
Hiding, Refinement, and Auxiliary

Variables

Leslie Lamport

27 June 2019
Corrected: 2 March 2020, 18 May 2020

This note is a version of the folk tale of a stone soup. A stone soup
is made by boiling a stone in a cauldron of water and gradually adding
vegetables and meat. At the end, one eats everything but the stone.

The stone in the TLA+ soup is the temporal existential quantifier ∃∃∃∃∃∃ .
This operator was an important part of the original TLA logic. As other
ingredients were added (the “+” in TLA+) and the soup was consumed (by
engineers), I realized that ∃∃∃∃∃∃ provided no nourishment and should be left
behind. But like the stone in the folk tales, ∃∃∃∃∃∃ serves a purpose. It is used
here to help explain the meaning of refinement.

Text colored like this in the table of contents or like this elsewhere is a
clickable link.

Contents

1 Hiding 1

2 Temporal Existential Quantification 2

3 Refinement with Hiding 4

4 Auxiliary Variables 10

5 Refinement in General 20

https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/toolbox.html

1 Hiding

Consider a specification of a FIFO (first-in-first-out) queue of natural num-
bers. There are two operations that can be performed to the queue: Put
appends a number to the end of the queue, and Get removes a number from
the front of the queue. For simplicity, let’s assume an interface in which
performing a command is described by setting the value of a variable op.
Performing a Put operation that appends the value 7 to the end of the queue
is described by setting op to the pair 〈“put”, 7〉; and executing a Get that
removes the value 42 from the front of the queue is described by setting op to
〈“get”, 42〉. A TLA+ spec of this queue is formula Spec in Module FIFO of
Figure 1, where the variable queue describes the current state of the queue
and op initially equals 〈“init”, 0〉. No liveness properties are specified in
this module or in any of our specifications. Adding liveness doesn’t change
anything discussed in this note. (Sophisticated TLA+ users may realize that
there’s a possible problem with this spec; it will be corrected later.)

In the early days of specifying concurrent systems, some researchers ar-
gued that only the sequence of operations that are performed is observable;
the queue itself is an internal implementation detail that should not appear

module FIFO

extends Integers, Sequences

variables op, queue

vars
∆
= 〈op, queue 〉

Init
∆
= ∧ op = 〈“init”, 0〉
∧ queue = 〈 〉

Put
∆
= ∃ v ∈ Nat : ∧ op′ = 〈“put”, v 〉

∧ queue ′ = Append(queue, v)

Get
∆
= ∧ queue 6= 〈 〉
∧ op′ = 〈“get”, Head(queue)〉
∧ queue ′ = Tail(queue)

Next
∆
= Put ∨Get

Spec
∆
= Init ∧ 2[Next]vars

Figure 1: The FIFO Queue Specification.

1

in the spec. Thus, a spec should contain only the variable op; the vari-
able queue is just one way of implementing those operations and should not
appear in the spec. I was not impressed by this argument for three reasons:

1. In practice, it is impossible to write specs that don’t in some way
mention such “unobservable” state as the queue.

2. If you want, you can make the variable queue disappear from formula
Spec by simply writing ∃∃∃∃∃∃ queue : Spec .

3. Any implementation of the spec must implement queue in its state,
and there’s a simple, precise definition of what that means.

To understand reason 1, try writing a specification of the FIFO queue in
English without mentioning the state of the queue. Now imagine trying to
specify a complicated distributed system by mentioning only what’s visible
on users’ screens. I have seen that trying to specify even simple systems
in terms only of an externally observable interface, with nothing like an
internal state, doesn’t work in practice.

Reasons 2 and 3 are the topics of Sections 2 and 3, which explain and
discuss at length the ∃∃∃∃∃∃ operator. Section 4 explains auxiliary variables,
which are sometimes needed to show that one spec implements another.
Finally, Section 5 explains why the operator ∃∃∃∃∃∃ is of no practical importance,
but the concepts introduced in Sections 2–4 are useful in practice.

2 Temporal Existential Quantification

The Operator ∃∃∃∃∃∃

The operator ∃ of ordinary math (written \E in TLA+) is existential quan-
tification over a constant. For example, the formula

∃x ∈ Real : a ∗ x2 + b ∗ x + c = 0(1)

asserts that there is some real number that can be assigned to x that makes
the formula a ∗ x 2 + b ∗ x + c = 0 true.

The operator ∃∃∃∃∃∃ (written \EE in TLA+) is existential quantification over
a variable. Think of the temporal formula ∃∃∃∃∃∃ queue : Spec as being true of
(satisfied by) a behavior iff (if and only if) there is some infinite sequence of
values that can be assigned to the variable queue, one value for each state of
the behavior, that makes the formula Spec true for that behavior. A more
precise definition of ∃∃∃∃∃∃ is given below.

2

Formula (1) is an assertion about the values of a, b, and c. It happens
to be true if the values of those three variables are real numbers and b2−4∗
a ∗ c > 0 is true. The formula says nothing about the value of x . Formula
(1) asserts that there is some real number x that makes a ∗x 2+b ∗x +c = 0
true, but it doesn’t say anything about what the actual value of x is. We
obtain a completely equivalent formula by replacing each x with y .

