A Science of Concurrent Programs

Leslie Lamport
version of 16 March 2024

The 1 March 2024 version was an extensive rewriting of the previous versions, with Chapter 2 much shorter and some math introduced later in the book as needed. The current version contains minor changes, including moving the former Section 2.9 to Math V.
If you have any errors to report, comments to make, or questions to ask, please contact me by email. But when you do, include the version date. Anyone who is the first to report any error will be thanked in the book. If you find an error, please include in your email your name as you wish it to appear, and be sure to include the version date.

Contents

About This Book (unfinished) vii
Acknowledgments (unfinished) viii
1 Introduction 1
1.1 Who Am I? 1
1.2 Who Are You? 2
1.3 The Origin of the Science 2
1.3.1 The Origin of the Theory 2
1.3.2 The Origin of the Practice 3
1.4 Correctness 5
1.5 A Preview 6
1.6 Why Math? 9
2 Ordinary Math 12
2.1 Arithmetic as a Mathematical Theory 14
2.2 The Mathematical Theory of Algebra 15
2.3 Mathglish 17
2.4 Boolean Arithmetic (Propositional Logic) 18
2.5 ZF 21
2.6 Meaningless Expressions 23
2.7 Quantification and Bound Variables 25
2.7.1 Quantification 25
2.7.2 Bound Variables 27
2.8 Defining Mappings and Functions 29
2.8.1 Mappings 29
2.8.2 Functions 30
2.8.3 Sequences and Tuples 31
2.9 Some Useful Notation 32
2.9.1 IF/THEN/ELSE 32
2.9.2 Conjunction and Disjunction Lists 33
3 Describing Abstract Programs with Math 34
3.1 The Behavior of Physical Systems 34
3.2 Behaviors of Digital Systems 37
Math I 37
3.2.1 From Continuous to Discrete Time 37
3.2.2 An Example: Sqrs 40
3.2.3 A Finer-Grained Example: FGSqrs 44
3.3 Nondeterminism 46
Math II 46
3.3.1 Sources of Nondeterminism 47
3.3.2 An Example: Increment 48
3.4 Temporal Logic 52
Math III 52
3.4.1 The Logic of Actions 53
3.4.1.1 Eliminating State Numbers 53
3.4.1.2 The Semantics of the Logic of Actions 55
3.4.1.3 The Prime Operator 56
3.4.1.4 Action Composition 58
3.4.2 The Temporal Logic RTLA 59
3.4.2.1 Simple RTLA 60
3.4.2.2 The Complete RTLA 62
3.4.2.3 The \square Operator 63
3.4.2.4 Eventually (\diamond) 64
3.4.2.5 Eventually Always ($\diamond \square$) 66
3.4.2.6 Infinitely Often ($\square \diamond$) 66
3.4.2.7 The End of the Line 67
3.4.2.8 Leads To (\sim) 68
3.4.2.9 Warning 69
3.5 TLA 70
Math IV 70
3.5.1 The Problem 71
3.5.2 The Solution 72
3.5.3 Stuttering Insensitivity 74
3.5.4 The Definition of TLA 75
4 Safety, Liveness, and Fairness 78
4.1 Safety and Liveness 78
Math V 78
4.1.1 Definitions 79
4.1.2 A Completeness Theorem 81
4.1.3 The Operator \mathcal{C} 83
4.1.4 What Good is Liveness? 84
4.2 Fairness 85
4.2.1 Traditional Programs and Enabled 85
4.2.2 Concurrent Programs 86
4.2.2.1 Mutual Exclusion 87
4.2.2.2 Machine Closure 91
4.2.3 Weak Fairness 92
4.2.4 Temporal Logic Reasoning 94
4.2.5 Reasoning With Weak Fairness 95
4.2.5.1 Liveness for Mutual Exclusion 96
4.2.5.2 The One-Bit Algorithm 96
4.2.5.3 Proving Liveness 98
4.2.6 Strong Fairness 102
4.2.6.1 Starvation Free Mutual Exclusion 102
4.2.6.2 The Definition of Strong Fairness 104
4.2.6.3 Using a Strongly Fair Semaphore 105
4.2.7 Properties of WF and SF 106
4.2.8 What is Fairness? 108
4.3 Possibility and Accuracy 109
4.3.1 Possibility Conditions 109
4.3.2 Expressing Possibility in TLA 110
4.3.3 Checking Accuracy 112
4.4 Real-Time Programs 112
Math VI 113
4.4.1 Fischer's Algorithm 114
4.4.2 Correctness of Fischer's Algorithm 117
4.4.3 Fairness and Zeno Behaviors 119
4.4.4 Discrete Time 120
4.4.5 Hybrid Systems 122
5 Refinement 124
5.1 A Sequential Algorithm 125
Math VII 126
5.1.1 A One-Step Program 127
5.1.2 Two Views of Refinement Mappings 129
