue sq is kept on disk, the only benefit of a compact state
representation is to reduce disk I/O. TLC succeeds so well in overlapping
reading and writing of the queue with processing that reducing the amount
of T/0O saved little time.

— The method is optimal for representing any type-correct state, but in real
specifications, the set of reachable states is likely to be much smaller than
the set of type-correct ones. We found that the queue was not much larger
when a simpler representation was used.

We therefore decided that the benefits of our compact representation did not
outweigh the cost of computing it, and TLC now represents states with a simpler
normal form that can be computed faster.

6 Using Disk

We have implemented two different versions of TLC. They both generate reach-
able states in the same way, but they use disk storage differently.

The first version is the one described in Section 4 that uses a set seen of state
fingerprints and a queue sq of states. The algorithm implementing the seen set
was designed and coded by Allan Heydon and Marc Najork. It represents seen
as the union of two disjoint sets of states, one kept as an in-memory hash table
and the other as a sorted disk file having an in-memory index. To test if a state
is in seen, TLC first checks the in-memory table. If the state is not there, TLC
uses a binary search of the in-memory index to find the disk block that might
contain it, reads that block, and uses binary search to see if the state is in the
block. To add a state to seen, TLC adds it to the in-memory table. When the
table is full, its contents are sorted and merged with the disk file, and the file’s
in-memory index is updated. Access to the disk file by multiple worker threads
is protected by a readers-writers lock protocol.

The queue sq is implemented as a disk file whose first and last few thousand
entries are kept in memory. This is a FIFO queue that uses one background
thread to prefetch entries and another to write entries to the disk. Devoting
a fraction of a processor to these background threads generally ensures that a
worker thread never waits for disk I/O when accessing sq.

The second version of TLC uses three disk files: old, new, and next, with old
and next initially empty and new initially a sorted list of initial states. Model
checking proceeds in rounds that consist of two steps:

1. TLC appends to the next file the successors of the states in new. TLC then
sorts next and removes duplicate states.



64

2. TLC merges the old and new files to produce the next round’s old. Any
states in next that occur in this new old file are removed, and the resulting
nezt file becomes the next round’s new. TLC sets the next round’s next file
to be empty.

This algorithm results in a breadth-first traversal of the state space that reads
and writes old once per level. As described thus far, it is the same as an algorithm
of Roscoe [18], except he uses regions of virtual memory in place of files, letting
the operating system handle the actual reading and writing of the disk. We
improve the performance of this algorithm by implementing next with a disk file
plus an in-memory cache, each entry of which is a state together with a disk bit.
A newly generated state is added to the cache iff it is not already there, and the
new entry’s disk bit is set to 0. When the cache is full (the normal situation),
an entry whose disk bit is 1 is evicted to make room. When a certain percentage
of the entries have disk bits equal to 0, those entries are sorted and written to
disk and their disk bits set to 1.7 To reduce the amount of disk occupied by
multiple copies of the same state in next, we incrementally merge the sets of
states written to disk. This is done in a way that, in the worst case, keeps a little
more than two copies of each state on disk, without increasing the time needed
to sort next.

7 Experimental Results

TLC executed its first preliminary test in August of 1998 and has been used
to debug specifications. The largest of these is the 1800 line TLA™ specification
of a cache coherence protocol for a new Compaq multiprocessor. This specifi-
cation was written by the engineers in charge of testing. We have used TLC
to find errors both in the specification and in a 1000-line invariant for use in a
formal correctness proof. TLC has found about two dozen errors in the TLA™
specification, two of which reflected errors in the actual RTL implementation
and resulted in modifications to the RTL. (The other errors would presumably
not have occurred had the TLAT specification been written by the design team
rather than the testing team.) This specification has infinitely many reachable
states. Checking it on a model with about 12M reachable states takes 7.5 hours
on a two-processor 600MHz work station, and the state queue attains a max-
imum size of 250M bytes. The model with the most states that TLC has yet
checked, which is for the 30-line specification CCache of [8], has over 60M reach-
able states and takes less than a day to check on a 600MHz uniprocessor work
station.

8 Status and Future Work

By using a rich language such as TLAT, we can have the engineers designing
a system write a single TLA™ specification that serves as a design document,

" The first version of TLC can also be improved in a similar fashion by adding a disk
bit to the in-memory cache of the seen set.



