
Topics

18 Variable Hiding and Auxiliary Variables

19 Reduction

20 Debugging With TLC
20.1 Print Statements
20.2 Having TLC Set and Read Values
20.3 Using LET
20.4 The Perils of Lazy Evaluation

This part consists of various topics that don’t fit neatly into the existing struc-
ture. As the hyperbook evolves, the sections in this part will be moved elsewhere.

1

?

�

-

C

I

S

18 Variable Hiding and Auxiliary Variables

A specification usually has some “visible” variables that describe real parts of the
system that must be implemented and other “internal” variables that are used
only to help describe the behavior of the visible variables. In a philosophically
correct specification, the internal variables should be hidden.

In TLA+, variables are hidden using the temporal existential quantification
operator ∃∃∃∃∃∃ . For any temporal formula F , the formula ∃∃∃∃∃∃ x :F essentially asserts
that there is some way of choosing values of x that makes F true. The operator ∃∃∃∃∃∃
is temporal existential quantification. It differs from the operator ∃ of ordinary
(non-temporal) logic because ∃∃∃∃∃∃ x :F asserts not that there is a single value of
x that makes F true, but rather a sequence of values—one for each state of the
behavior. The ∃∃∃∃∃∃ operator is defined precisely in Section 16.2.4 of Specifying
Systems.

Engineers are not interested in philosophical correctness, so they don’t worry
about hiding variables. All you probably need to know about the operator ∃∃∃∃∃∃ is
that it obeys most of the rules of the existential operator ∃ of ordinary math.
In particular, we prove (∃∃∃∃∃∃ x : F) ⇒ G and F ⇒ (∃∃∃∃∃∃ x : G), for temporal formu-
las F and G , the same way we prove the corresponding formulas for ordinary
existential quantification:

1. If x is not a free variable of G , then F ⇒ G implies (∃∃∃∃∃∃ x : F)⇒ G .

2. If G is the formula obtained from G by substituting the expression x for
x , then F ⇒ G implies F ⇒ (∃∃∃∃∃∃ x : G).

If F and G are specifications, we restate the second rule as follows: to show
that F implies ∃∃∃∃∃∃ x : G , it suffices to show that F implements G under a refine-
ment mapping2 that is the identity on all variables of G except x—that is, a
refinement mapping such that v = v for all variables v of G other than x .

The concept of variable hiding plays another role in reasoning about specifica-
tions. Sometimes, we can’t prove correctness as implementation of a higher-level
specification because the implementation state doesn’t contain enough informa-
tion to define the necessary refinement mapping. We solve this problem by
adding auxiliary variables (sometimes called dummy variables) to the imple-
mentation. Adding an auxiliary variable a to a specification S means writing a
new spec Sa containing the additional variable S such that, hiding a in Sa pro-
duces a specification equivalent to S . More precisely, Sa is obtained from S by
adding the auxiliary variable a iff ∃∃∃∃∃∃ a : Sa is equivalent to S . We prove correct-
ness of S by showing that Sa implements the desired higher-level specification
under a refinement mapping.

2

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/tla/book.html
http://research.microsoft.com/en-us/um/people/lamport/tla/book.html

The most common form of auxiliary variable is a history variable. A history
variable essentially records information about what happened earlier in an exe-
cution, without altering the values that other variables assume. There’s an easy
way to add a history variable h to an existing PlusCal algorithm—assuming h is
not already a variable of the algorithm. Add the declaration of h and assignment
statements of the form h : = As long as you don’t add or remove labels
or add an h to any existing part of the code, the TLA+ translation of the new
algorithm will be obtained by adding the history variable h to the translation
of the original algorithm.

