
1 An Abstract View of TLC

TLC checks a model of a specification. A model defines a countably infinite set
V of TLC values. (The set V can differ for different models because it depends
on the set of model values introduced by the model.) The specification declares
a set of specification variables. A model state is an assignment of a value in V
to each of those variables. Let S be the set of all model states.

TLC evaluates a TLA+ state predicate on a state. Let s |= I . be the (truth)
value of a state predicate I on state s. TLC evaluates a TLA+ action on a pair
of states. Let 〈s, t 〉 |= A the value of action A on state pair 〈s, t 〉.

The model declares a specification of the form

Spec
∆
= Init ∧ 2[Next]vars ∧ Fair

and declares certain properties of the specification for TLC to check by trying
to find a counter-example. Define

SSpec
∆
= Init ∧ 2[Next]vars

For a safety property Prop, TLC tries to find a behavior (an infinite sequence
of states) satisfying SSpec that satisfies ¬Prop. For a liveness property Prop, it
tries to find a behavior of SSpec that satisfies Fair ∧ ¬Prop.

The maximal state predicates and actions in Fair and in all the properties
that TLC is to check are called the model’s atoms. Let a state label be an
assignment of truth values to all the model’s state-predicate atoms, and let an
action label be an assignment of truth values to all the model’s action atoms.
For any state s, let λ(s) be the state label that assigns to each state-predicate
atom I the value s |= I ; and let λ(s, t) be the action label that assigns to each
action atom A the value 〈s, t 〉 |= A.

1.1 The State Graph

Let StConst and ActConst be the model’s state and action constraints—specified
by the State Constraint and Action Constraint sections of the models Advanced
Options page, with default values true. A graph whose nodes are states in S
and edges are pairs of states is called a state graph for the model iff it satisfies
the following conditions:

1. A state s is in the graph only if s |= StConst .

2. An edge 〈s, t 〉 is in the graph only if 〈s, t 〉 |= Next ∧ActConst or s = t .1

3. Each state in the graph is reachable from an initial state, which is a state
satisfying s |= Init .

1Note: TLC seems to add self-loops even if ActConst implies var ′ 6= var .

1

?

�

-

C

I

S

http://tla.msr-inria.inria.fr/tlatoolbox/doc/model/model-values.html

The complete state graph is the maximal state graph, which may be finite or
infinite. The nodes in the complete state graph are the reachable states of the
model. Define the depth of a reachable state s to be the length of the shortest
path in the complete state graph from an initial state to s.

A behavior of the model is an infinite path in the complete state graph. We
can determine if a behavior is a counterexample to a property by knowing the
labels of each node and edge of the behavior; we don’t need to know the states
represented by the nodes.

A state graph is any subgraph of the complete state graph that satisfies the
third condition. A node s of a state graph G is a sink iff G contains no edge
〈s, t 〉 with s 6= t .

A state tree is a state graph that is a tree, having a single initial state as its
root. A state forest is a collection of disjoint (sharing no nodes) state trees.

1.2 Symmetry Reduction

Symmetry reduction uses a group Sym of automorphisms of the set S of model
states. (An automorphism of a set is a bijection from the set to itself, and Sym
a group of automorphisms means that it contains the identity automorphism
and for any P in Sym, the inverse autmorphism P−1 is also in Sym.) Latter I’ll
discuss how Sym is specified by the model.

Because Sym is a group, it defines an equivalence relation ≈ on S by

s ≈ t
∆
= ∃P ∈ Sym : P(s) = t

The quotient set S/≈ of all equivalence classes of states partitions S. Let [[s]]
be the equivalence class of s:

[[s]]
∆
= {t ∈ S : t ≈ s}

Define a state graph G to be irredundant iff for any nodes (states) s and t of
G, if s 6= t then s 6≈ t . For an irredundant state graph G, we define the [[G]] to
be the smallest graph whose nodes are elements of S/≈ (equivalence classes of
states) labeled with state labels and whose edges are labeled with action labels,
such that:

• For each state s of G, [[G]] contains the node [[s]] labeled with λ(s) and the
edge from [[s]] to itself labeled λ(s, s). The node [[s]] is an initial node iff s
is an initial state.