Similarly, the formula ∃∃∃∃∃∃ queue : Spec asserts that there exists an infinite
sequence of values for queue that would make Spec true. It says nothing
about the actual value of the variable queue in any state. We’d get an
equivalent formula by replacing queue with y in that formula and in the
definition of Spec. We can say that the “∃∃∃∃∃∃ queue” hides the variable queue,
effectively making it disappear.

Using ∃∃∃∃∃∃ in TLA+

If Spec is defined as in module FIFO , the formula ∃∃∃∃∃∃ queue : Spec I’ve been
writing cannot be a legal formula in any TLA+ module. Since Spec is defined
in terms of the variable queue, it can appear only in a context in which queue
has been declared. In such a context, TLA+ doesn’t allow you to locally
redefine queue by writing ∃∃∃∃∃∃ queue . Instead of ∃∃∃∃∃∃ queue : Spec , in TLA+ we
can write ∃∃∃∃∃∃ queue : FI (queue)!Spec in a module containing:

variable op

FI (queue)
∆
= instance FIFO

However, for simplicity, I will simply write ∃∃∃∃∃∃ queue : Spec in this document.

The Precise Definition

The precise definition of the operator ∃∃∃∃∃∃ is a bit complicated because, for
reasons explained on the TLA+ Advanced Topics web page, TLA+ formulas
are stuttering insensitive. This means that whether a formula is true of a
behavior isn’t changed by adding and/or removing stuttering steps to/from
the behavior, where a stuttering step is a pair of successive states that are
identical. To ensure that the formula ∃∃∃∃∃∃ v : F is stuttering invariant, for any
formula F , we define it to be true for a behavior b iff there is a behavior b̂
obtained by adding and/or removing stuttering steps from b such that some
infinite sequence of values can be assigned to the variable queue, one value
for each state of the behavior b̂, that makes the formula F true for b̂.

3

https://lamport.azurewebsites.net/tla/advanced.html?unhideBut=hide-stuttering&unhideDiv=stuttering

A Problem With Our Spec

There is a problem with letting the queue specification be ∃∃∃∃∃∃ queue : Spec
(or its equivalent TLA+ formula in another module). This formula specifies
the allowed sequences of values of the single variable op in a behavior. As a
TLA+ formula, it’s stuttering-insensitive. Thus, if it allows a behavior with
a step in which the value of op changes from 〈“get”, 7〉 to 〈“put”, 2〉, then it
also allows a behavior in which that step is replaced by a sequence of steps
in which op has the following values:

op = 〈“get”, 7〉 → op = 〈“get”, 7〉 → op = 〈“get”, 7〉 →
op = 〈“get”, 7〉 → op = 〈“put”, 2〉

That is, if a behavior allows a step in which a Get of 7 is performed, then
it also allows one containing three additional such steps, without any ad-
ditional Put step. There’s no way to distinguish between a stuttering step
and one in which the same operation is performed twice. (We could tell the
difference in formula Spec because a stuttering step doesn’t change the value
of queue.)

I will not consider the philosophical question of whether this is a prob-
lem with formula Spec, since in that spec the variable queue distinguishes
repeated operations and stuttering steps. The important observation is that,
if we want the variable op by itself to describe the sequence of operations, a
repeated operation must change its value. Our queue specification is a high-
level abstraction of a real system composed of silicon and software. The
user of the queue communicates with the queue through some interface. If
the user performs two successive Get operations with the same value, some-
thing in that interface must have changed to indicate that two separate
operations are being performed. I find the most natural way to represent
that is to have every operation change the value of op; and the easiest way
to modify formula Spec to do that is to make the value of op a triple whose
third component alternates between two possible values. Letting those two
values be 1 and −1, we can modify module FIFO to include the definitions
of Init , Put , and Get shown in Figure 2.

3 Refinement with Hiding

Above, I made this assertion about the queue specification:

3. Any implementation of the spec must implement queue in its state,
and there’s a simple, precise definition of what that means.

4

To explain it, we will consider a TLA+ specification that implements the
queue specification. We often use the term refinement instead of implemen-
tation when a spec is being implemented by another spec rather than by
executable code, but there is no logical difference between the two.

The spec that refines the queue specification is formula Spec of module
FIFO2 in Figure 3. The queue described by variable queue has been re-
place by two queues described by variables qP and qG . The Put operation
appends a number to the end of qP ; the Get operation removes a number
from the head of qG . A Move operation moves numbers from the head of
qP to the end of qG .1

Let Spec1 be formula Spec of module FIFO and let Spec2 be formula
Spec of FIFO2. It should be intuitively clear that Spec2 implements
∃∃∃∃∃∃ queue : Spec1 , because the sequence of values of the variable op in any
behavior satisfying Spec2 is the sequence of values of op in some behavior
satisfying ∃∃∃∃∃∃ queue : Spec1 . In other words, this should be a true theorem—
that is, the formula following “theorem” is true for all behaviors:

theorem Spec2 ⇒ ∃∃∃∃∃∃ queue : Spec1(2)

Theorem (2) is an informal way of writing the theorem that can be written
as follows in module FIFO2:

FI (queue)
∆
= instance FIFO

theorem Spec ⇒ ∃∃∃∃∃∃ queue : FI (queue)!Spec

1If you think there’s an error in the Move action, you’re probably thinking of qP ′ =
Tail(qP) as an assignment statement rather than a subformula of a single mathematical
formula—a subformula that could just as well be written Tail(qP) = qP ′, except that
TLC couldn’t check the spec if the formula were written that way.

