
The Bakery Algorithm is FCFS

Theorem Spec ⇒ FCFS

1. Suffices Assume: 2Inv ∧2[Next ]vars , p ∈ Procs, q ∈ Procs
Prove: Waiting(p) ∧ InNCS (q) ∧2¬InCS (p)⇒ 2¬InCS (q)

Proof: By definition of Spec and FCFS , the invariance of Inv
(the theorem Spec ⇒ 2Inv ), and temporal logic. We are using the
proof rule (F ⇒ G) ` (2F ⇒ 2G) , together with the observation that
2Inv ∧2[Next ]vars is equivalent to 2(2Inv ∧2[Next ]vars) .

Define: WInv
∆
= Waiting(p) ∧ Before(p, q)

We prove that 2Inv ∧2¬InCS (p) implies

Waiting(p) ∧ InNCS ∧2[Next ]vars ⇒ 2¬InCS (q)

by proving that ¬InCS (q) is an invariant of the specification

(Waiting(p) ∧ InNCS ) ∧ 2[Next ]vars

using the inductive invariant WInv . This is an ordinary invariance proof, except
that because we are assuming 2Inv ∧ 2¬InCS (p), we can assume Inv ∧ Inv ′ ∧
¬InCS (p) ∧ ¬InCS (p)′ in our action reasoning.

2. Inv ∧Waiting(p) ∧ InNCS (q) ⇒ WInv

Proof: By definition of WInv , since Inv ∧Waiting(p) ∧ InNCS (q) implies
(num[p] > 0) ∧ (num[q ] = 0), which implies Before(p, q).

3. Inv ∧ ¬InCS (p)′ ∧WInv ∧ [Next ]vars ⇒ WInv ′

Proof: ¬InCS (p)′ implies that p can’t enter its critical section, so [Next ]vars∧
Waiting(p) implies Waiting(p)′. Since Inv ∧Waiting(p) imply num[p] 6= 0,
a Next step can make Before(p, q) false only by making 〈num ′[q ], q 〉 ≺
〈num[p], p 〉 true, which is impossible because an enter(q) step sets num ′[q ] >
num[p].

4. Inv ∧WInv ⇒ ¬InCS (q)

Proof: Inv ∧ InCS (q) implies (num[q ] 6= 0) ∧ Before(q , p), which implies
¬Before(p, q).

5. Q.E.D.

Proof: Step 3 implies

2Inv ∧2¬InCS (p) ⇒ (WInv ∧2[Next ]vars ⇒ 2WInv)

which by steps 2 and 4 and the step 1 assumptions proves

Waiting(p) ∧ InNCS (q) ∧2¬InCS (p);⇒ 2¬InCS (q)

close


