
Using TLC to Check Inductive Invariance

Leslie Lamport

23 August 2018

1 Inductive Invariance

Suppose we have a specification with initial predicate Init and next-state
predicate Next , so its specification is Init ∧2[Next]vars for the tuple vars of
all its variables.1 Suppose we want to prove that a formula I is an invariant
of the spec, which means that I is true on all reachable states of the spec.
We prove that I is an invariant by finding a formula Inv that satisfies these
conditions:

1. Init ⇒ Inv , which means that Inv is true in all initial states.

2. Inv ∧ Next ⇒ Inv ′, which means if Inv is true on any state s, then
it’s true on any state reachable from s by a Next step.2

3. Inv ⇒ I , which means that I is true in every state on which Inv is
true.

The first two conditions imply, by induction, that Inv is true on every reach-
able state of the spec. A formula satisfying these conditions is called an
inductive invariant of the spec. Condition 3 then implies that, if Inv is an
inductive invariant of the spec, then I is true on every reachable state of
the spec, so it’s an invariant. (If I happens to be an inductive invariant, we
could let Inv equal I so condition 3 is trivial; but this is seldom the case for
the invariants we care about.)

Finding an inductive invariant to prove invariance is hard if you haven’t
done it many times. Even if you’ve done it many times, it’s hard to get
the inductive invariant right. It would be very helpful to people writing
proofs to have a tool that can check if a formula is an inductive invariant

1Fairness conditions of the spec are irrelevant for invariance, so they can be ignored.
2I’m assuming that all the variables in Inv are in the tuple vars.

1

of a spec. For TLA+, the obvious choice for such a tool is the TLC model
checker. Unfortunately, so far, TLC has been of only limited use in checking
inductive invariance. Let’s see why.

If you’ve used TLC, then you know that it can check that a formula
is an invariant of a spec. What you may not know is that it can also be
used to check if a formula is an inductive invariant. In principle, it’s simple.
TLC can check condition 1 by checking that the spec satisfies the property
Inv . (Add it to the Invariants list in the What to check? section of the
Model Overview page.) Condition 3 is usually ensured when defining Inv ,
for example by simply making I a conjunct of Inv . The tricky part is
checking condition 2. The trick is that condition 2 is satisfied if and only if
Inv is an invariant of the specification

ISpec
∆
= Inv ∧2[Next]vars(1)

which has initial predicate Inv and next-state predicate Next . Simple, right?
Well, not so simple.

TLC can’t handle a specification with any old state predicate as its initial
condition. You couldn’t use most of the invariants you might want to check
as the initial predicate of a spec in TLC. So why should we expect TLC to
be able to handle Inv as an initial predicate? The answer is that Inv almost
always must assert type correctness of all the variables, so a natural way to
define Inv is

Inv
∆
= TypeOK ∧H(2)

where TypeOK asserts type correctness and H is the interesting part. Let’s
suppose that the spec contains the three variables x , y , and z . The definition
of TypeOK will probably have the form

∧ x ∈ S
∧ y ∈ T
∧ z ∈ U

(3)

for some set expressions S , T , and U . If TLC can evaluate these set ex-
pressions then it can, in principle, handle Inv as an initial predicate.

Unfortunately, in principle doesn’t mean in practice. When Inv is de-
fined by (2), TLC computes the set of initial states by first computing all
states satisfying TypeOK , then throwing away the ones that don’t satisfy H.
If TypeOK equals (3), then the number of states satisfying it is |S |∗|T |∗|U |,
where |S | is the number of elements in the set S . In practice, even for fairly
small models, the number of type-correct states is enormous. For example,

2

in a spec I once wrote for the bakery algorithm, a model with 3 processes
that can choose numbers in 0 . . 4 has about 1.6 ∗ 1013 type-correct states.
TLC can’t compute such a huge set of states—even though it takes a laptop
only about 10 minutes to check an ordinary invariant on that model.