Init
∆
= ∧ op = 〈“init”, 0, 1〉
∧ queue = 〈 〉

Put
∆
= ∃ v ∈ Nat : ∧ op′ = 〈“put”, v , −op[3]〉

∧ queue ′ = Append(queue, v)

Get
∆
= ∧ queue 6= 〈 〉
∧ op′ = 〈“get”, Head(queue), −op[3]〉
∧ queue ′ = Tail(queue)

Figure 2: The modified definitions for the FIFO Queue Specification.

5

module FIFO2

extends Integers, Sequences

variables op, qP, qG

vars
∆
= 〈op, qP , qG 〉

Init
∆
= ∧ op = 〈“init”, 0, 1〉
∧ qP = 〈 〉
∧ qG = 〈 〉

Put
∆
= ∃ v ∈ Nat : ∧ op′ = 〈“put”, v , −op[3]〉

∧ qP ′ = Append(qP , v)
∧ qG ′ = qG

Get
∆
= ∧ qG 6= 〈 〉
∧ op′ = 〈“get”, Head(qG), −op[3]〉
∧ qG ′ = Tail(qG)
∧ qP ′ = qP

Move
∆
= ∧ qP 6= 〈 〉
∧ qP ′ = Tail(qP)
∧ qG ′ = Append(qG , Head(qP))
∧ op′ = op

Next
∆
= Put ∨Get ∨Move

Spec
∆
= Init ∧ 2[Next]vars

Figure 3: Another FIFO Queue Specification.

How would we prove such a theorem? Let’s consider how we would prove
formula (1) on page 2, assuming a, b, and c are real numbers satisfying
b2 − 4 ∗ a ∗ c > 0 . To prove that formula, we must show that there exists
some number x satisfying:

a ∗ x2 + b ∗ x + c = 0(3)

The obvious way to do that is to write down an expression that, when
substituted for x , makes (3) true. If you remember your high-school algebra,
you will see that this is one such expression—assuming a, b, and c are real

6

numbers with b2 − 4 ∗ a ∗ c > 0 :

if a = 0 then (−c)/b

else (−b +
√

b2 − 4 ∗ a ∗ c)/(2 ∗ a)

Similarly, to prove (2), we must show that there exists some expression such
that, when substituted for queue, makes Spec1 true—assuming Spec2 is true.
That is, we want this this theorem to be true for some expression exp:

theorem Spec2 ⇒ (Spec1 with queue ← exp)(4)

where “Spec1 with queue ← exp” is the formula obtained by substituting
exp for queue in formula Spec1. (This is not a legal TLA+ formula.)

When you understand formulas Spec1 and Spec2, the obvious choice for
the expression exp is qG ◦ qP , where ◦ is sequence concatenation. We can
write the formula

Spec1 with queue ← qG ◦ qP(5)

in module FIFO2 as F !Spec by adding this statement to the module:

F
∆
= instance FIFO with queue ← qG ◦ qP

We can then write (4) with exp equal to qG ◦ qP in module FIFO2 as

theorem Spec ⇒ F !Spec(6)

We can check theorem (6) in module FIFO2 by having TLC check the
temporal property F !Spec for a model with: the behavior spec set to the
temporal formula Spec, the definition of Nat overridden to equal some finite
set, and a state constraint bounding the lengths of the queues qP and qG .

Theorem (6) asserts that every behavior b that satisfies formula Spec also
satisfies F !Spec. To understand the theorem, you have to understand what
it means for a behavior b to satisfy F !Spec, which we can write informally
as (5). The meaning is explained by this observation:

For any temporal formula P of module FIFO , formula F !P is
true for a behavior b iff formula P is true for the behavior b̃
obtained from b by replacing the value of queue in each state of
b by the value of qG ◦ qP .

The following example shows why this is true. Suppose P equals 2(queue ∈
Seq(Nat)), so F !P equals 2(qG ◦ qP ∈ Seq(Nat)). In this case, F !P is
true of the behavior b iff qG ◦ qP ∈ Seq(Nat) is true in every state of b.

7

Formula qG ◦ qP ∈ Seq(Nat) is true in a state s iff queue ∈ Seq(Nat) is
true in the state obtained from s by replacing the value of queue with the
value of qG ◦ qP . Hence, qG ◦ qP ∈ Seq(Nat) is true in every state of b
iff queue ∈ Seq(Nat) is true in every state of b̃, since the states of b̃ are
obtained from the corresponding states of b by replacing the value of queue
with the value of qG ◦qP . Hence, for this formula P , the behavior b satisfies
F !P iff the behavior b̃ satisfies P . You should convince yourself that this is
true for every formula P of module FIFO , including Spec.