5.1.3 A Step and Data Refinement 130
5.2 Invariance Under Refinement 133
5.3 An Example: The Paxos Algorithm 134
5.3.1 The Consensus Problem 135
5.3.2 The Paxos Consensus Algorithm 137
5.3.2.1 The Specification of Consensus 137
5.3.2.2 The Voting Algorithm 138
5.3.2.3 The Paxos Abstract Program 141
5.3.3 Implementing Paxos 143
5.4 Proving Refinement 144
Math VIII 145
5.4.1 The Refinement Mapping 146
5.4.2 Refinement of Safety 147
5.4.3 Refinement of Fairness 150
5.4.4 A Closer Look at \mathbb{E} 153
5.4.4.1 A Syntactic View 153
5.4.4.2 Computing \mathbb{E} 155
5.4.4.3 The Trouble With \mathbb{E} 157
5.5 A Warning 160
6 Auxiliary Variables 161
6.1 Variable Hiding 161
Math IX 161
6.1.1 Introduction 162
6.1.2 Reasoning About \exists 164
6.1.3 The Definition 165
6.2 History Variables 167
6.2.1 How to Add a History Variable 167
6.2.2 History Variables and Fairness 171
6.2.3 A Completeness Result for History Variables 172
6.3 Stuttering Variables 173
Math X 173
6.3.1 The Example 174
6.3.2 Adding Stuttering Steps After an Action 176
6.3.3 Adding Stuttering Steps Before an Action 180
6.3.4 Fairness and Stuttering Variables 181
6.3.5 Infinite-Stuttering Variables 184
6.4 Prophecy Variables 185
Math XI 185
6.4.1 Simple Prophecy Variables 186
6.4.2 Predicting the Impossible and Liveness 190
6.4.3 General Prophecy Variables 191
6.4.3.1 A Sequence of Prophecies 192
6.4.3.2 A Set of Prophecies 195
6.4.3.3 Further Generalizations 198
6.4.4 The Existence of Refinement Mappings 200
6.5 The FIFO Queue 201
6.5.1 Fifo - A Linearizable Specification 201
6.5.2 POFifo - A More General Specification 203
6.5.2.1 The Background 203
6.5.2.2 Program POFifo 205
6.5.3 Showing IPOFifo Implements Fifo 209
6.5.3.1 The Prophecy Variable 210
6.5.3.2 The History Variable $q B a r$ 211
6.5.3.3 Stuttering and the Refinement Mapping 214
6.6 Prophecy Constants 215
7 Loose Ends 218
7.1 Reduction 218
7.1.1 Introduction 218
7.1.1.1 What Reduction Is 218
7.1.1.2 The TLA Approach 220
7.1.2 An Example 221
7.1.2.1 The Reduced Behaviors 223
7.1.2.2 The Program $S \otimes S^{R}$ 224
7.1.2.3 The Invariant 228
7.1.3 Reduction In General 230
7.1.4 The Hypothesis $\square \diamond \neg \mathcal{L}$. 234
7.1.5 Adding Liveness 234
7.1.5.1 Fairness of Subactions of E^{R} 235
7.1.5.2 Fairness of Subactions of M^{R} 238
7.1.5.3 The Reduction Theorem with Fairness 241
7.1.6 An Example: Making Critical Sections Atomic 242
7.1.7 Another Example: Pipelining 245
7.2 Decomposing and Composing Programs 249
7.2.1 Decomposing Programs 251
7.2.1.1 Writing a Program as a Conjunction 251
7.2.1.2 Decomposing Proofs 253
7.2.2 Composing Components 259
Appendix 264
A Miscellany 264
A. 1 Ordinary Math Summary 264
A.1.1 Arithmetic 264
A.1.2 Propositional Logic 264
A.1.3 Predicate Logic 265
A.1.4 Sets 265
A.1.5 The choose Operator 266
A.1.6 Functions 267
A.1.7 Sequences 267
A.1.8 Notation 268
A.1.9 Recursive Definitions 268
A. 2 Structured Proofs 269
A. 3 Why Not All Mappings Are Sets 272
A. 4 How Not to Write $x^{\prime \prime \prime}$ 273
A. 5 Hoare Logic 274
A. 6 Another Way to Look at Safety and Liveness 277
A.6.1 Metric Spaces 277
A.6.2 The Metric Space of Behaviors 280
B Proofs 282
B. 1 Invariance Proof of Increment 282
B. 2 Proof of Theorem 4.3 285
B. 3 Proof of Theorem 4.4 287
B. 4 Proof of Theorem 4.5 288
B. 5 Proof of Theorem 4.6 289
B. 6 Proof of Theorem 4.7 289
B. 7 Proof of Theorem 4.8 291
B. 8 Proof Sketch of Theorem 4.9 293
B. 9 Proof of Formula (5.4) 293
B. 10 Proof of Theorem 6.2 294
B. 11 Proof Sketch of Theorem 6.3 296
B. 12 Proof Sketch of Theorem 6.6 297
B. 13 Proof of Theorem 7.2 300
B. 14 Proof of Theorem 7.3 301
Bibliography 303
Index 308