TLC does not handle properties that contain the ∃∃∃∃∃∃ operator. The TLAPS
proof system might some day handle them, but it doesn’t now. Also, note that
the TLA+ formula ∃∃∃∃∃∃ x : F is not legal in any context in which the variable x
is already declared. This means that if Spec is defined in a module M to be a
specification containing the variable x , then ∃∃∃∃∃∃ x : Spec is not a legal formula in
that module. To hide x in Spec, we have to create a separate module containing
a statement such as

H (y)
∆
= instance M with x ← y

and write ∃x :H (x)!Spec in that module.

3

?

�

-

C

I

S

19 Reduction

Reduction is a concept introduced in

Richard J. Lipton. Reduction: A Method of Proving Properties of Par-
allel Programs. Communications of the ACM, 18(12):717-721, December
1975.

This section will be based on this paper.

4

?

�

-

C

I

S

http://research.microsoft.com/en-us/um/people/lamport/pubs/cohen-tlareduction.pdf

20 Debugging With TLC

This section is about how to locate the source of the problem when TLC reports
an error or is having a performance problem. A TLC performance problem is
when TLC takes a long time to evaluate an expression. This can manifest itself
by TLC taking a long time to compute new reachable states, right from the
beginning. (However, it’s normal for TLC’s rate of generating new states to
decrease dramatically after it has found enough states that it must start writing
their fingerprints onto disk.)

The standard TLC module provides some special operators that are useful for
debugging a specification. Some of them are outside the domain of mathematics
and should not be used as part of a specification.

20.1 Print Statements

The standard TLC module defines two operators that cause TLC to print some-
thing when it evaluates them:

• The PrintT command is defined so PrintT (o) is equal to true, but eval-
uating it causes TLC to print the value o.

• The Print command is defined so Print(v , o) equals v , but evaluating it
causes TLC to print the values e and o.

These command are useful if TLC reports an error when evaluating an expression
but does not report the precise location where the error occurred. For example,
suppose the error occurs when TLC is evaluating a conjunction but the error
message does not tell you in which conjunct the error occurs. TLC evaluates
the conjuncts from “left to right”. Inserting additional conjuncts PrintT (“a”),
PrintT (“b”), etc. into the formula and seeing which ones were executed reveals
where the error occurred.

PrintT conjuncts can be used this way even if there is no error, but the
conjunction evaluates to false and you want to find out which conjunct is
false. The “conjunction” can also be a ∀ formula. For example, if a formula
∀x ∈ S :P(x) is false and you want to find out for what values of x the expression
P(x) is false, you can rewrite that formula as

∀x ∈ S : if P(x) then true else PrintT (x)

20.2 Having TLC Set and Read Values

TLC can set and read a special list of values while evaluating expressions. This
works as follows. The TLC module defines two new operators:

TLCGet(i)
∆
= choose n : true

TLCSet(i , v)
∆
= true

5

?

�

-

C

I

S

When TLC evaluates TLCSet(i , v), for any positive integer i and arbitrary value
v , in addition to obtaining the value true, it sets the i th element of the list to v .
When TLC evaluates TLCGet(i), the value it obtains is the current value of the
i th element of this list. For example, when TLC evaluates the formula

∧ TLCSet(42, 〈“a”, 1〉)
∧ ∀i ∈ {1, 2, 3} : ∧ PrintT (TLCGet(42))

∧ TLCSet(42, [TLCGet(42) except ![2] = TLCGet(42) + 1])

it prints

<< "a", 1 >>

<< "a", 2 >>

<< "a", 3 >>

One use of this feature is to check TLC’s progress during long computations.
For example, suppose TLC is evaluating a formula ∀x ∈ S : P where S is a
large set, so it evaluates P many times. You can use TLCGet , TLCSet , and
Print to print something after every 1000th time TLC evaluates P .