Knowing what theorem (6) of module FIFO2 means, we can see why it’s
true from traces (a)–(d) of Figure 4.

(a) This trace is the beginning of a behavior b satisfying formula Spec
of FIFO2. It is an error trace obtained by having TLC check that a
non-invariant formula is an invariant of Spec.

(b) This was obtained from (a) by running the Toolbox’s Trace Explorer
to show the value of qG ◦ qP in each state.

(c) This was obtained from (b) by assigning to the variable queue the value
of qG ◦ qP in the current state. It is the beginning of the behavior b̃
defined above.

(d) The variables qG and qB , which don’t appear in Spec1 (formula Spec
of module FIFO), have been removed. You can check that this trace
is the beginning of a behavior that satisfies Spec1. Observe that Move
steps allowed by Spec2 have become stuttering steps allowed by Spec1.

Let me recapitulate what we’ve done. We added this to module FIFO2:

F
∆
= instance FIFO with queue ← qG ◦ qP

theorem Spec ⇒ F !Spec

(7)

We saw that this theorem is correct, and that it implies the theorem written
informally as:

(2) theorem Spec2 ⇒ ∃∃∃∃∃∃ queue : Spec1

When the theorem of (7) is true, we say that Spec2 implements (or refines)
Spec1 by implementing (or refining) queue with qG ◦ qP . The substitution
queue ← qG ◦ qP is called a refinement mapping, and we say that (2) is
proved with this refinement mapping.

In general, Spec1 and Spec2 are arbitrary specifications and (2) becomes

theorem Spec2 ⇒ ∃∃∃∃∃∃ v1, . . . , vk : Spec1(8)

8

(a) A trace of Spec2 (b) Adding values of qG ◦ qP

(c) Assigning those values to queue (d) Removing irrelevant variables

queue

queue

queue

queue

queue

queue

queue

queue

queue

queue

← a stuttering step
allowed by Spec1

Figure 4: Obtaining a trace of Spec1 implemented by a trace of Spec2.

9

for variables v i of Spec1. We verify (8) by showing

theorem Spec2 ⇒ (Spec1 with v1 ← exp1, . . . , vk ← expk)(9)

where the expi are expressions containing the variables of Spec2. We express
theorem (9) as follows in a module where Spec2 is defined as Spec:

Id
∆
= instance S1 with v1 ← exp1, . . . , vk ← expk

theorem Spec ⇒ Id !Spec

if Spec1 is defined as Spec in module S1. The substitutions in the with
clause are called a refinement mapping.

4 Auxiliary Variables

Specifications Spec1 and Spec2 can satisfy theorem (8) without there being
any refinement mapping that proves it. Consider a system in which a user
and the system alternately perform steps in which the user inputs an integer
i by setting the interface variable io to 〈“in”, i 〉 and the system outputs the
average avg of the integers input thus far by setting io to 〈“out”, avg 〉. This
system is specified in module Avg1 of Figure 5. It uses a variable inputs to
remember the sequence of integers input thus far. A user input step appends
the integer to the end of input , and a system output step reports the average
of the integers in input . To allow TLC to check the spec, the system uses
integer division ÷ to compute the average. The function SeqSum is defined
so SeqSum[seq] is the sum of a sequence seq of integers.

There’s a simple way to implement this specification without remem-
bering the sequence of all inputs. Instead, we just remember the number
of inputs and their sums. This is described by the specification in module
Avg2 of Figure 6.

Let Spec1 and Spec2 be specifications Spec of modules Avg1 and Avg2,
respectively. It should be clear that the values of oi in a behavior satisfying
Spec2 also are values of oi allowed by a behavior satisfying Spec1. In other
words, this theorem should be true:

theorem Spec2 ⇒ ∃∃∃∃∃∃ inputs : Spec1(10)

However, no refinement mapping can prove this because the variables of
Avg2 do not contain the information about past inputs needed to write such
a refinement mapping.

The way to prove (10) is by adding an auxiliary variable to Spec2. Adding
an auxiliary variable a to a specification S means finding a specification Sa

10

containing the variables of S plus the additional variable a such that ∃∃∃∃∃∃ a : Sa

is equivalent to S . We prove (10) by adding to Spec2 an auxiliary variable a
that is not a variable of Spec1 such that we can find a refinement mapping
that proves:

theorem Spec2
a ⇒ ∃∃∃∃∃∃ inputs : Spec1(11)

Since a is not a variable of Spec1, if some behavior b satisfies ∃∃∃∃∃∃ inputs : Spec1
then the behavior obtained from b by letting variable a have any value in
any of its states also satisfies it. This means that (11) implies

theorem (∃∃∃∃∃∃ a : Spec2
a) ⇒ ∃∃∃∃∃∃ inputs : Spec1(12)

Since ∃∃∃∃∃∃ a : Spec2
a is equivalent to Spec2, theorem (12) implies (10).