For an invariant Inv with TypeOK equal to (3), TLC works by first
computing the possible values of x , then for each value of x computing the
possible values of y , then for each pair of values of x and y computing the
possible values of z , and then throwing away states that don’t satisfy H.
Suppose H equals (x < y) ∧ K. We can then rewrite Inv as

∧ x ∈ S
∧ y ∈ T
∧ x < y
∧ z ∈ U
∧ K

When written this way, for each pair of values TLC finds for x and y , it
checks that the pair satisfies x < y before finding possible values of z . (The
conjunct x < y must come after the two conjuncts that determine possible
values of x and y .) Moving conjuncts from H up in the formula like this can
reduce by a few orders of magnitude the amount of work TLC must do to
compute the initial states, which can allow it to check a larger model. But
reducing 1.6 ∗ 1013 by a few orders of magnitude doesn’t help much.

This method of checking inductive invariance is complete, meaning that
it will find any error that can occur for a given model. However, it works
only on extremely tiny models. The tiniest of models will probably reveal
errors in your first attempts at an inductive invariant. Eventually, you’ll
correct all the errors a tiny model can find. You would then like to check it
on a larger model.

When complete checking on a larger model becomes impractical, we can
switch to probabilistic checking. Here’s how it works with the inductive
invariant Inv defined by (2) and the type-correctness invariant (3). Instead
of checking that Inv is an invariant of (2), we check that it’s an invariant of
the specification IInit ∧2[Next]vars , with

IInit
∆
= ITypeOK ∧H

where ITypeOK equals

∧ x ∈ RS
∧ y ∈ RT
∧ z ∈ RU

(4)

3

and RS , RT , and RU are randomly chosen subsets of S , T , and U con-
taining c, d , and e elements respectively. TLC then has to examine only
c ∗ d ∗ e type-correct states instead of |S | ∗ |T | ∗ |U | of them. We choose c,
d , and e so that c ∗ d ∗ e is small enough so TLC can generate the initial
states within a few minutes.

Probabilistic checking is not perfect. Any error it finds produces a coun-
terexample showing that the formula Inv isn’t an inductive invariant. The
counterexample is extremely useful in correcting a problem with Inv , get-
ting us closer to an inductive invariant. But failure to find an error proves
nothing. The best we can hope for is that checking that Inv is an invariant
of IInit ∧ 2[Next]vars has a sufficiently high probability of finding an error
in a suitably short length of time. We then run multiple tests, stopping tests
if they run too long.

How well does this work? I’ve tried it on models of five specs. Three
were (unpublished) specs I wrote many years ago containing what I then
believed were inductive invariants. Probabilistic checking showed that they
weren’t. In two other examples, probabilistic checking found errors that I
introduced into correct inductive invariants. The performance ranged from
good to spectacular. On a specification of the Paxos consensus algorithm,
in 6 out of 10 tries probabilistic checking found an error in about 17 minutes
on a model that is too large for TLC to run ordinary model checking on. On
a simpler, abstract version of the Paxos algorithm, every test found an error
in seconds on a model on which it takes TLC about 23

4 days to do ordinary
model checking using 16 cores on a large, fast machine.

The method now needs to be tested on more examples. If you have a
spec with an inductive invariant that you can send me, that would be fine.
Please propose one or more errors to add for checking. The most interesting
errors are ones that weaken the inductive invariant so it’s still an invariant,
since they can’t be found by ordinary invariance checking.

Although I’d be happy to have examples sent to me, I would prefer that
you test the approach yourself. You’re likely to use it in ways I wouldn’t
think of, perhaps by taking advantage of what you know about the spec. I’d
like to find out what did and didn’t work for you, so I can help others use
the method.

2 How to Do it Yourself

The latest I will describe how to do probabilistic random inductive invariant
checking using the example above, where we check that Inv is an invariant

4

of IInit ∧2[Next]vars , where IInit equals ITypeOK ∧H and ITypeOK equals
(4). If conjuncts of H can be moved into TypeOK as described above to
improve the efficiency of complete inductive invariance checking, they can
be moved in the same way into ITypeOK .

You will start by doing complete inductive invariance checking on a tiny
model. Only when you have done this on the largest model you can and
found no errors should you try probabilistic checking. This requires writing
IInit in the form (4), which requires describing the randomly chosen subsets
RS , RT , and RU in TLA+.

