
Safety, Liveness, and Fairness

Leslie Lamport

26 May 2019

The terms safety, liveness, and fairness are used informally throughout the
TLA+ documentation—including in the TLA+ Video Course. I assume you
can understand a simple TLA+ specification, so you probably have some
idea what these terms mean. They are defined precisely here and their
significance is discussed. Although they are not written formally in TLA+,
the definitions are mathematical and so is the discussion. If you’re not used
to reading mathematics, this may be tough going. It’s worth the effort if
you want a more complete understanding of TLA+.

Text colored like this in the table of contents or like this elsewhere is a
clickable link.

Contents

1 A Partial Semantics of TLA+ 1

2 Safety and Liveness 2

3 Fairness 3

4 The WF and SF Operators 5

References 8

http://lamport.azurewebsites.net/video/videos.html
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/toolbox.html

1 A Partial Semantics of TLA+

Values

A value is what is called a set in formal mathematics. It includes all objects
that can be written as constant expressions of TLA+. For example,

√
3 is

a value, as is the set of all pairs 〈x , y 〉 of real numbers such that x 2 + y2

equals 1. These two values can be written like this in TLA+:

CHOOSE v \in Real : (v > 0) /\ (v^2 = 3)

{z \in Real \X Real : z[1]^2 + z[2]^2 = 1}

States

A state is any assignment of values to variables. There are infinitely many
variables (assuming no bound on the length of TLA+ identifiers), but any
formula can contain only a finite number of them. A step is a pair of states,
which I will write u → v instead of u, v . It’s important to remember that
a state can assign any value to any variable; variables do not have types.

Behaviors

A behavior is any infinite sequence of states. I will write the infinite sequence
s1, s2, s3, . . . of states as s1 → s2 → s3 → · · · . A step of a behavior is any
pair of consecutive states in the behavior. For example, s42 → s43 is a step
of the behavior s1 → s2 → s3 → · · · . It’s important to remember that a
behavior is any sequence of states, not one satisfying some specification.

Properties

A property is a predicate on behaviors—that is, it assigns a boolean value
(true or false) to every behavior. I will let b |= P be the boolean value
that property P assigns to the behavior b . If b |= P equals true, we say
that b satisfies P .

In TLA+, properties are written as temporal formulas. I will conflate
a TLA+ formula with the property it describes, letting b |= F for a for-
mula F mean b |= P for the property P described by F . For exam-
ple, if b is the behavior s1 → s2 → s3 → · · · and F is the formula
(x=1) /\ [][x’=x+1]_x , then b |= F equals true iff (if and only if) state
s1 assigns the value 1 to x and, for every step s i → s i+1 of b , the value
assigned to x in state s i+1 is equal to or 1 greater than the value assigned
to x in state s i .

1

Every property that can be written in TLA+ is stuttering insensitive.
This means that for any temporal TLA+ formula F and any behavior b ,
if the behavior b̂ is obtained from b by adding and/or deleting stuttering
steps, then b |= F equals b̂ |= F . For example, if b is the behavior

s1 → s1 → s2 → s2 → s3 → s3 → s4 → s4 → s5 → s5 → s6 → s6 → · · ·

and b̂ is the behavior

s1 → s2 → s2 → s3 → s3 → s3 → s4 → s4 → s4 → s4 → s5 → · · ·

then b |= F equals b̂ |= F . The reason why TLA+ only allows formulas
that describe stuttering-insensitive properties is explained on the TLA+ Ad-
vanced Topics web page. Because we are interested only in such properties,
henceforth property will mean stuttering-insensitive property.

2 Safety and Liveness

Define a prefix of a behavior b to be a sequence consisting of the first n
states of b , for some n > 0 . For example, s1 and s1 → · · · → s42 are
prefixes of the behavior s1 → s2 → s3 → · · · .

For any finite sequence s of states, let s] be the behavior obtained by
appending infinitely many copies of the last state. For example, if s is the
sequence s1 → · · · → s42 of states, then s] is the behavior

s1 → · · · → s42 → s42 → s42 → s42 → · · ·

The behavior s] represents an execution of a system that halts after reaching
the last state of s . (Obviously, s is a prefix of s] .)

Safety

For any finite sequence s of states and any property P , we define s |= P
to equal s] |= P . A property P is defined to be a safety property iff it
satisfies the following condition, for all behaviors b :

b |= P equals true iff s |= P equals true for all prefixes s
of b .

Here are some equivalent ways of expressing this condition:

b satisfies P iff every prefix of b satisfies P .

2

https://lamport.azurewebsites.net/tla/advanced.html
https://lamport.azurewebsites.net/tla/advanced.html

b |= P equals false iff s |= P equals false for some prefix s
of b .

b doesn’t satisfy P iff there is a prefix of b that doesn’t satisfy P .

If a behavior b doesn’t satisfy a safety property P , then there is some
shortest prefix smin of b that doesn’t satisfy P . If smin contains two or
more states, we can think of the last step of smin as the step of b that
violates P . If smin consists of a single state, we can think of the initial
state of b as violating P . One way to think of a safety property is as a
property that, if it’s violated, we can point to a place in the behavior where
it’s violated. Any TLA+ formula of the form Init /\ [][Next]_vars is a
safety property.