About This Book (unfinished)

I hope that this book will be published, but that the pdf version will be free and only the printed version will be sold. In the published version, this section will contain practical information about reading the book. Here is some practical information for reading the current version.

- The pdf version contains links to other places in the book. They are colored like this. I have not decided in what color links should be. Besides links to numbered things like equations, there are a few other links in the text from terms to where they are defined or introduced. I have not decided whether there should be more or none of those other links.
- There will be an index in the published version, but there is none in this preliminary version. In the pdf version, page numbers in the index will be uncolored links to those pages.
- The appendix contains some hopefully interesting digressions and the proofs of most theorems, as well as a summary of the ordinary math that is used in the book.
- Almost all the examples are tiny, so the reader can concentrate on the principles without being distracted by complications in the examples. These tiny examples have been written in TLA ${ }^{+}$and verified by model checking; any errors in what is asserted about them are the result of incorrect transcriptions of what has actually been verified. The TLA ${ }^{+}$ versions of the examples will be made available on the Web.
- The book contains a few marginal notes. The marginal notes in this version colored like this are notes to myself for things to be checked when preparing the published version.

Acknowledgments (unfinished)

Because the ideas in this book were developed over several decades, it's impossible for me to give credit to everyone who influenced their development. I will therefore restrict this section to acknowledging only people who were coauthors of papers of which I've been an author. They will be listed alphabetically. I haven't decided whether to simply list them, or to indicate what their influence has been. I currently expect there to be between 16 and 24 people listed, but I may change my mind on who might be included.

I will also add acknowledgments to people who read preliminary versions and reported errors or sent me comments that led to significant changes.

Chapter 1

Introduction

1.1 Who Am I?

Dear Reader. I am inviting you to spend many pages with me. Before deciding whether to accept my invitation, you may want to know who I am.

I was educated as a mathematician; my doctoral thesis was on partial differential equations. While a student, I worked part-time and summers as a programmer. At that time, almost all programs were what I call traditional programs - ones with a single thread of control that take input, produce output, and stop.

After obtaining my doctorate, I began working on concurrent algorithmsones comprising multiple independent threads of control, called processes, that are executed concurrently. The first concurrent algorithms were meant to be executed on a single computer, and processes communicated through a shared memory. Later came distributed algorithms - concurrent algorithms designed to be executed on multiple computers in which processes communicate by message passing.

This is not the place for modesty. I was very good at concurrency - both writing concurrent algorithms and developing the theory underlying them. The first concurrent algorithm I wrote, published in 1974, is still taught at universities. In 1978 I published what is probably the first paper on the theory of distributed computing. I have received many awards and honors for this work, including a Turing award (generally considered the Nobel prize of computer science) for "fundamental contributions to the theory and practice of distributed and concurrent systems."

1.2 Who Are You?

You probably belong to one of two classes of people who I will call scientists and engineers. Scientists are computer scientists who are interested in concurrent computing. If you are a scientist, you should be well-prepared to decide if this book interests you and to read it if it does.