2.1 Describing Random Subsets

You should install the latest version of the Toolbox, which is Version 1.5.7 of
18 July 2018. It contains a new standard module named Randomization that
defines RandomSubset(k ,S) to equal a pseudo-randomly chosen subset of S
containing k elements. The RandomSubset operator makes a new pseudo-
random choice every time it is evaluated. In our example, you can define
the predicate IInit to equal

∧ x ∈ RandomSubset(c,S)
∧ y ∈ RandomSubset(d ,T)
∧ z ∈ RandomSubset(e,U)

(5)

To evaluate RandomSubset(c,S), TLC must enumerate the elements of the
set S . If S has a huge number of elements, this can take too long. A
common case of this in a type-correctness condition x ∈ S is when S equals
subsetW , so it contains 2|W | elements. A very large set of type-correct
states is often the result of an initial condition of the form x ∈ subsetW .
(This condition sometimes appears in a type-correctness invariant in the
form x ⊆ W , and it must be rewritten as x ∈ subsetW for inductive
invariant checking.) We could solve this problem by writing

x ∈ RandomSubset(c, subset RandomSubset(p,W))

for some p. However, this is not ideal because all the resulting elements
of subsetW this chooses are subsets of the same subset of W . There’s
another problem with this solution. If TLC can model check the spec, then
the possible values of x probably comprise only a small number of subsets
of W . This probably means that in reachable states, the value of x will be
a small subset of W . So in choosing the subsets of W initially assigned to
x , we want to choose mostly small subsets. Both these problems are solved
by the RandomSetOfSubsets operator, where RandomSetOfSubsets(c, p,W)

5

equals a pseudo-randomly chosen set of about c subsets of W , where the
probability of any element of W being in a chosen subset of W is p / |W |.
The operator works by choosing c subsets of W , each one being chosen by
enumerating the elements of W and randomly deciding whether or not to
put that element in the subset—putting it in the subset with probability
p / |W |. This can produce fewer than c subsets because the same subset
can be chosen more than once. I don’t know how to compute in general the
expected number of subsets this produces as a function of c, p, and |W |. But
you can let TLC tell you how many subsets it generates for specific values
of the parameters by using the TestRandomSetOfSubsets operator—at least
for the common case in which c, p, and W are constants. The expression

TestRandomSetOfSubsets(c, p,W)(6)

equals a sequence of five integers that are the cardinalities of the sets pro-
duced by evaluating RandomSetOfSubsets(c, p,W) five times. When c, p,
and W are constants, you can put expression (6) in the Evaluate Constant
Expression field of a model’s Results page to have TLC evaluate it. Trial
and error will quickly lead you to the value of c that produces the number
of sets of subsets you want.

2.2 Running Tests

You should start with a model that is too big for complete inductive in-
variance checking, but not very big. You should use one in which you have
already checked that Inv is an ordinary invariant of the spec. To write IInit
in the form (5), you must then choose the parameters c, d , and e. If the
parameters are too small, then TLC will find no initial states. (None of the
type-correct states will satisfy H.) If the parameters are too large, TLC
will spend a long time computing the initial states. I’ve found that TLC
will find an error in at least about half its tries with fewer than 100 initial
states. (Often a single initial state is enough.) So, you should increase the
parameters until TLC finds a few dozen initial states. For a small model, it
will take TLC just a few seconds to compute those initial states.

Of course, there are many ways to choose c, d , and e to produce the
same number c∗d ∗e of initial states. It seems reasonable to base the relative
sizes of these parameters on the numbers |S |, |T |, and |U | of type-correct
values of the variables in the model. I find it helpful to use a spreadsheet
that computes the values of |S |, |T |, and |U | based on the parameters of the
model. For that computation, remember that the cardinality of [V → W]
is |W ||V | and the cardinality of subsetW is 2|W |.