There are three types of auxiliary variables: history variables, stuttering
variables, and prophecy variables. They are explained in detail in the paper

module Avg1

extends Integers,Sequences

SeqSum[seq ∈ Seq(Int)]
∆
=

if seq = 〈 〉 then 0 else Head(seq) + SeqSum[Tail(seq)]

variables io, inputs
vars

∆
= 〈io, inputs 〉

Init
∆
= ∧ io = 〈“out”, 0〉
∧ inputs = 〈 〉

In
∆
= ∧ io[1] = “out”
∧ ∃ i ∈ Int : ∧ io′ = 〈“in”, i 〉

∧ inputs ′ = Append(inputs, i)

Out
∆
= ∧ io[1] = “in”
∧ io′ = 〈“out”, SeqSum[inputs]÷ Len(inputs)〉
∧ inputs ′ = inputs

Next
∆
= In ∨ Out

Spec
∆
= Init ∧ 2[Next]vars

Figure 5: A system to input integers and output their integer average.

11

module Avg2

extends Integers

variables io, sum, num
vars

∆
= 〈io, sum, num 〉

Init
∆
= ∧ io = 〈“out”, 0〉
∧ sum = 0
∧ num = 0

In
∆
= ∧ io[1] = “out”
∧ ∃ i ∈ Int : ∧ io′ = 〈“in”, i 〉

∧ sum ′ = sum + i
∧ num ′ = num + 1

Out
∆
= ∧ io[1] = “in”
∧ io′ = 〈“out”, sum ÷ num 〉
∧ unchanged 〈sum,num 〉

Next
∆
= In ∨ Out

Spec
∆
= Init ∧ 2[Next]vars

Figure 6: Another specification of the integer averaging system.

12

Auxiliary Variables in TLA+ and its associated web page:

http://lamport.azurewebsites.net/tla/auxiliary/auxiliary.html

You should read that explanation if you need to add auxiliary variables to
check the correctness of an industrial-sized spec. However, it is heavy going.
The description here is shorter and simpler, but omits many details.

History Variables

History variables remember what happened in the past. They are the most
commonly used auxiliary variables. A history variable is used to prove
theorem (10), where Spec1 and Spec2 are specifications Spec of modules
Avg1 and Avg2 of Figures 5 and 6 on pages 11 and 12. We add a history
variable h in module Avg2h of Figure 7, which imports the variables and
definitions of module Avg2 with its extends statement. Module Avg2h
defines SpecH to be formula Spec2

h—that is, formula Spec of module Avg2
with history variable h added.

Observe how the initial and next-state formulas and of SpecH are ob-
tained from the corresponding formulas Init and Next of Spec by conjoining

module Avg2h

extends Avg2,Sequences

variable h
varsH

∆
= 〈vars, h 〉

InitH
∆
= Init ∧ (h = 〈 〉)

InH
∆
= In ∧ (h ′ = Append(h, io′[2]))

OutH
∆
= Out ∧ (h ′ = h)

NextH
∆
= InH ∨ OutH

SpecH
∆
= InitH ∧ 2[NextH]varsH

A
∆
= instance Avg1 with inputs ← h

theorem SpecH ⇒ A !Spec

Figure 7: Adding the history variable a to the specification of module Avg2.

13

http://lamport.azurewebsites.net/pubs/auxiliary.pdf
http://lamport.azurewebsites.net/tla/auxiliary/auxiliary.html

to Init a specification of the initial value of h and conjoining to each subac-
tion of Next a specification of the value of h ′. It should be clear that SpecH
describes exactly the same possible sequences of values of the variables oi ,
sum, and num as does formula Spec does. Hence, ∃∃∃∃∃∃ h : SpecH allows the
same behaviors as SpecH , so the two formulas are equivalent.

The variable h in SpecH remembers the same history of input values
as does the variable inputs of Spec1 (formula Spec of module Avg1). So, as
shown by the theorem in module Avg2h, the refinement mapping inputs ← h
proves (10).

The common uses of history variables are straightforward generalizations
of this example.

Stuttering Variables

Let’s return to our queue example, where Spec1 and Spec2 are formulas Spec
of modules FIFO and FIFO2. We used the refinement queue ← qG ◦ qP to
show:

(2) theorem Spec2 ⇒ ∃∃∃∃∃∃ queue : Spec1

It should be clear that Spec1 and Spec2 allow the same values for op in behav-
iors. Therefore ∃∃∃∃∃∃ qP , qG : Spec2 and ∃∃∃∃∃∃ queue : Spec1 should be equivalent.
Theorem (2) proves that ∃∃∃∃∃∃ qP , qG : Spec2 implies ∃∃∃∃∃∃ queue : Spec1 . To prove
the converse implication, we need to prove

theorem Spec1 ⇒ ∃∃∃∃∃∃ qP , qG : Spec2(13)

No refinement mapping can prove this because a behavior that satisfies
Spec2 takes more non-stuttering steps than one that satisfies Spec1—namely,
the steps that satisfy the Move action. Any expressions of FIFO that we
substitute for qP and qG must be left unchanged by stuttering steps, so
they can’t change as often as qP and qG change.