Engineers are people involved in building concurrent programs. If you are an engineer, you might have a job title such as programmer, software engineer, or hardware designer. I need to warn you that this book is about a science, not about its practical application. Practice is discussed only to explain the motivation for the science. If you are interested just in using the science, you should read about the language TLA^{+}and its tools, which are the practical embodiment of the science $[27,34]$. But if you want to understand the underlying science, then this book may be for you.

Like many sciences, the book's science of concurrent programs is based on mathematics. The book assumes only that you know the math one learns before entering a university. The basics of all the ordinary math you will need, which is math not part of the science, is explained in Chapter 2. Some additional ordinary mathematics is introduced later as needed. Most of this math is taught at universities in an introductory math course for computer science students, though probably not the way it is presented here. Scientists should be used to reading math. You may find the math hard if you're an engineer. But unless miseducation has burdened you with an insurmountable fear of mathematics, I encourage you to give the book a try. Learning the math will improve your thinking.

1.3 The Origin of the Science

The science that is the subject of this book, which I will call our science, is a mathematical theory with a practical goal. That goal is to help build concurrent programs that work correctly. Exactly what "working correctly" means and why it's an important goal are explained in Section 1.4. The origin of our science explains how I came to believe it's a good foundation for trying to achieve that goal.

1.3.1 The Origin of the Theory

The first concurrent algorithm was published in 1965 by Edsger Dijkstra [9]. I started writing concurrent algorithms around 1973, and I quickly learned
that they were hard to get right. The many possible orders in which the operations of different processes can be executed leads to an enormous number of possible executions that have to be considered. The only way to ensure that the algorithm worked correctly was to prove that it did.

By the 1970s, a standard approach had been developed for proving correctness of traditional programs. Around 1975, I and a few other computer scientists began extending that approach to concurrent algorithms [4, 23, 28, 44]. Concurrent algorithms were usually written in pseudocode plus some informal explanation of what the pseudocode meant. I came to realize that all these methods for proving correctness could be explained by describing a concurrent algorithm as what I am now calling an abstract program; and an abstract program could be described mathematically.

Correctness of an algorithm was expressed by properties required of its executions. I came to realize that correctness can also be expressed by an abstract program - a more abstract, higher-level one than describes the algorithm. Proving correctness means showing that the abstract program describing the algorithm implements the abstract program describing its correctness, and I developed a method for doing that.

This work culminated around 1990 with a way to write an abstract program as a single formula [31]. The formula is written in an obscure form of math called temporal logic. The particular temporal logic is called TLA (for the Temporal Logic of Actions). Most of the TLA formula for an abstract program consists of ordinary math that expresses essentially what was described by pseudocode. Temporal logic replaces the informal explanation of the pseudocode. That one abstract program implements another is expressed as logical implication together with mathematical substitution.

Throughout this period, I was writing correctness proofs of the algorithms I was inventing. This showed me that my way of reasoning with abstract programs worked in practice. However, I discovered that as my algorithms got more complicated and the formulas describing them became larger, the method of writing proofs used by mathematicians became unreliable. It could not ensure that all the details were correct. I had to devise a method of hierarchically structuring proofs to keep track of those details.

1.3.2 The Origin of the Practice

I have spent most of my career as a member of industrial research labs. The computer science I have done has been motivated by the problems facing system builders-sometimes before they were aware of those problems. I have devoted the last part of my career to developing tools to help them-
both intellectual tools to help them think better and programs to help them detect errors before they are implemented in code. These tools are based on what I learned by writing and reasoning about concurrent algorithms.

Programming is not just coding. It requires thinking before we code. Writing algorithms taught me that there are two things we need to decide before writing and debugging the code: what the program should do and how the program should do it. Most programmers think that the code itself adequately describes "how the program should do it", but I learned that we need a higher-level, more abstract description of what the program does. To emphasize that programming is more than just coding, I now use the name coding language for what are commonly called programming languages. That name is used in this book.

An algorithm is an example of a description of how a program should do something. Concurrent algorithms are hard to understand. To invent them, I had to be able to write them in the simplest way possible. Algorithms were usually written in pseudocode to avoid the complexity that real code requires to permit efficient execution. I developed a way to describe concurrent algorithms in math that was more precise and no harder to understand than pseudocode.

