
A Proof of Deadlock Freedom

The proof uses the following additional definitions:

InNCS (i)
∆
= pc[i ] = “ncs”

Fairness
∆
= ∀ i ∈ Procs : WFvars((pc[i ] 6= “ncs”) ∧ p(i))

SomeTrying
∆
= ∃ i ∈ Procs : Trying(i)

NoneInCS
∆
= ∀ i ∈ Procs : ¬InCS (i)

Theorem Spec ⇒ DeadlockFree

1. Spec ⇒ 2LInv

Proof: This is a standard invariance proof, which is omitted.

2. Suffices Assume: 2LInv ∧ 2[Next ]vars ∧ Fairness ∧ 2NoneInCS
Prove: SomeTrying ; false

Proof: By 1 and the definition of Spec, since DeadlockFree equals
SomeTrying ; ¬NoneInCS , which we prove by assuming SomeTrying and
2NoneInCS and obtaining a contradiction.

3. Trying(i) ⇒ 2Trying(i) and ¬Trying(i) ; 2InNCS (i) ∨2Trying(i), for all
i ∈ Proc.

Proof: Fairness implies ¬Trying(i) ; InNCS (i), the program implies “The program” is an
abbreviation for the
assumptions 2LInv and
2[Next ]vars .

InNCS (i) ; Trying(i) ∨ 2InNCS (i), and the program and the assumption
2NoneInCS imply Trying(i) ⇒ 2Trying(i).

4. SomeTrying ; ∧ 2SomeTrying
∧ ∀i ∈ Procs : 2Trying(i) ∨2InNCS (i)

Define: T (i)
∆
= Trying(i)

ST
∆
= SomeTrying

4.1. ST ; 2ST

Proof: By step 3.

4.2. ST ⇒ (2ST ∧ T (i)) ∨ (2ST ∧ ¬T (i))

Proof: Obvious.

4.3. 2ST ∧ T (i) ; 2ST ∧2T (i)

Proof: By step 3.

4.4. 2ST ∧ ¬T (i) ; 2ST ∧ (2InNCS (i) ∨2T (i))

Proof: By step 3.

4.5. Q.E.D.

Proof: Steps 4.1–4.4 and leads-to induction with the following proof
1

?

�

-

C

I

S



graph imply ST ; 2ST ∧ (2T (i) ∨2InNCS (i)) for each i ∈ Proc.

ST 2ST

(2ST) ∧ T (i)

(2ST) ∧ ¬T (i)

(2ST) ∧2T (i)

(2ST) ∧2InNCS (i)

(2ST) ∧ (2T (i) ∨2InNCS (i))- ��

@R

-

-
��7

@R

��

The result follows from this, since ∀i ∈ Proc : ST ; 2P(i) implies
ST ; ∀i ∈ Proc :2P(i) for any P(i) because Proc is a finite set.

Define: Never(i)
∆
= 2Trying(i) ∧2¬x [i ]

Always(i)
∆
= 2Trying(i) ∧2x [i ]

Blinking(i)
∆
= 2Trying(i) ∧23x [i ] ∧23¬x [i ]

5. 2SomeTrying ; ∧ 2SomeTrying
∧ ∀i ∈ Procs :

2InNCS (i) ∨Never(i) ∨Always(i) ∨ Blinking(i)

Proof: By step 4 and the tautology:

true ; 2F ∨2¬F ∨ (23F ∧23¬F )

which asserts that either F is eventually forever true or forever false, or else
it is infinitely often true and infinitely often false.

6. Suffices Assume: ∧ 2SomeTrying
∧ ∀i ∈ Procs :

2InNCS (i) ∨Never(i) ∨Always(i) ∨ Blinking(i)
Prove: false

Proof: By step 5, this provides the desired contradiction.

7. ∀i ∈ Proc : ¬Blinking(i)

Proof: We assume Blinking(j ) is true for some j and obtain a contradiction.
Let i be the smallest such j . By 2Trying(i) ∧ 23¬x [i ], process i must
eventually execute e3, find x [other ] = true, and reach e5, which by LInv
implies i > other . Hence Blinking(other) is false (because i is the smallest
j with Blinking(j ) true) and x [other ] = true implies Never(other) is false.
Therefore, the step 6 assumption implies that Always(other) is true, which
implies 2x [other ]. This implies that i must stay forever at e5, making 2¬x [i ]
true. This is a contradiction because Blinking(i) implies 23x [i ].

8. ¬ (∃i ∈ Procs : 2Trying(i) ∧2x [i ])

Proof: Let S be the set of processes i such that 2Trying(i) ∧ 2x [i ] holds.
We assume S is nonempty and obtain a contradiction. Let i be the smallest
element in S . By 2Trying(i)∧2x [i ], process i must eventually reach e6 and

2

?

�

-

C

I

S



remain there forever, with other > i , so other is not in S . By step 7 and the
step 6 assumption, this implies 2¬x [other ], so i must eventually execute e6
and reach e2, which is a contradiction.

9. ¬ (∃i ∈ Procs : 2Trying(i) ∧2¬x [i ])

Proof: We assume that there is an i such that 2Trying(i) ∧ 2¬x [i ] holds
and obtain a contradiction. The assumption implies that i eventually reaches
and remains forever at e5. However, steps 7 and 8 and the step 6 assumption
imply that 2¬x [j ] holds for all processes j , so fairness implies that process i
cannot remain forever at e5, which is the required contradiction.

10. Q.E.D.

Proof: Steps 7–9 and the second conjunct of the step 6 assumption im-
ply ∀ i ∈ Procs : 2InNCS (i), which is a contradiction because the step 6
assumption also implies 2SomeTrying .

3

?

�

-

C

I

S