To prove (13) we need to add a stuttering variable to Spec1. This is an
auxiliary variable s that allows all steps allowed by Spec1 plus steps that
leave the variables of Spec1 unchanged (and hence are stuttering steps for
Spec1) but that change s. This is done in module FIFOs of Figure 8. Look
first at the definitions of InitS through SpecS . You’ll see that they allow
the same Put and Out steps as Spec1 (formula Spec of module FIFO), but
requires that a Stutter step, which leaves the variables of FIFO unchanged,
must follow every Put step.

We define the refinement mapping so that every Stutter step implements
a Move step of Spec2. This means that, under the refinement mapping, a

14

module FIFOs

extends FIFO

End(seq)
∆
= 〈seq [Len(seq)]〉

Front(seq)
∆
= [i ∈ 1..(Len(seq)− 1) 7→ seq [i]]

variable s
varsS

∆
= 〈vars, s 〉

InitS
∆
= Init ∧ (s = 0)

PutS
∆
= (s = 0) ∧ Put ∧ (s ′ = 1)

GetS
∆
= (s = 0) ∧ Get ∧ (s ′ = s)

Stutter
∆
= (s = 1) ∧ (unchanged vars) ∧ (s ′ = 0)

NextS
∆
= PutS ∨ GetS ∨ Stutter

SpecS
∆
= InitS ∧ 2[NextS]varsS

qPbar
∆
= if s = 0 then 〈 〉 else End(seq)

qGbar
∆
= if s = 0 then queue else Front(queue)

F2
∆
= instance FIFO2 with qP ← qPbar , qG ← qGbar

theorem SpecS ⇒ F2!Spec

Figure 8: Adding stuttering variable s to formula Spec of module FIFO .

behavior satisfying Spec1 implements a behavior of Spec2 in which every
number put into qP is immediately moved to qG , so qP never contains
more than one number. (To prove (13) we have to show only that every
behavior of Spec1 implements some behavior of Spec2; all possible behaviors
of Spec2 don’t have to be implemented.) We define qPbar and qGbar so
the refinement mapping is written as qP ← qPbar , qG ← qGbar . The
definitions use the operators End and Front defined so that if seq equals
〈s1, . . . , sn 〉 for n > 0, then End(seq) equals 〈sn 〉 and Front(seq) equals
〈s1, . . . , sn−1 〉. Note that SpecS maintains the invariant that s 6= 0 implies
queue 6= 〈 〉.

There are other ways to define a stuttering variable s that proves (13).
For example, we can define it so that the refinement mapping substitutes

15

the sequence of the last s numbers in queue for qP . We can then use the
following definitions for PutS , GetS , and Stutter :

PutS
∆
= Put ∧ (s ′ = s + 1)

GetS
∆
= (s < Len(queue)) ∧ Get ∧ (s ′ = s)

Stutter
∆
= (s > 0) ∧ (unchanged vars) ∧ (s ′ = s − 1)

Defining the refinement mapping in this case is a nice little exercise.

Prophecy Variables

Module FIFOp in Figure 9 adds a variable p to specification Spec of module
FIFO in much the same way that module Avg2h added the history variable
h to module Avg2. In this case, variable p always equals the next number to
be appended to the queue. It’s set to an arbitrary natural number initially
and upon performing each Put action.

It’s not hard to see that SpecP allows behaviors with exactly the same
sequences of values of op and queue as formula Spec of module FIFO . Thus
∃∃∃∃∃∃ p : SpecP is equivalent to Spec, so SpecP is obtained from Spec by adding
the auxiliary variable p. We call p a prophecy variable because it “predicts”

module FIFOp

extends FIFO

variable p

varsP
∆
= 〈vars, p 〉

InitP
∆
= Init ∧ (p ∈ Nat)

PuP
∆
= ∧ op ′ = 〈“put”, p,−op[3]〉
∧ queue ′ = Append(queue, p)
∧ p′ ∈ Nat

GetP
∆
= Get ∧ (p ′ = p)

NextP
∆
= PutP ∨ GetP

SpecP
∆
= InitP ∧ 2[NextP]varsP

Figure 9: Adding the variable p to the specification of module FIFO .

16

what will happen in the future—in particular, what value the next Put step
will choose to append to the queue.

The value of a prophecy variable may make multiple predictions. For
example, module FIFOp2 in Figure 10 defines formula SpecP2, which is
obtained by adding the prophecy variable p2 to formula Spec of module
FIFO . It defines ISeq , IHead , and ITail to be the operators for infinite
sequences that are the obvious analogs of the operators Seq , Head , and Tail
for finite sequences. (An infinite sequence is represented as a function whose
domain is the set of all positive integers.) At any point during the execution,
the value of p2 is the sequence of all future input values.2 Again, it’s clear
that Spec2p allows exactly the same sequences of values of op and queue as
formula Spec. Thus ∃∃∃∃∃∃ p2 : SpecP2 is equivalent to Spec.