• For each non-sink node s in G and each state t with [[t]] a node of [[G]] and
〈s, t 〉 an edge of the complete state graph, G contains an edge from [[s]] to
[[t]] labeled with λ(s, t).

Note that for any states s and t in G there can be multiple edges from [[s]] to
[[t]], each having a different label.

2

?

�

-

C

I

S

If π is a path s1 , s2, . . . in the complete state graph, define [[π]] to be the
labeled path with nodes [[s1]], [[s2]], . . . such that each state [[si]] is labeled with
λ(s i) and each edge 〈[[s i]], [[s i+1]]〉 is labeled with λ(s i , s i+1).

1.3 Symmetric Models

A state predicate I is symmetric iff s |= I equals P(s) |= I for all s in S and
P in Sym. An action A is symmetric iff 〈s, t 〉 |= A equals 〈P(s),P(t)〉 |= A for
all s, t in S and P in Sym. We say that a model is symmetric iff Init , Next ,
unchanged vars, StConst , ActConst , and all its atoms are symmetric.

Theorem 1 Let G be an irredundant state graph and Π a (labeled) path in [[G]]
starting at an initial node. If the model is symmetric, then there exists a path
π in the complete state graph starting at an initial node such that Π = [[π]]. If
Π has a finite number of distinct nodes and Sym is a finite group, then π has a
finite number of distinct nodes.

Proof: We construct the graph π equal to s1, s2, . . . inductively as follows.

• Let s1 be the initial state for which [[s1]] is the first node of Π. State s1
exists by definition of an initial node of [[G]].

• Assume we have constructed the required states s1, . . . , sn . Let s be the
state in G such that [[sn]] = [[s]]. By definition of [[G]], there exists a state
t such that 〈s, t 〉 is an edge in the complete state graph and the edge of
Π from [[sn]] leads to [[t]] and has the label λ(s, t). Choose P in Sym so
that sn = P(s) and let sn+1 = P(t). Symmetry implies that 〈sn , sn+1 〉,
which equals 〈P(s),P(t)〉, is an edge in the complete state graph with
label λ(s, t). From sn+1 = P(t) we have [[sn+1]] equals [[t]], which is the
next node of Π. Symmetry implies that the label of that node equals
λ(sn+1).

By induction, we see that [[π]] equals Π. If Π has a finite number of distinct
nodes, then it must pass through some node infinitely many times. That node
must equal [[sn]] for infinitely many values of n. If Sym is finite, then there are
only a finite number of distinct states in the equivalence class [[sn]], so the path
π must end by looping through finitely many nodes.

YYYYYYYYYYYYYYYY
A model specifies a
Throughout this section, we assume a given model of a specification. The

model specifies values overriding of some definitions and the substitution of ex-
pressions for all the declared constants. These overridings and substitutions
may introduce A TLC model can introduce model values into expressions. I as-
sume that these overridings and substitutions have been performed in all expres-
sions. Therefore, declared constants no longer appear anywhere, but expressions
may contain model values.

3

?

�

-

C

I

S

http://tla.msr-inria.inria.fr/tlatoolbox/doc/model/model-values.html

1.4 TLC Values

The semantics of TLA+ is based on ZF set theory. It assumes that every expres-
sion written in terms of the primitive TLA+ operators with no free identifiers
has a value that is a set. (Here, we consider model values and declared constants
and variables to be free identifiers). Let an expressible value be one that is the
value of such an expression.

Two arbitrary expressions are equal if they have the same value for any values
of their free identifiers such that:

• A model value does not equal any expressible value.2

• An untyped model value is unequal to any other model value.

• A typed model value is unequal to any other model value of the same type.

For any expressions e1 and e2, we let e1 ≈ e2 mean that the semantics of
TLA+ implies e1 = e2; and we let e1 6≈ e1 mean that the semantics of TLA+ im-
plies e1 6= e2.

