-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: .3

green: .3

blue: .3



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a”b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .3

magenta: .3

yellow: .3



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: .35
green: .35
blue: .35



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+4), subtraction (—), multiplication (x), and exponentiation
(a® is typed ab). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .35

magenta:

yellow: .35

.35



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a”b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: 4
green: .4
blue: .4



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a® is typed ab). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .4

magenta: .4

yellow: .4



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: .45
green: .45
blue: .45



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (x), and exponentiation
(a® is typed ab). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .45

magenta: .45

yellow:

45



-~

JE R

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (x), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: .5

green:

blue: .5

oD

=S



-~

JE R

10

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (*), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (x), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .b

magenta: .5

yellow: .5



-~

JE R

11

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a”b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a® is typed ab). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: .55

green: .55

blue: .55



-~

JE R

12

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+4), subtraction (—), multiplication (x), and exponentiation
(a® is typed ab). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .b5

magenta: .55

yellow: .55



-~

JE R

13

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a”b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: .6

green:

blue: .6

.6



-~

JE R

14

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (x), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (*), and exponentiation
(a® is typed ab). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .6

magenta: .6

yellow: .6



-~

JE R

15

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (x), and exponentiation
(a® is typed ab). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

red: .65
green: .65
blue: .65



16

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (x), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (*), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (x), and exponentiation
(a’ is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (—), multiplication (), and exponentiation
(a® is typed a"b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (4), subtraction (—), multiplication (*), and exponentiation
(a® is typed a~b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/. So, we define Divides using the operators defined in the Integers module.

aqua: .65

magenta: .65

yellow: .65