6

After you’ve chosen the model and the parameters c, d , and e, you can
run TLC to check if Inv is an invariant of the spec IInit ∧ 2[Next]vars . If
TLC finds an error, Inv is not an inductive invariant of your spec and TLC’s
error trace will show you why it isn’t. TLC may quickly terminate without
finding an error. It may also keep running for a long time. With complete
inductive invariance checking, any error is found in a single step. With
probabilistic invariance checking, it could take many steps. However, I’ve
never seen it take an error trace of more than 10 steps to reveal an error. If
the statistics section of the Model Checking Results page shows that TLC’s
breadth-first search has reached a diameter greater than around a dozen
(which usually takes just a few seconds), then I advise stopping the run.
You should try about a dozen runs with the same model and parameters
before deciding that further tries won’t find an error.

If you don’t find an error, try adjusting the relative size of the parameters
c, d , and e while keeping the total number of type-correct states about
the same. If you still find no error, I suggest introducing an error in the
interesting part H of the inductive invariant that you believe should be
detectable with the model and check that TLC finds it. If TLC doesn’t
find the error, try increasing the parameters to get more initial states. If
TLC finds the introduced error, then I believe it’s quite likely that Inv is an
inductive invariant for that model, so you should try checking larger models.

As your models get larger, you will have to increase the parameters c, d ,
and e to get enough initial states, and it will take TLC longer to compute
those initial states. The largest part of the execution time in inductive
invariant checking is generally spent finding the initial states. This is done
sequentially by TLC. Hence, if you have a multi-core computer, it’s best to
use those cores by running multiple instances of TLC, each using a single
worker thread. You can create and save a model with the Toolbox, and then
run multiple instances of TLC on the MC.tla file created for that model.
(You can find that file by searching inside the spec’s .toolbox directory.)
You can run multiple instances of TLC in the same directory by redirecting
each instance’s output to a different file. In a Unix (or Cygwin) shell, you
can follow the command to run TLC on the MC.tla file with

&> filename.$(date +%s)

This creates a unique file name for the output (as long as successive com-
mands are executed more than one second apart). You can check the
progress of all the runs by running grep on the output files to look for
these phrases indicating what TLC is up to:

7

Finished computing TLC has finished computing the initial states.

violated TLC has found an error. (It can still take it
a while to produce the error trace.)

Finished in The TLC run has terminated.

If TLC finds an error, the error trace will appear in its output file.

2.3 Ordering Conjuncts

The order of the conjuncts in the type-correctness invariant (3) makes no
difference, assuming S , T , and U are constants (so their values don’t depend
on x , y , or z). However, this is not the case for (5). If you remember how
TLC computes initial states, you will see that the c ∗d ∗e initial states TLC
computes that satisfy (5) contain c different values of x , but up to c ∗ d ∗ e
different values of z .

I don’t know how to determine which order results in a set of initial states
that is most likely to reveal the error. It probably depends on the spec and is
hard to figure out. The best approach seems to be to choose the ordering that
minimizes the time needed to compute the initial states. With the ordering
of (5), RandomSubset(c,S) is computed once and RandomSubset(e,U) is
computed c ∗ d times. Minimizing execution time requires ordering the
conjuncts in decreasing order of the time needed to compute their sets.
The ordering is probably significant only if there are large difference in the
execution times, so the following very rough approximations of those times
will suffice. The time to compute RandomSubset(c,S) can be taken to be |S |
except in two special cases: (i) if S equals [V →W], then it is approximately
c ∗ |V |; and (ii) if S is the set [l1 : W 1, . . . , ln : W n] of records, then it is
approximately n ∗ |W | where |W | is the average of the |W i |. The time to
compute RandomSetOfSubsets(c, p,S) is roughly c ∗ |S |.

3 Why Does this Work?

I don’t know. However, I do have one possible partial answer. Suppose
we have found an invariant J that is almost inductive. It can be turned
into the desired inductive invariant Inv by conjoining a small number of
conditions. Each of those conditions rules out a significant fraction of the
states satisfying J . Therefore, if we choose a random state that satisfies J ,
there is a good chance that it does not satisfy Inv ; and it’s almost certain
that a couple of dozen randomly chosen states will include ones that don’t
satisfy Inv , and so could potentially lead to states that don’t satisfy J . What

8

I don’t understand is why there is a good chance that one of those initial
states that satisfies J ∧ ¬Inv will, in a few steps satisfying the next-state
relation, lead to a state not satisfying J .

9