Two expressions e1 and e2 with no free identifiers except model values are
said to be comparable iff e1 ≈ e2 or e1 6≈ e1. For example 1 and “a” are
not comparable, but {1, 2} 6≈ {“a”} because the semantics of TLA+ imply that
1 6= 2, and two sets are unequal if they have different cardinalities.

TLC does not handle unbounded quantifiers or unbounded choose. It as-
sumes a particular instantiation of the bounded choose operator. That is, if
we define OneTwo by

OneTwo
∆
= choose x ∈ {1, 2, 3} : x < 3

then TLC knows if OneTwo equals 1 or 2. Thus, we consider the value of the
expression OneTwo to be comparable with 1 (as well as to every other integer).

An elementary TLC expression is defined to be any of the following:

• An atomic expression, which is either a Boolean (true or false), an
integer contained in some finite range of integers, a string of length less
than some maximum value, or a model value.

• A finite set of comparable elementary TLC expressions.

• A function (d1 :> v1)@@ . . .@@(dn :> vn) where the d i and v i are
elementary TLC expressions and the d i are all unequal to one another.
(The operators :> and @@ are defined in the standard TLC module.)

A TLC value is one that can be represented as an elementary TLC expression.

2Non-expressible values exist because there are only countably many expressible values,
but ZF allows uncountable sets.

4

?

�

-

C

I

S

1.5 TLC Evaluation

For any constant expression e containing no free identifiers except model values,
we let ((e)) be the result computed by TLC when evaluating e (under the given
model). This result is either an elementary TLC expression or the special symbol
⊥ , which indicates that TLC reports an error when it evaluates the expression.
We say that TLC can evaluate an expression e iff ((e)) 6= ⊥ . Note that (()) maps
syntactic expressions to syntactic expressions. It is idempotent: ((((e)))) = ((e))
for any expression e, where ((⊥)) = ⊥ .

One relation between semantics and syntax that TLC is supposed to satisfy
is the following soundness property:

For any expressions e1 and e2 with no free identifiers other than model
values, if e1 = e2, then either ((e1)) = ((e2)) or at least one of them
equals ⊥ .

1.6 Symmetry

A model can introduce model values by declaring a constant to be a model
value, substituting a set of model values for a constant, and by using the Model
Values section of the Advanced Options page of the model. The set of model
values substituted for a constant can be declared to be a symmetry set. These
symmetry declarations define a set Sym of permutations3 of the model values in
symmetry sets—the set consisting of all permutations P of these model values
such that P(m) is in the same symmetry set as m, for each model value m in
a symmetry set. The set Sym is a group whose multiplication operation · is
function composition—that is, P ·Q is the permutation defined by P ·Q(m) =
P(Q(m)). If the model declares no symmetry sets, then Sym consists only of
the identity permutation.

Let the expansion of an expression be the expression obtained from it by
recursively expanding all definitions. The expansion of an expression can con-
tain built-in TLA+ operators and constructors, model values, declared variables,
bound identifiers (if the expression is a subexpression of a larger expression), and
definition parameters (if it is inside the right-hand side of a definition). Since
the model substitutes expressions for them, declared constants cannot appear
in the expansion (though they can be instantiated by model values of the same
name).

For any P in Sym, we extend P to arbitrary expressions by defining P(e)
to be the expression obtained from the expansion of e by replacing each model
value m with P(m). For example, if P ∈ Sym and the mi are model values,

3A permulation of a set is a 1-1 function from the set onto itself.

5

?

�

-

C

I

S

https://en.wikipedia.org/wiki/Group_(mathematics)

then:

P({x ∈ {m1,m2,m3} : x 6= m1})
= {x ∈ P({m1,m2,m3}) : P(x 6= m1)}
= {x ∈ {P(m1),P(m2),P(m3)} : x 6= P(m1)}

Note that this defines P to be a mapping from expressions to expressions. We
also define P(⊥) to equals ⊥ .

For P to be a useful mapping, we would expect e1 = e2 to imply
P(e1) = P(e2). However, it doesn’t. For example, if there is a symme-
try set with more than one element, then there exists P ∈ Sym and two
distinct model values m1 and m2 such that P(m1) = m2, P(m2) = m1,
and m1 equals choose x ∈ {m1,m2} : true. Then P(m1) equals m2, but
P(choose x ∈ {m1,m2} : true) equals choose x ∈ {P(m1),P(m2)}, which
equals m1 (because S = T implies (choose x ∈ S : true) = choose x ∈ T :
true).