The formula <>(x = 3) is not a safety property. That formula is satisfied
by a behavior b iff x has the value 3 in some state of b . We can’t tell that
b does not satisfy the formula by looking at any prefix of b . We need to
view the entire infinite behavior to know that x does not equal 3 in any
state.

Liveness

A behavior b is said to be an extension of a finite sequence s iff s is a
prefix of b . A property P is defined to be a liveness property iff every
finite sequence of states can be extended to a behavior that satisfies P .
The formula <>(x = 3) is a liveness property; any finite sequence of states
can be extended to a behavior satisfying it by simply appending a state in
which x equals 3 and then appending any infinite sequence of states.

Safety and Liveness

Any property can be written as the conjunction of a safety property and
a liveness property. This result, and the precise definition of liveness, are
due to Alpern and Schneider [2]. Because they didn’t assume all properties
to be stuttering insensitive, they gave a different definition of safety than
the one above. For a stuttering-insensitive property, the two definitions are
equivalent.

3 Fairness

If S is a safety property and L a liveness property, then the pair S ,L is
said to be machine closed iff the following condition is satisfied [1]:

3

Every finite sequence of states that satisfies S can be extended
to a behavior that satisfies S ∧ L .

Since L is a liveness property, every finite sequence s of states can be
extended to a behavior satisfying L . Machine closure of S ,L means that
if s also satisfies S , then the extension can be chosen to satisfy both S
and L .

In the context of specification, the term fairness has been used in quite a
few different ways. It generally refers to a condition on how the specification
is written. The most common use of the term is in the idea of fair scheduling
of process execution; but in TLA+, the concept of a process is an artifact of
how the specification is written. Two equivalent TLA+ formulas can look
like specifications of systems with different numbers of processes [4]. The
only definition of fairness I can think of that encompasses all the uses of
the term I have seen is the following: L is a fairness property for S iff
S ,L is machine closed. We can then call L a fairness property if the safety
property S is understood from the context.

Suppose S equals Init /\ [][Next]_vars , as it does for essentially all
TLA+ system specifications. In this case, fairness of L asserts that S ∧ L
does not disallow any initial state satisfying Init or any step satisfying
Next . For example, let S and L be these formulas:

S = (x=1) /\ [][\E i \in 2..7 : x’ = i*x]_x

L = []<>(x % 2 = 1)

Formula S is satisfied by behaviors in which x equals 1 in the first state and
each step that changes x multiplies it by some integer in 2..7 . Formula L
is satisfied by behaviors in which the value of x is odd in infinitely many
of its states. Formula L is a liveness property, since any finite sequence of
states can be extended to a behavior satisfying it by appending infinitely
many states with x equal to an odd number. However, it’s not a fairness
property for S because a finite sequence s of states satisfying S cannot be
extended to a behavior satisfying S ∧L if s contains a step that multiplies
x by an even number. Formula L disallows steps allowed by the next-state
action of S — namely, steps that multiply x by 2, 4, or 6.

Specifications that aren’t machine closed are hard to understand be-
cause you can’t tell if a step is allowed just by looking at the Next action.
The system specifications you write should be machine closed. However,
it’s sometimes necessary to use a formula that isn’t machine closed when
verifying that one specification implements another [3].

4

4 The WF and SF Operators

The standard way to write fairness conditions in TLA+ is with the WF and SF

operators. Before defining these operators, we need to define some notation.
An action formula A is a predicate on steps. We say that a step is an A step
iff A equals true on that step. The formula ENABLED A is defined to equal
true on a state u iff there exists a state w such that u → w is an A step.
For an action A , the action <<A>>_v is defined to equal A /\ (v’/= v) .
Finally, we define a suffix of a behavior s1 → s2 → s3 → · · · to be a
behavior s i → s i+1 → s i+2 → · · · , where i is a positive integer.

We now define WF_v(A) and SF_v(A) . The state formula v is needed to
ensure that these formulas are stuttering insensitive. We define a behavior b
to satisfy WF_v(A) iff any of the following equivalent conditions are satisfied.
These conditions can be hard to understand if you’re not used to thinking
about infinite sets and sequences, so it may not be obvious that they’re all
equivalent. You will understand the meaning of WF_v(A) when you find
their equivalence to be clear.

• Any suffix of b whose states all satisfy ENABLED <<A>>_v contains an
<<A>>_v step.

• b does not contain a suffix with no <<A>>_v step whose states all
satisfy ENABLED <<A>>_v .

• Any suffix of b must contain an <<A>>_v step or a state on which
ENABLED <<A>>_v equals false. (As in all such mathematical state-
ments written in English, “or” means “and/or”.)

• If b contains a suffix all of whose states satisfy ENABLED <<A>>_v , then
b contains infinitely many <<A>>_v steps.

• b must contain infinitely many <<A>>_v steps or infinitely many states
that do not satisfy ENABLED <<A>>_v .