Another use of TLCGet and TLCSet is to measure the length of time it
takes TLC to evaluate an expression. The TLC module defines the operator
JavaTime to be an unspecified integer. TLC evaluates it to equal approximately
the number of milliseconds between 0:00 UTC on 1 January 1970 and the current
time. Using the fact that TLC evaluates tuples from left to right, you can
measure the approximate time in milliseconds taken to evaluate an expression e
by replacing e with:

〈TLCSet(1, JavaTime), e,PrintT (JavaTime − TLCGet(1))〉[2]

As explained in Section 20.4 below, you may also want to use TLCSet and
TLCGet to count how many times TLC is evaluating an expression e. To use
value number i as the counter, just replace e by

if TLCSet(i , TLCGet(i) + 1) then e else 42

(The else expression is never evaluated.) Have TLC execute TLCSet(i , 0) be-
fore execution and PrintT (TLCGet(i)) afterwards to print the number of exe-
cutions of e.

For reasons of efficiency, TLCGet and TLCSet behave somewhat strangely
when TLC is run with multiple worker threads (using the -workers option).
Each worker thread maintains its own individual copy of the list of values on
which it evaluates TLCGet and TLCSet . The worker threads are activated
only after the computation and invariance checking of the initial states. Before
then, evaluating TLCSet(i , v) sets the element i of the list maintained by all
threads. Thus, the lists of all the worker threads can be initialized by putting
the appropriate TLCSet expression in an assume expression or in the initial
predicate.

6

?

�

-

C

I

S

20.3 Using LET

If multiple instances of the same subexpression occur in an expression e, TLC
will evaluate that subexpression multiple times when evaluating e. This multiple
evaluation can be avoided by using a let to replace those instances by a single
symbol. For most specifications, the evaluation of an individual expression is
responsible for only a small part of the execution time. It’s therefore generally
best to use a let only to make the specification easier to read, not to optimize
execution speed. However, occasionally the use of a let can significantly reduce
execution time. This is particularly true for the evaluation of recursively defined
operators.

As an example, consider this definition of the transitive closure of a relation
from Section 9.6.22.

SimpleTC (R)
∆
=

let recursive STC ()

STC (n)
∆
= if n = 1 then R

else STC (n − 1) ∪ STC (n − 1) ∗∗ R

in if R = {} then {} else STC (Cardinality(NodesOf (R)))

To evaluate STC (n), TLC evaluates STC (n − 1) twice. If n − 1 > 1, then each
of those evaluations evaluates STC (n − 2) twice. This doubling of effort contin-
ues down to the evaluation of STC (1), which requires evaluating the argument
R. Hence, to evaluate STC (n), TLC evaluates R about 2n times. To evalu-
ate SimpleTC (R), TLC evaluates STC (n) for n = Cardinality(NodesOf (R)).
Depending upon R, this evaluation starts taking a few seconds for n between
10 and 15. For the particular application for which the definition was written,
that’s probably good enough. But if it isn’t, we can replace the subexpression
STC (n − 1) ∪ STC (n − 1) ∗∗ R with

let STCN
∆
= STC (n − 1)

in STCN ∪ STCN ∗∗ R

Suppose we had written the definition of SimpleTC with a recursively defined
function instead of an operator—like this:

SimpleTC (R)
∆
=

let FTC [n ∈ Nat]
∆
= if n = 1 then R

else FTC [n − 1] ∪ FTC [n − 1] ∗∗ R

in if R = {} then {} else FTC [Cardinality(NodesOf (R))]

Now, rather than computing the n completely separate values STC (n), STC (n−
1), . . . , TLC is computing a single value—the function FTC . A naive evaluation
would yield the same exponential blow-up, evaluating FTC [n] once, FTC [n−1]

7

?

�

-

C

I

S

twice, FTC [n − 2] four times, . . . and evaluating FTC [1] about 2n times.
However, when TLC computes the value FTC [i] for some i , it caches that value.
Hence, there is no exponential blow-up. Using a let expression to eliminate the
two instances of FTC [n − 1] in the definition would accomplish nothing.