This problem occurs only with choose expressions. We define an expression
to be Model-Choice-Free (MCF) iff its expansion has no choose expression
containing a model value. The semantics of TLA+ imply:

Observation 1 If e1 and e2 are MCF, then e1 = e2 implies P(e1) =
P(e2).

TLC appears to implement evaluation so that the following is true:

Observation 2 TLC can evaluats an MCF expression e iff it can eval-
uate P(e).

A defined operator is said to be MCF iff the expansion of its definition has no
choose expression containing a model value or a definition parameter.

All the TLA+ constructs can be viewed as syntactic sugar for built-in op-
erators. For example, we can view [a 7→ x , b 7→ y + 1] as an “abbreviation”
for Pa,b(x , y + 1), where Pa,b is a built-in operator. Constructs with bound
variables are abbreviations for higher-order built-in operators. For example,
{x ∈ S : e} is an abbreviation for SubsetOf (S , lambda x : e) for a built-in
operator SubsetOf .

An ordinary operator is one that takes only expressions (and not operators)
as arguments. A higher-order operator is one that has at least one operator
argument. For any ordinary defined operator Op and P in Sym, if Op is defined
by

Op(a1, . . . , an)
∆
= e

then we define the operator P(Op) by

P(Op)(a1, . . . , an)
∆
= P(e)

6

?

�

-

C

I

S

An operator Op is said to be symmetric iff ((P(Op(e1, . . . , en)))) equals
((Op(P(e1), . . . ,P(en)))) for any P ∈ Sym and MCF expressions or operators
ei . Since an expression is an operator with no arguments, this means that an
expression e is symmetric iff P(e) = e.

All the built-in TLA+ operators and constructs are symmetric except for
choose. For example, the set constructor operator SubsetOf is symmetric be-
cause, for any MCF expression S , MCF operator Q and P in Sym:

P(SubsetOf (S ,Q)) = P({x ∈ S : Q(x)})
= {x ∈ P(S) : P(Q(x))}
= {x ∈ P(S) : P(Q)(x)} by definition of P (Q), since P (x) = x

= SubsetOf (P(S),P(Q))

To see that choose is not symmetric, let M be a symmetry set of model values
containing at least two elements and let P be a permutation of M such that
P(m) 6= m for all m in M . We then have:

choose m ∈ P(M) : P(true)

= choose m ∈ M : true Since P(M) = M and P(true) = true.

6= P(choose m ∈ M : true) Since P(m) 6= m for all m ∈ M .

Model values can appear in operators defined in the specification only through
instantiation of constants. If all declared constants are instantiated by symmet-
ric expressions, then any operator defined in the specification in terms of MCF
expressions and MCF operators is symmetric.

1.7 Checking a Specification

1.7.1 The Properties TLC Checks

The model declares a specification Spec, which is a temporal formula that must
be equivalent to

Init ∧ 2[Next]vars ∧ Fair

where Init is a state predicate, Next is an action, vars is a tuple of all declared
variables, and Fair is usually a fairness property. (Formula Fair can be any
formula not containing a conjunct that is a state predicate or a formula of the
form 2[A]v . If it’s not a fairness property, then TLC may not do what you
expect it to.)

The model declares certain properties that are to be checked. We expect
checking a property Prop to check the truth of the formula Spec ⇒ Prop. Here’s
what it actually does. Let the safety specification SSpec equal Init∧2[Next]vars .
TLC splits each property to be checked into the conjunction of basic properties,
which it checks separately. There are four kinds of basic properties that TLC
can check:

7

?

�

-

C

I

S

initial predicate A state predicate.

invariance A formula 2I for a state predicate I .

step simulation A formula 2[A]v for an action A and a state expression v .

liveness A temporal formula described below that is not one of the previous
three.

