Answer

The problem has a solution only if the ged of the set of jug capacities divides
Goal. The set of jug capacities is written in TLA™ as { Capacity[j] : j € Jugs}.
Therefore, in terms of the definitions from the GCD module, the problem has a
solution only if

Divides(SetGCD({ Capacitylj] : j € Jugs}), Goal)

is true. That this is a necessary condition follows from the fact that the algorithm
maintains the following invariant: the ged of the set of jug capacities divides the
amount of water in each jug. This invariant is written in TLAT as

Vj € Jugs : Divides(SetGCD({Capacitylk] : k € Jugs}), injuglj])

Modify the DieHarder spec so it imports the GCD module, and have TLC
check that this is indeed an invariant. (Unless you put the GCD spec in a
library folder, the file GCD.tla [or a copy of it] has to be in the same folder as
the DieHarder spec.) Can you prove that the formula above is an invariant of
algorithm DieHarder?

The necessary and sufficient condition for the existence of a solution depends
on what it means for the heroes to “obtain” Goal gallons of water. If we require
that those Goal gallons must be in the jugs, then the jugs obviously must have
the capacity to hold that much water. This together with the requirement that
the ged of the jug capacities divides Goal implies that there does exist a solution.
You may be able to find a proof of this on the Web, but it’s more fun trying to
prove it yourself. The proof I devised is based on the number-theoretic result of
Question 4.6,

CLOSE