65

as the basis for a mathematical correctness proof, and as input to TLC. By
designing TLC to make explicit and disciplined use of disk, we have eliminated
the dependency on main memory, which is the limiting factor of most model
checkers. TLC is an industrial-strength tool that engineers are using to help
design and debug their systems. TLC was released to other engineering groups
in June of 1999. We hope to release TLC publicly in the fall of 1999.

In addition to improving performance and providing a better user interface,
possible enhancements to TLC include:

— Checking that the output of a lower-level simulator is consistent with a
specification.

— Checking liveness properties.

— Using partial-order methods and symmetry to reduce the set of states that
must be explored.

We expect that the experience of engineers using TLC will teach us which of
these are likely to have a significant payoff for our industrial users.

Acknowledgments

Homayoon Akhiani and Josh Scheid wrote the specification of the cache coher-
ence protocol to which we are applying TLC. Mike Burrows suggested that TLC
be disk based and recommended the second method of using the disk. Damien
Doligez and Mark Tuttle are early users who provided valuable feedback. Sanjay
Ghemawat implemented the high-performance Java runtime that we have been
using. Jean-Charles Gregoire wrote the TLA™ parser used by TLC. Mark Hay-
den is helping us improve the performance of TLC. Allan Heydon advised us on
performance pitfalls in Java class libraries.

References

[1] Alpha Architecture Committee. Alpha Architecture Reference Manual. Digital
Press, Boston, third edition, 1998.

[2] E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer
and System Sciences, 10:110-135, February 1975.

[3] E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Workshop on Logics of Programs, volume
131 of LNCS. Springer-Verlag, 1981.

[4] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic. ACM Transactions on Programming
Languages and Systems, 8(2), 1986.

[5] David L. Dill. The Murg verification system. In Computer Aided Verification.
8th International Conference, pages 390-393, 1996.

[6] Z. Har’El and R. P. Kurshan. Software for analytical development of communi-
cation protocols. AT&T Technical Journal, 69(1):44-59, 1990.

[7] R. P. Kurshan and Leslie Lamport. Verification of a multiplier: 64 bits and
beyond. In Costas Courcoubetis, editor, Computer-Aided Verification, volume
697 of Lecture Notes in Computer Science, pages 166-179, Berlin, June 1993.
Springer-Verlag. Proceedings of the Fifth International Conference, CAV’93.



66

8]

[9]

[10]

[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

Peter Ladkin, Leslie Lamport, Bryan Olivier, and Denis Roegel. Lazy caching in
TLA. Distributed Computing, 12, 1999. To appear.

Leslie Lamport. TLA—temporal logic of actions. At URL http://www.research.
digital.com/SRC/tla/ on the World Wide Web. It can also be found by
searching the Web for the 21-letter string formed by concatenating uid and
lamporttlahomepage.

Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690-691,
September 1979.

Leslie Lamport. Introduction to TLA. Technical Report 1994-001, Digital Equip-
ment Corporation Systems Research Center, Palo Alto, CA, December 1994.
Leslie Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872-923, May 1994.

Leslie Lamport. Specifying concurrent systems with tla®. In Manfred. Broy and
Ralf Steinbriiggen, editors, Calculational System Design, pages 183-247, Amster-
dam, 1999. IOS Press.

K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

Susan Owicki and David Gries. Verifying properties of parallel programs: An
axiomatic approach. Communications of the ACM, 19(5):279-284, May 1976.

J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. of the 5th International Symposium on Programming, volume
137 of LNCS, pages 337-350, 1981.

M. O. Rabin. Fingerprinting by random polynomials. Technical Report TR-15-81,
Center for Research in Computing Technology, Harvard University, 1981.

A W Roscoe. Model-checking CSP. In A Classical Mind: Essays in Honour of C
A R Hoare, International Series in Computer Science, chapter 21, pages 353-378.
Prentice-Hall International, 1994.

Ulrich Stern. Algorithmic Techniques in Verification by Explicit State Enumera-
tion. PhD thesis, Technical University of Munich, 1997.

Ulrich Stern and David L. Dill. Using magnetic disk instead of main memory in
the Muryp verifier. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided
Verification, volume 1427 of Lecture Notes in Computer Science, pages 172183,
Berlin, June 1998. Springer-Verlag. 10th International Conference, CAV’98.