A prophecy variable is needed to define a refinement mapping that shows

(8) theorem Spec2 ⇒ ∃∃∃∃∃∃ v1, . . . , vk : Spec1

if Spec1 encodes in the variables v i choices about the values of the other
variables sooner than those choices are made in Spec2. For example, Spec1
might at some point set v1 to a sequence of four values and then “reveal”
those values by outputting them one at a time through other variables.
This could be implemented in Spec2 by choosing those values when they are
output. Of course, this is a silly example. Here’s a realistic example.

Suppose that we modify the FIFO queue spec so there are multiple pro-
cesses that perform Put actions to append elements to queue. For simplicity,
let’s assume only a single process performs the Get action. It’s easy to do
this by simply adding to the value of op a fourth component indicating which
process is performing the Put operation.

This spec is unrealistic because it requires the Get operation to obtain
the values from the queue in the exact order in which the corresponding
Put operations are executed. This means that if one process performs a
Put a few nanoseconds before another process does, then the first process’s
value must be appended to queue before the second process’s value. This
is almost impossible to implement if those two processes are located on
different continents.

A practical spec needs to decouple the action of changing op from the
action of appending a value to queue. It also needs to provide some guarantee
about when the value is actually appended to queue. One way of doing this
is expressed by the following specification. The Put action of module FIFO

2Since we are specifying only safety, a behavior may terminate at any point. Therefore,
the value of p2 predicts the sequence of all values that might be input.

17

module FIFOp2

extends FIFO

ISeq(S)
∆
= [Nat 0→ S]

IHead(seq)
∆
= seq [1]

ITail(seq)
∆
= [i ∈ Nat 0 7→ seq [i + 1]]

variable p2

varsP2
∆
= 〈vars, p2〉

InitP2
∆
= Init ∧ (p2 ∈ ISeq(Nat))

PutP2
∆
= ∧ op′ = 〈“put”, IHead(p2),−op[3]〉
∧ queue ′ = Append(queue, IHead(p2))
∧ p2′ = ITail(p2)

GetP2
∆
= Get ∧ (p2′ = p2)

NextP2
∆
= PutP2 ∨ GetP2

SpecP2
∆
= InitP2 ∧ 2[NextP2]varsP2

Figure 10: Adding the variable p2 to the specification of module FIFO .

is split into three actions: BeginPut that changes op to indicate that the
operation has begun; DoPut that appends the value to queue and leaves op
unchanged; and EndPut that changes op to indicate that the operation has
completed. Such a FIFO queue is called linearizable; it is easily generalized
to an arbitrary data structure accessed by multiple users.

Because it is general and easy to understand, linearizability is a common
requirement for multiuser systems. However, a linearizable FIFO queue spec
implies that if two Put operations are executed concurrently, then immedi-
ately after both processes have performed their EndPut actions, their values
have both been added to queue—which means that the order in which they
will be removed from queue by a Get operation has been determined. How-
ever, if the spec has the form ∃∃∃∃∃∃ queue : . . . , then it can be implemented by
an algorithm in which, at that point, it is still possible for the values to be
removed by Get operations in either order. We must add a prophecy vari-
able to the algorithm’s spec to define a refinement mapping to show that
such an algorithm implements the linearizability spec.

18

Completeness

It turns out that the ability to add auxiliary variables means we can, in
principle, always prove implementation with a refinement mapping. If this
theorem is true:

(8) theorem Spec2 ⇒ ∃∃∃∃∃∃ v1, . . . , vk : Spec1

then there exists a refinement mapping that proves it. The idea of the
proof is as follows. Don’t worry if you can’t follow it; it’s of no practical
importance.

Much as we added the prophecy variable p2 to predict the sequence of
future “put” values of op in the current behavior satisfying the FIFO algo-
rithm’s spec, we can add to any spec a prophecy variable pAll that always
predicts the sequence of future system states (assignments of values to all
the spec’s variables). We can also add a history variable hAll that remem-
bers the entire sequence of system states up to and including the current
state. Thus, the concatenation of the values of hAll and pAll describe the
complete behavior that the system is currently executing, and the system
is currently in the j th state of that behavior, where j equals the length of
hAll .

For simplicity, let’s ignore stuttering invariance. Theorem (8) then
means that for every behavior b satisfying Spec2, there is a behavior F (b)
satisfying Spec1 such that the values of all variables of Spec1 other than the
v i are the same in b and F (b). If Spec1 and Spec2 are TLA+ formulas, then
F (b) can, in principle, be written as a TLA+ formula. Adding the auxiliary
variables pAll and hAll , we can define the refinement mapping

v1 ← exp1, . . . , vk ← expk

that proves (8) by letting expi equal the value of v i in the j th state of F (b),
where the values of pAll and hAll indicate that the system is currently in
the j th state of an execution of behavior b.