An invariant can be specified either in the Invariants section or the Properties
part of the What to check? section of the model’s Model Overview page. The
others are specified in the Properties part.

The first three kinds of basic properties are safety properties. TLC checks
such a property Proop by looking for a counterexample to SSpec ⇒ Prop, which
is a finite (prefix of a) behavior that satisfies SSpec ∧ ¬Prop. If Fair is not a
fairness property, then there may be a such a counterexample even if Spec ⇒
Prop is true.

TLC checks a basic liveness property Prop by looking for a counterexample
to SSpec ⇒ (Fair ⇒ Prop). It can do this iff the formula Fair ⇒ Prop, which is
equivalent to Fair ∧¬Prop, can be written as the conjunction of formulas, each
of which is either one of the first three kinds of basic properties listed above, or
else is the disjunction of conjunctions of the following kinds of formulas:

• A temporal formula containing no actions.

• A formula of the form 32[A]v or 23[A]v for an action A and a state
expression v .

For example, if Fair equals WFvars(A) and Prop equals WFv (B) for actions A
and B and a state expression v , then Fair ∧ ¬Prop equals

(23(¬EA) ∨23〈A〉vars) ∧ ¬(23(¬EB) ∨23〈B 〉v)

where EA and EB are the state predicates enabled 〈A〉vars and enabled 〈B 〉v ,
respectively. The tautologies ¬23F ≡ 32¬F and ¬〈B 〉v ≡ [¬B]v , together
with propositional logic, imply that this formula equals

∨ 23(¬EA) ∧32EB ∧32[¬B]v

∨ 23〈A〉vars ∧32EB ∧32[¬B]v

A counterexample to a property of class liveness is an infinite behavior.
The maximal state predicates and actions in a property are called its atoms.

For example, ¬EA, EB , 〈A〉vars , and [¬B]v are the atoms of the property above.

8

?

�

-

C

I

S

1.7.2 The State Graph

A TLC state is an assignment of a TLC value to each declared variable. (Recall
that a TLC value is one that can be expressed as an elementary TLC expression.)
Let S be the set of all TLC states (for this model). (This is a countable set.)
An initial state is an element of S that satisfies Init .

Let StConst and ActConst be the model’s state and action constraints—
specified by the State Constraint and Action Constraint sections of the models
Advanced Options page, with default values true.

A graph whose nodes are states in S is called a state graph for the model if
it satisfies the following conditions:

1. A state s is in the graph only if s satisfies StConst .

2. An edge 〈s, t 〉 is in the graph only if 〈s, t 〉 satisfies Next ∧ ActConst or
s = t .4

3. Each state in the graph is reachable from an initial state.

The complete state graph is the maximal state graph, which may be finite or
infinite. The nodes in the complete state graph are the reachable states of the
model. (Because of the state and action constraints, there can be reachable
states of SSpec that are not reachable states of the model.) A state graph is any
subgraph of the complete state graph that satisfies condition 3. A behavior of
the model is an infinite path in the complete state graph.

A state tree is a state graph that is a tree whose root is an initial state. A
state forest is a union of disjoint (no nodes in common) trees.

Assume that each node in the complete state graph has only a finite num-
ber of outgoing edges. There are then obvious algorithms for computing the
complete state graph that eventually find every reachable node and every edge
joining reachable nodes. (Of course, the algorithms won’t terminate if the com-
plete state graph is infinite.) In the absence of symmetry, TLC essentially uses
such an algorithm to compute approximations to the complete state graph—it
uses multiple threads in an almost breadth-first search for reachable states.

1.7.3 Labels and Behaviors

Let a state label be an assignment of truth values to all the state-predicate atoms
of the properties that TLC is checking; and let an action label be an assignment
of truth values to all the action atoms of the properties that TLC is checking.
For any state s, let λS (s) be the state label that assigns to each state-predicate
atom I the (truth) value of I on state s. Similarly, let λA(s, t) be the action
label that assigns to each action atom its value on 〈s, t 〉.

4Note: TLC seems to add self-loops even if ActConst implies var ′ 6= var .

9

?

