
The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .3

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .3

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .3

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

1

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .3

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .3

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .3

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

2

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .35

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .35

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .35

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

3

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .35

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .35

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .35

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

4

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .4

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .4

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .4

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

5

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .4

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .4

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .4

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

6

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .45

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .45

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .45

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

7

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .45

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .45

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .45

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

8

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .5

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .5

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .5

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

9

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .5

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .5

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .5

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

10

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .55

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .55

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .55

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

11

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .55

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .55

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .55

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

12

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .6

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .6

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .6

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

13

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .6

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .6

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .6

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

14

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

red: .65

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

green: .65

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

blue: .65

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

15

?

�

-

C

I



The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

aqua: .65

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

magenta: .65

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

yellow: .65

The Integers module is about integers, and n/p is not, in general, an integer.
The only arithmetic operations you learned in grade school that the module
defines are addition (+), subtraction (−), multiplication (∗), and exponentiation
(ab is typed a^b). There is a Reals module that defines ordinary division, but
it is rarely used because the TLC model checker cannot evaluate the operator
/ . So, we define Divides using the operators defined in the Integers module.

16

?

�

-

C

I