This example suggests that recursive function definitions should be preferred
to recursive operator definitions. That’s true if the domain of the function can be
made simple (e.g., Nat) and you are writing the spec for readers who understand
the TLA+ syntax for recursive function definitions. However, I expect that a
recursive operator definition will be easier to understand for a reader who is
unfamiliar with TLA+.

Note: TLAPS cannot yet handle recursive operator definitions. Therefore,
if you want to write TLAPS-checked proofs, you can use only recursive function
definitions.

20.4 The Perils of Lazy Evaluation

The obvious way to compute the value of an expression like F (a, b) is to first
compute a and b. TLC does not always do this. If F (a, b) were defined to
equal a ∈ b, then TLC can evaluate F (42, {x ∈ Nat : x > 37}) even though it
can’t compute the (infinite) set {x ∈ Nat : x > 37}. To accomplish this, TLC
sometimes does what is known as lazy evaluation: not completely evaluating an
expression until it has to.

TLC uses heuristics to determine whether it should completely evaluate an
expression. Its heuristics work well most of the time. However, sometimes lazy
evaluation can result in the expression ultimately being evaluated multiple times
instead of just once. This can especially be a problem when evaluating a recur-
sively defined operator. For example, consider this definition of the transitive
closure of a relation from Section 20.3 above.

TransitiveClosure(R)
∆
=

let recursive STC ()

STC (n)
∆
= if n = 1 then R

else let STCN
∆
= STC (n − 1)

in STCN ∪ STCN ∗∗ R

in if R = {} then {} else STC (Cardinality(NodesOf (R)))

We would expect that, to evaluate STC (n), TLC would evaluate the expression
STCN ∪ STCN ∗∗ R only n times, leading to n − 1 evaluations of ∪ and ∗∗.
That is indeed what happens with the definition in Section 9.6.22. However,
if ∗∗ is defined as in Question 9.72, then TLC lazily evaluates this expression.
To see the effect of this, consider how TLC evaluates STC (4). Because of lazy
evaluation, it obtains the value

STC (3) ∪ STC (3) ∗∗ R
8

?

�

-

C

I

S

using the value it computed for STC (3). What value did it compute for STC (3)?
Again, because of lazy evalution, TLC evaluated STC (3) to be

STC (2) ∪ STC (2) ∗∗ R

so the value of STC (3) it obtained is actually

(STC (2) ∪ STC (2) ∗∗ R) ∪ (STC (2) ∪ STC (2) ∗∗ R) ∗∗ R)

Similarly, it computed STC (2) to equal

STC (1) ∪ STC (1) ∗∗ R

which equals

R ∪ R ∗∗ R

So the actual value of STC (4) it obtained is

((R ∪ R ∗∗ R) ∪ (R ∪ R ∗∗ R) ∗∗ R) ∪ ((R ∪ R ∗∗ R) ∪ (R ∪ R ∗∗ R) ∗∗ R) ∗∗ R)

Instead of 3 evaluations of ∪ and ∗∗, it performed 7. It’s not hard to see that
to evaluate STC (n), TLC evalutes ∪ and ∗∗ 2n−1 times instead of n − 1 times.

To allow you to solve this problem, the TLC module provides the TLCEval
operator. It defines TLCEval by

TLCEval(x)
∆
= x

However, TLC evaluates the expression TLCEval(e) by completely evaluating e.
For the definition of transitive closure above, TLC’s lazy evaluation can be
prevented by using TLCEval as follows.

TransitiveClosure(R)
∆
=

let recursive STC ()

STC (n)
∆
= if n = 1 then R

else let STCN
∆
= STC (n − 1)

in TLCEval(STCN ∪ STCN ∗∗ R)

in if R = {} then {} else STC (Cardinality(NodesOf (R)))

If TLC is taking a long time to evaluate something, you can check if lazy eval-
uation is the source of the problem by using the TLC module’s TLCSet and
TLCGet operators to count how many times expressions are being evaluated, as
described above.

9

?

�

-

C

I

S