Engineers who build complex systems usually recognize the need for describing what their programs do in a simpler, more abstract way than with code. I decided that abstract programs written in math provided such a way for describing the aspects of a system that involve concurrency. By about 1995, I had designed a complete language called TLA ${ }^{+}$that engineers could use to write abstract programs in TLA.

The abstract programs I know of that have been written by engineers to describe what a system should do generally consist of about 200-2000 lines of TLA^{+}. All but a few of those lines are ordinary math, not temporal logic. As with code, those formulas are made easy to understand by decomposing them into smaller pieces. This is done using simple definitions, rather than the more complex constructs of coding languages.

To formalize mathematics and make it easier to write long formulas, I had to add to TLA ${ }^{+}$some concepts and syntax not present in the math commonly used by mathematicians - for example, variable declarations, grouping definitions into modules, and notation for substitution. This book uses TLA, but not TLA ${ }^{+}$, because the examples with which it illustrates our science are short and simple.

The kind of hierarchically structured proofs I devised can also be written in TLA ${ }^{+}$, and there is a program for checking the correctness of those proofs. However, with today's proof-checking technology, writing machine-
checked proofs takes more time than engineers generally have. By the time I designed TLA ${ }^{+}$, model checking had become a practical tool for checking the correctness of abstract programs. A model checker can essentially check correctness of all possible executions of a very small instance of an abstract program. This turns out to be very effective at detecting errors. There are two model checkers for abstract programs written in TLA ${ }^{+}$, using two complementary approaches. Model checking is the standard way engineers check those programs.

A program's code can, in principle, be described by a (concrete) abstract program and could, in principle, be written as a TLA ${ }^{+}$formula. For a simple program (or part of a program), the code can be hand-translated to TLA ${ }^{+}$ and checked with the TLA ${ }^{+}$tools. Usually, the length of the program and the complexity of the coding language makes this impractical.

From the point of view of our science, it makes no difference how long a formula an abstract program is. We therefore consider a program written in a coding language to be an abstract program. And since we are considering only abstract programs, we will let program mean abstract program. We will call an (abstract) program written in code a concrete program.

Although we don't write them as formulas, viewing concrete programs as abstract programs provides a new way of thinking about them. One benefit of this way of thinking is that understanding what it means for a concrete program to implement a higher-level abstract program can help avoid coding errors.

1.4 Correctness

Thus far, our science has been described as helping to build concurrent programs that work correctly. Working correctly is a vague concept. Here is precisely what we take it to mean.

We define a behavioral property to be a condition that is or is not satisfied by an individual execution of a program. For example, termination is a behavioral property. An execution either terminates or else it doesn't terminate, meaning that it keeps executing forever. We say that a program satisfies a behavioral property if every possible execution of the program satisfies it. A program is considered to work correctly, or simply to be correct, if it satisfies its desired behavioral properties.

That every possible execution of a program satisfies its behavioral properties may seem like an unreasonably strong requirement. I would be happy if a program that I use does the right thing 99.99% of the times I run it. For
many programs, extensive testing can ensure that it does. But it can't for most concurrent programs. What a concurrent program does can depend on the relative order in which operations by different processes are executed. This makes the program nondeterministic, meaning that different executions can do different things, even if the program receives identical inputs. This can result in an enormous number of possible executions, and testing can examine only a tiny fraction of them. Moreover, a concurrent program that has run correctly for years can start producing frequent errors because a small change to the computer hardware, the operating system, or even the other programs running at the same time causes incorrect executions that have never occurred before. The only way to prevent this is to ensure that every possible execution satisfies the behavioral properties.

Model checking is more effective at finding errors in concurrent programs than ordinary testing because it checks all possible executions. However, it does this only on a few small instances of the program-for example, an instance with few processes or one that allows only a small number of messages to be in transit at any time. ${ }^{1}$ Engineering judgment is required to decide if correctness of those instances provides enough confidence in the correctness of the program.

There is one way testing could find errors in concrete programs. When building a concurrent system, an abstract program is often used to model how the processes interact with one another, and correctness of that program is checked. The concrete program is then coded by implementing each process of the more abstract program by a separate process in the code. Since there is no concurrency within an individual process, testing that the concrete program implements the more abstract program has a good chance of finding coding errors. Research on this approach is in progress.

