
A Formal Proof of Deadlock Freedom

Lemma Spec ⇒ 2LInv

Theorem Spec ⇒ DeadlockFree

define T0 ∆= Trying(0)
T1 ∆= Trying(1)
Success ∆= InCS (0) ∨ InCS (1)
Fairness ∆= ∀ i ∈ {0, 1} : WFvars((pc[i ] 6= “ncs”) ∧ P(i))

1 〈1〉1. Suffices Assume: 2LInv ∧2[Next ]vars ∧ Fairness ∧2¬Success
Prove: T0 ∨ T1 ; false

1.1 〈2〉1. Suffices: 2LInv ∧2[Next ]vars ∧ Fairness ⇒ DeadlockFree
Proof: By the lemma and the definition of Spec.

1.2 〈2〉2. DeadlockFree ≡ ((2¬Success) ∧ (T0 ∨ T1) ; false)
Proof: By definition of DeadlockFree and the tautology (F ; G) ≡
((2¬G) ∧ F ; false.

1.3 〈2〉3. Q.E.D.
Proof: By 〈2〉1, 〈2〉2, and the proof rule

(2F ∧2G ` H ; K ) ` (2F ⇒ (2G ∧H ; K ))
since Fairness ≡ 2Fairness.

2 〈1〉2. Case: T0 ; false.

2.1 〈2〉1. T0 ; 2(pc[0] = “e2”)
Proof: LInv implies that process 0 is never at e3 or e4, and 2¬Success
(from the step 〈1〉1 assumption) implies 2¬InCS (0). Therefore, Fairness
implies T0 ; (pc[0] = “e2”), and 2LInv ∧ 2[Next ]vars implies (pc[0] =
“e2”)⇒ 2(pc[0] = “e2”).

2.2 〈2〉2. 2(pc[0] = “e2”) ; 2((pc[0] = “e2”) ∧ ¬x [1])
2.2.1 〈3〉1. Suffices Assume: 2(pc[0] = “e2”)

Prove: true ; 2¬x [1]
Proof: By proof rule (2F ` G ; H ) ` (2F ∧G ; 2F ∧H ).

2.2.2 〈3〉2. true ; (2(pc[1] = “ncs”) ∨2T1)
Proof: By 2¬Success (from the step 〈1〉1 assumption), process 1 never
reaches cs. The code and fairness therefore imply that process 1 must
eventually either reach and remain forever at ncs, or T1 must become
true and remain true forever.

2.2.3 〈3〉3. (2(pc[1] = “ncs”)⇒ 2¬x [1]
Proof: LInv implies that x [1] equals false when process 1 is at ncs.



2.2.4 〈3〉4. 2T1 ; 2¬x [1]
Proof: 2LInv ∧ 2(pc[0] = “e2”) imply 2x [0]. Thus, 2T1 (the case
assumption), 2¬InCS (1) (by the step 〈1〉1 assumption 2¬Success), the
code, and fairness imply that process 1 must eventually reach and remain
forever at e4 with x [1] equal to false.

2.2.5 〈3〉5. Q.E.D.
Proof: By 〈3〉2–〈3〉4 and Leads-To Induction.

2.3 〈2〉3. Q.E.D.
2.3.1 〈3〉1. 2((pc[0] = “e2”) ∧ ¬x [1]) ; InCS (0)
2.3.2 〈3〉2. Q.E.D.

Proof: 〈2〉1, 〈2〉2, and 〈3〉1 imply T0 ; InCS (0), and InCS (0) ∧
2¬Success implies false.

3 〈1〉3. Case: T1 ; false.

3.1 〈2〉1. 2T1 is true time t1.
Proof: By the step 〈1〉1 assumption, 2¬InCS (1) (which is implied by
2¬Success) is true at time t1. From the code and the step 〈1〉3 case as-
sumption, this implies that 2T1 is true at time t1.

3.2 〈2〉2. Either 2¬T0 is true a time t1, or T0 is true at some time t2 ≥ t1.
Proof: Obviously, 2¬T0 is false at time t1 iff T0 is true at some time
t2 ≥ t1.

3.3 〈2〉3. Case: 2¬T0 is true at time t1

3.3.1 〈3〉1. There is some t3 ≥ t1 such that 2¬x [0] is true at time t3.
Proof: By the code and fairness, ¬T0 true at time t1 implies that pro-
cess 0 is at ncs at some time t3 ≥ t1. The code and ¬T0 true at all times
t ≥ t1 and the code imply that process 0 is at ncs with ¬x [0] true for all
t ≥ t3.

3.3.2 〈3〉2. 2(T 1 ∧ ¬x [0]) is true at time t3

Proof: By 〈3〉1 and 〈2〉1.

3.3.3 〈3〉3. Q.E.D.
Proof: Step 〈3〉2, the code, and fairness imply that process 1 reaches e2
at some time t4 ≥ t3. Step 〈3〉2 implies 2¬x [0] is true at time t4, which
by fairness implies that process 1 reaches its critical section at some time
t5 > t4. Since t5 ≥ t1, this contradicts the assumption from step 〈1〉1
that 2¬Success is true at time t1.

3.4 〈2〉4. Case: T0 is true at time t2 ≥ t1

Proof: By 〈1〉2.

3.5 〈2〉5. Q.E.D.



Proof: By 〈2〉2, 〈2〉3, and 〈2〉4.

4 〈1〉4. Q.E.D.

Proof: By the step 〈1〉1 assumption, 〈1〉2 (letting t2 equal t1), and 〈1〉3.

close


