
Instantiating Fairness

The formulas WFvarsA(ConsumerA) and WF
varsA

(ConsumerA) need not be

equivalent. This is because WFvarsA(ConsumerA) is defined in terms of the
enabling of action 〈ConsumerA 〉varsA , and the following two assertions need not
be equivalent

• 〈ConsumerA 〉varsA is enabled

• 〈ConsumerA 〉varsA (which equals 〈ConsumerA 〉varsA ) is enabled

More precisely, WF is defined in terms of the enabled operator, where
enabled C is true in a state s iff action C is enabled in s. The formula
enabled C is true in state s iff action C is enabled in state s. The for-
mula enabled C is true in state s iff C is enabled in state s, where C is
the action that is true of the transition s → t iff C is true of s → t . The
state predicates enabled C and enabled C are not necessarily equivalent. If
enabled 〈ConsumerA 〉varsA is not equivalent to enabled 〈ConsumerA 〉varsA ,
then WFvarsA(ConsumerA) and WF

varsA
(ConsumerA) are not equivalent.

As an example, let C be the action x ′ 6= y ′, where x and y are variables. Since
for any state s there is a state t in which x 6= y , this action is always enabled.
Hence, enabled C equals true. Since the expression true does depend on
any variables, true = true and hence enabled C = true for any refinement
mapping. Now consider the refinement mapping defined by

x = z y = z

We have

C = x ′ 6= y ′ By definition of C .

= x ′ 6= y ′ By the meaning of F for a formula F .

= z ′ 6= z ′ By definition of x and y .

= false No value is unequal to itself.

Therefore, enabled C equals enabled false , which equals false, so it is not
equal to enabled C , which equals true.

close