We define SF by defining a behavior b to satisfy SF_v(A) iff the following
equivalent conditions are satisfied.

• Any suffix of b containing infinitely many states that satisfy
ENABLED <<A>>_v contains an <<A>>_v step.

• b does not have a suffix that has infinitely many states satisfying
ENABLED <<A>>_v and has no <<A>>_v step.

5

• Any suffix of b must contain an <<A>>_v step or have a suffix in which
ENABLED <<A>>_v equals false in all its states.

• If b contains infinitely many states satisfying ENABLED <<A>>_v , then
it contains infinitely many <<A>>_v steps.

Any behavior satisfying SF_v(A) also satisfies WF_v(A) . (Make sure you
understand why.) If <<A>>_v is not equivalent to FALSE , then WF_v(A) and
SF_v(A) are liveness properties. This is because <<A>>_v not equivalent to
FALSE implies that there is some step u → w that satisfies <<A>>_v . Any
finite sequence s of states can be extended to one satisfying SF_v(A) , and
hence WF_v(A) , by appending this infinite sequence of steps:

u → w → u → w → u → w → u → · · ·

However, WF_v(A) and SF_v(A) need not be fairness properties. For ex-
ample, let S equal (x=0) /\ [][x’=x+1]_x , let A equal x’=x+2 and let v

equal x . An <<x’=x+2>>_x step is possible in any reachable state of S ,
but no such step satisfies x’=x+1 . (A reachable state of S is one that oc-
curs in some behavior that satisfies S .) Hence, no finite sequence of states
satisfying S can be extended to satisfy S as well as WF_v(A) or SF_v(A) .

We now restrict ourselves to the standard situation, in which S equals
Init /\ [][Next]_vars for some state formula Init , action Next , and state
expression vars . For this safety property, the v in WF_v(A) and SF_v(A)

is usually equal to vars , but it needn’t be. Formulas WF_v(A) and SF_v(A)

are fairness properties for S if <<A>>_v is a subaction of Next , where an
action B is defined to be a subaction of Next iff the following condition is
satisfied:

If u is a reachable state of S and u → v is a step satisfying B ,
then u → v satisfies Next .

Note that B is a subaction of B \/ C for any action C .
Understanding why WF_v(A) and SF_v(A) are fairness properties for S

if <<A>>_v is a subaction of Next will help you understand WF and SF . Here
is a proof of their fairness.

For any finite sequence s of states satisfying S , we must show how
to extend s to a behavior satisfying WF_v(A) and to a behavior satisfying
SF_v(A) . Since any behavior satisfying SF_v(A) satisfies WF_v(A) , it suffices
to extend s to a behavior satisfying SF_v(A) . We do this with the following
algorithm for repeatedly appending states to a sequence. It begins with the
sequence equal to s , and we let u be the last state of the sequence obtained
so far.

6

if ENABLED <<A>>_v equals true in state u

then append a state w such that u → w is an <<A>>_v step
(the truth of ENABLED <<A>>_v implies the existence of w)

else if ENABLED Next equals true in state u

then append a state w such that u → w is a Next step
(the truth of ENABLED Next implies the existence of w)

else append u

If the final else clause is ever executed, then it will be executed again the
next time, so the sequence will be extended forever with stuttering steps.
The assumption that <<A>>_v is a subaction of Next implies that the step
u → w added in either then clause is a Next step, so the behavior b
constructed by the algorithm satisfies S . If ENABLED <<A>>_v is true for
infinitely many of the added states, then the algorithm adds infinitely many
<<A>>_v steps, so b satisfies SF_v(A) .

In general, the conjunction of any finite number of formulas, each of the
form WF_v(A) or SF_v(A) for subactions A of Next , is a fairness property
for S . Proving this requires generalizing the algorithm for extending the
sequence s used in the proof above to work for a finite set of subactions A .
Finding the appropriate generalization is left as a nice little programming
problem.

This result holds also for the “conjunction” of a countably infinite num-
ber of WF and SF formulas. More precisely, suppose that L equals
\A i \in Nat : F(i) , where for all i in Nat , each F(i) equals WF_v(A(i))

or SF_v(A(i)) and <<A(i)>>_v is a subaction of Next . Then L is a fairness
condition for S . The basic idea of the proof is to modify the algorithm for
extending the state sequence s to a behavior that satisfies a finite conjunc-
tion to obtain an algorithm that produces a behavior satisfying L . The new
algorithm works essentially as follows. It finds the first new state by using
the algorithm for satisfying SF_v(A(0)) ; it finds the second new state using
the algorithm for satisfying SF_v(A(0)) /\ SF_v(A(1)) ; it finds the third
new state using the algorithm for satisfying SF_v(A(0)) /\ SF_v(A(1)) /\

SF_v(A(2)) ; and so on.

7

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[3] Leslie Lamport. Auxiliary variables in TLA+. Web page.

[4] Leslie Lamport. Processes are in the eye of the beholder. Theoretical
Computer Science, 179:333–351, 1997.

8

http://research.microsoft.com/en-us/um/people/lamport/tla/auxiliary/auxiliary.html