�

-

C

I

S

TLC can tell if a property is violated on a model behavior just knowing the
labels of the behavior’s nodes and edges—without knowing the actual states.
TLC needs to know the states that the nodes represent only to report an error
trace to the user.

The first three kinds of properties can easily be checked as the state graph
is being constructed. A counterexample to a property of the fourth class is an
infinite behavior. For a finite state graph, this means that it is a “lasso”: a path
in the state graph starting at an intial state and ending in a cycle.

Question 1.1 I believe TLC does not use constrained edges or nodes to con-
struct a counterexample to properties of class liveness. Is this true?

1.7.4 Symmetry-State Graphs

For any model state s and specification variable v , let s.v be the value that s
assigns to v . For any P ∈ Sym, let P(s) be the state that assigns P(s.v) to
every variable v . For any state s, let [[s]] be the set {P(s) : P ∈ Sym}. Thus,
[[s]] is the equivalence class of s in S under the equivalence relation ≈ defined by

s ≈ t
∆
= ∃P ∈ Sym : P(s) = t

(This is an equivalence relation because Sym is a group.) The set of all such
equivalence classes is written S/Sym.

For any e in S/Sym, let ρ(e) to be some state in e. That is, we assume:

∀e ∈ S/Sym : e = [[ρ(e)]]

This implies that, for any s and t in S:

(s ≈ t) ≡ (ρ([[s]]) = ρ([[t]]))

For a state s, I will write ρ(s) as an abbreviation for ρ([[s]]). For any state s,
let πs be an element of Sym such that πs(ρ(s)) mapping from S to Sym having
the following property:

∀s ∈ S : s = π(ρ(s))

(The existence of π(t) for all states t follows from the definition of ρ and the
fact that Sym is a group

A labeled symmetry graph is a graph with

• Each node n is a record with the following components, for some state s
in S.

class Equals [[s]]

Λ Equals λ(s).

10

?

�

-

C

I

S

The node n is initial iff s is initial, and it is constrained iff s is constrained.

• Each edge e is a record with the following components, for some pair 〈s, t 〉
of

from An element of S/Sym.

to An element of S/Sym.

Λ A label

Π An element of Sym.

are 4-tuples 〈e, f ,Λ,Π labeled by a labeling function Λ.

whose nodes whose edges are pairs of elements in S/Sym labeled by a labeling
function also called Λ and a identifier function Π such that, with a subset of
initial nodes and constrained nodes and edges

xx

XXXXXXXXXXXXXX
We now assume that Init , [Next]vars , and all atoms of the properties being

checked are symmetric.
If Init is symmetric, then s is an initial state iff P(s) is. If Next is symmetric,

then a pair 〈s, t 〉 of states satisfies Next iff 〈P(s),P(t)〉 does.
XXXXXXXXXXXXXXXX
For any e in S/Sym, we define ρ(e) to be an arbitrarily chosen state in e:

ρ(e)
∆
= choose s ∈ S : e = [[s]]

Thus, for any s and t in S, we have

(s ≈ t) ≡ (ρ([[s]]) = ρ([[t]]))

For a state s, I will write ρ(s) as an abbreviation for ρ([[s]]).
XXXXXXXXXXXXX
4. Any TLA temporal formula that is the conjunction of disjunctions of the

following kinds of formulas: - One containing only temporal operators and state
predicates. (Those predicates can be of the form ENABLED A for an arbitrary
action A.) - A formula of the form 23〈A〉v or 32[A]vars for some action A and
state expression v .

XXXXXXXXXXXXXXXXXXXXXXX
A behavior of the safety spec is a sequence s1, s2, . . . such that [[Init]](s1) and [[. . .]] is explained in the

section on temporal logic2[[[Next]vars]](s i , s i+1) are true for each i . Here, we consider finite behaviors as
well as infinite ones. The states contained in the behaviors of the safety spec
are called the reachable states.

XXXXXXXXXXXXXXXXX
We also extend P to a permutation on the set of all states by defining P(s)

to be the state assigning to each variable x the value P([[s]](x)), where [[s]](x) is
the value that state s assigns to x .

11

?

�

-

C

I

S