1.5 A Preview

To give you an idea of what our science is like, this section describes informally a simple abstract program for Euclid's algorithm - a traditional algorithm that computes a value and stops. It's a very simple concurrent program in which the number of processes equals 1 . Our science applies to such programs, although there are simpler sciences that work quite well for them.

[^0]Is there a citation for this?

Euclid's algorithm computes the greatest common divisor (GCD) of two positive integers that we will call M and N. For example, the GCD of 12 and 16 , written $\operatorname{GCD}(12,16)$, equals 4 because 4 is the largest integer such that 12 and 16 are both multiples of that integer. The algorithm is an abstract program containing two variables that we name x and y. Here is its prose description.

Start with x equal to M and y equal to N and repeatedly perform the following action until the program stops:

If the values of variables x and y are equal, then stop; otherwise, subtract from the variable having the larger value the value of the other variable. ${ }^{2}$

I believe most engineers and many scientists can't explain why an execution of Euclid's algorithm computes $G C D(M, N)$, which means that they don't understand the algorithm. Here is the explanation provided by our science, beginning with how we view executions.

We consider an execution to be a sequence of states. For Euclid's algorithm, a state is an assignment of values to the program variables x and y. We write the state that assigns 7 to x and 42 to y as $[x:: 7, y:: 42]$. Here is the sequence of states that is the execution of Euclid's algorithm for $M=12$ and $N=16$.

$$
\left[\begin{array}{ll}
x:: & 12 \\
y:: & 16
\end{array}\right] \rightarrow\left[\begin{array}{lll}
x:: & 12 \\
y:: & 4
\end{array}\right] \rightarrow\left[\begin{array}{ll}
x:: 8 \\
y:: & 4
\end{array}\right] \rightarrow\left[\begin{array}{lll}
x:: & 4 \\
y:: & 4
\end{array}\right]
$$

The states in the sequence are separated with arrows because we naturally think of an execution going from one state to the next. But in terms of our science, the algorithm and its execution just are; they don't go anywhere.

What an algorithm does in the future depends on its current state, not on what happened in the past. This means that in the final state of the execution, in which x and y are equal, they equal $G C D(M, N)$ because of some property that is true of every state of the execution. To understand Euclid's algorithm, we must know what that property is.

That property is $G C D(x, y)=G C D(M, N)$. (Chapter 3 explains how we show that every state satisfies this property.) Because an execution stops only when x and y are equal, and $G C D(i, i)$ equals i for any positive

[^1]integer i, this property implies that x and y equal $G C D(M, N)$ in the final state of the execution.

That the formula $G C D(x, y)=G C D(M, N)$ is true in every state of a program's execution is a behavioral property. A behavioral property that asserts a formula is true in all states of an execution is called an invariance property, and the formula is called an invariant of the program. Correctness of any concurrent program depends on it satisfying an invariance property. To understand why the program is correct, we have to know the invariant of the program that explains its correctness.

The invariant $G C D(x, y)=G C D(M, N)$ shows that, if Euclid's algorithm terminates, then it produces the correct output. A traditional program must also satisfy the behavioral property of termination. The two behavioral properties

- The program produces correct output if it terminates.
- The program terminates.
are special cases of the following two classes of behavioral properties that can be required of a concurrent program:

Safety What the program is allowed to do.
Liveness What the program must eventually do.
These two classes of properties are defined precisely in Section 4.1. Termination is the only liveness property required of a traditional program. There are many kinds of liveness properties that can be required of concurrent programs.

Euclid's algorithm satisfies its safety requirement (being allowed to terminate only if it has produced the correct output) because the only thing it is allowed to do is start with $x=M$ and $y=N$ and execute its action. That is, it satisfies its safety requirement because it is assumed to satisfy the safety property of doing only what the description of the algorithm allows it to do.

Euclid's algorithm satisfies its liveness requirement (eventually terminating) because it is assumed to satisfy the liveness property of eventually performing any action that its description allows it to perform. (Section 3.4.2.8 shows how we prove that the algorithm terminates.)

I have found it best to describe and reason about safety and liveness in different ways. In our science, temporal logic plays almost no role in handling safety, but it is central to handling liveness. The TLA formula for
an abstract program is the logical conjunction of a safety property and a liveness property.