When stuttering invariance is taken into account, things get more com-
plicated because we have to add a stuttering variable to keep the behaviors
b and F (b) “in step”. However, the basic idea is the same.

This result is of only theoretical interest because the proof does not
provide a practical way to find a refinement mapping. However, it shows
the expressive power of auxiliary variables, which is why I believe that the
necessary refinement mapping can always be found in practice.

19

5 Refinement in General

The TLA+ specs we write can contain two kinds of variables:

observable variables Also called interface or externally visible variables.
The purpose of the spec is to describe the sequences of possible values
of these variables.

internal variables Also called unobservable or invisible variables. These
variables are the “internal gears” used to control the values of the
interface variables.

In our FIFO queue specifications, op is an observable variable; all the other
variables are internal. In the specifications of modules Avg1 and Avg2, the
variable io is an observable variable; all other variables are internal.

The philosophically correct way to write a specification is

∃∃∃∃∃∃ v1, . . . , vk : Spec(14)

where (the safety part of) Spec has the form Init ∧2[Next]vars and the v i

are the internal variables. As explained in Section 2, it’s a bit awkward to
write (14) in TLA+. Moreover, there is no practical reason to do so, since
neither the TLC model checker nor the TLAPS prover can handle the ∃∃∃∃∃∃
operator. TLC is unlikely ever to handle it, since checking if a behavior
satisfies such a formula is inherently difficult. While there is no problem
reasoning about ∃∃∃∃∃∃ , there is little incentive to implement it in TLAPS. In-
stead of writing the specification (14), we can just call Spec the specification
and state in a comment that the v i are internal variables.

A reason for writing philosophically correct specs is that they provide
a simple, natural definition of what it means for one spec to implement
another. If PC 1 and PC 2 have the form (14), then PC 2 implements (or
refines) PC 1 iff the observable part of any behavior satisfying PC 2 is the
observable part of a behavior satisfying PC 1—where the observable part of
a behavior is the sequence of values assigned to the observable variables.
Mathematically, “PC 2 implements PC 1” asserts the truth of:

theorem PC 2 ⇒ PC 1(15)

Reduced to a slogan, this means: implementation is implication.
In practice, implementation is implication only when both specs are writ-

ten at the same level of abstraction. For example, (15) might hold if PC 2

describes a method in a Java class and PC 1 asserts a relation that must hold
between an object’s values before and after executing the method. However,

20

suppose PC 1 describes a message-passing algorithm and PC 2 describes an
implementation of that algorithm with a packet-switching network. The
values of observable variables of PC 1 will be described in terms of mes-
sages; the values of observable variables of PC 2 will be described in terms of
packets, saying nothing about messages. Instead of (15), we would expect
implementation to mean

theorem PC 2 ⇒ (PC 1 with o1 ← oexp1, . . . , om ← oexpm)(16)

where the oi are the observable variables of PC 1 and the oexpi are expres-
sions involving the observable variables of PC 2. For example, if the value o1

is a set of messages in transit in a state of a behavior satisfying PC 1, then
oexp1 might be the expression that describes this set of messages in terms
of the set of packets in transit in a behavior satisfying PC 2.

Let PC 1 equal ∃∃∃∃∃∃ v1, . . . , vk : Spec1 and let PC 2 equal ∃∃∃∃∃∃ . . . : Spec2 . To
verify (16), we find a refinement mapping v1 ← exp1, . . . , vk ← expk such
that

theorem Spec2 ⇒ ((Spec1 with v1 ← exp1, . . . , vk ← expk)

with o1 ← oexp1, . . . , om ← oexpm)

which is equivalent to

theorem Spec2 ⇒ (Spec1 with v1 ← exp1, . . . , vk ← expk ,

o1 ← oexp1, . . . , om ← oexpm)

(17)

This is exactly what we did in Section 3 (equation (9) on page 10), except
instead of a refinement mapping that substitutes expressions only for the
internal variables v i of Spec1, we use one that substitutes for all the variables
of Spec1.

In practice, we forget about (16) and take (17) to be the definition of
implementation. More precisely, we talk only about implementation under
a refinement mapping, where (17) asserts that Spec2 implements Spec1 un-
der the refinement mapping v1 ← exp1, . . . , om ← oexpm . This allows the
expressions oexpi to mention the internal as well as the observable variables
of Spec2, which can be useful. Implementation in the sense of Section 3 is
the special case when each observable variable oi of Spec1 is implemented
by the variable with the same name oi in Spec2.

In the general case, it’s meaningless to say that a spec Spec2 implements
a spec Spec1 without saying what expressions are substituted for the ob-
servable variables of Spec1. For any two specs Spec1 and Spec2, by adding

21

suitable auxiliary variables to Spec2, it’s possible to define a refinement map-
ping under which Spec2 implements Spec1. To decide if implementing Spec1
under a refinement mapping is an interesting property of Spec2, you have
to examine carefully the expressions the refinement mapping substitutes for
the variables of Spec1—especially its observable variables. This is just a
special case of the general observation that you should examine a property
carefully to be sure that showing that a spec satisfies it tells you something
useful.

22

