THEOREM Induction = Inv A Next = Inv'

(1)1. SUFFICES ASSUME: 1. Inv
2. Next
ProvE: Inv’
PROOF: Obvious.

(1)2. CASE: Az >y
AN =z—y
Ny =y
(2)1. TypeOK’
PROOF: (1)1.1 and the definitions of Inv and TypeOK imply that z and y
are in Nat \ {0}. By case assumption (1)2, this implies that z’ and y’ are
in Nat\ {0}, proving (2)1.
(2)2. GCDInv'
(3)1. GCD(y',2") = GCD(y, z)
PROOF: (1)1.1 and the definitions of Inv and TypeOK imply that x and
y are in Nat \ {0}, so (3)1 follows from case assumption (1)2 and GCD3
(substituting y for m and z for n).
(3)2. GCD(«',y') = GCD(z, y)
PrOOF: (1)1.1, the definitions of Inv and TypeOK, and (2)1 imply that
z, y, 2, and y" are in Nat \ {0}, so (3)2 follows from (3)1 and GCD2.
(3)3. Q.E.D.
PROOF: (3)2, (1)1.1, and the definitions of Inv and GCDInv imply (2)2.
(2)3. Q.E.D.
ProoOF: By (2)1, (2)2, and definition of Inv.

(1)3. CASE: Ay >z
ANy =y—=zx
ANt =z
(2)1. TypeOK’
PROOF: (1)1.1 and the definitions of Inv and TypeOK imply that z and y
are in Nat \ {0}. By case assumption (1)3, this implies that z’ and y’ are
in Nat\ {0}, proving (2)1.
(2)2. GCDInv'
(3)1. GCD(a',y') = GCD(z,y)
PRrROOF: (1)1.1 and the definitions of Inv and TypeOK imply that z and

y are in Nat \ {0}, so (3)1 follows from case assumption (1)3 and GCD3
(substituting z for m and y for n).

(3)2. Q.E.D.



PROOF: (3)1, (1)1.1, and the definitions of Inv and GCDInv imply (2)2.

(2)3. Q.E.D.
PRrROOF: By (2)1, (2)2, and definition of Inv.

(1)4. Q.ED.
ProOOF: By (1)1.2 and the definition of Next, the cases (1)2 and (1)3 are

exhaustive.
CLOSE