A single-process algorithm that computes a value and stops doesn't seem to be a good example for a science of concurrent programs. So, let's consider a concurrent version of Euclid's algorithm. It's a two-process version of the algorithm, suitable for execution on a single computer with the processes communicating through shared variables. We call the two processes the x process and the y process. The algorithm uses the same program variables as the one-process version of Euclid's algorithm and it begins in the same starting state, with $x=M$ and $y=N$. If the x process hasn't stopped, it is allowed to execute the following action whenever the when condition is true:

When $x \geq y$, stop if $x=y$, else subtract the value of y from x.
Process y is the same as process x, except with x and y interchanged.
Written in pseudocode, this version of Euclid's algorithm looks different from the one-process version. However, if we consider the executions of the two versions, we see that they are the same. That is, they have the same sequence of states, where a state is an assignment of values to x and y. Whether we view Euclid's algorithm as a one- or two-process algorithm may affect how we implement it with a concrete program. An implementation of the two-process algorithm with a two-process concrete program would probably be less efficient than a single-process implementation of the oneprocess algorithm. Since these two versions of the algorithm have the same executions, from the point of view of correctness they are the same algorithm. Both versions are written as the same TLA formula. More precisely, their formulas are equivalent. There are many equivalent ways to write a mathematical formula. How we choose to write the TLA formula for Euclid's algorithm can depend on whether we view it as a one- or two-process algorithm.

1.6 Why Math?

The science of bridge building has a mathematical basis, but bridge designers don't represent a bridge by a mathematical formula. Why should we describe an abstract program with one? The simple answer is, because we can. A concrete program is not a physical object; it's a concept. Code is just one representation of that concept. While possible in theory, writing a mathematical representation of a concrete program is not practical. How-
ever, for simpler abstract programs, it is possible; and I've found it to be a good way to represent them.

Math has been developed over thousands of years to be simple and expressive. An abstract program ignores many implementation details, which often means allowing multiple possible implementations. This is simple to express in math. Code is designed to describe one way of computing something. It can be hard or even impossible to write code that allows all those possibilities. Being based on concepts from coding languages, pseudocode also lacks the simplicity and expressiveness of math.

One place we want to allow many possible implementations is in describing what the environment can do. A program can't work in an arbitrary environment. An implementation of Euclid's algorithm will not produce the correct answer if the operating system can arbitrarily modify the variables x and y. A concurrent program can interact with its environment in complicated ways, and we have to state explicitly what the program assumes about its environment to know if its correct. We usually want to assume as little as necessary about the environment, which means the abstract program should allow it to have many different behaviors.

Unanticipated behavior of the environment is a serious source of errors in concurrent programs. Part of the environment of a program is likely to be another program, such as an operating system. Avoiding errors may require finding answers to subtle questions about exactly what that other program does. This is often difficult, because the only description of what it does other than its code is likely to be imprecise prose. When writing the abstract program to describe what our concrete program does, describing what the environment can do will tell us what questions we have to ask.

The expressiveness of math, embodied in TLA, provides a practical method of writing and checking the correctness of high-level designs of systems. Such checking can catch errors early, when they are easier to correct. TLA ${ }^{+}$is used by a number of companies, including Amazon [41], Microsoft, and Oracle. Math also provides a new way of thinking about programs that can lead to better programming. There is usually no way to quantify the result of better thinking, but it was possible in the following instance.

Virtuoso was a real-time operating system. It controlled some instruments on the European Space Agency's Rosetta spacecraft that explored a comet. Its creators decided to build the next version from scratch, starting with a high-level design written in TLA ${ }^{+}$. They described their experience in a book [48]. The head of the project, Eric Verhulst, wrote this in an email to me:

The $\left[\mathrm{TLA}^{+}\right]$abstraction helped a lot in coming to a much cleaner architecture. One of the results was that the code size is about $10 \times$ less than in [Virtuoso]. ${ }^{3}$

This result was unusual. It was possible only because the design of the entire system was described with TLA ${ }^{+}$. Usually, TLA ${ }^{+}$is used to describe only critical aspects of a system that involve concurrency, which represent a small part of the system's code. But this example dramatically illustrates that describing abstract programs with mathematics can produce better programs.

[^2]
Chapter 2

Ordinary Math

We will write an abstract program as a mathematical formula. A program can be quite complex, leading to a long formula. A long formula with a lot of esoteric mathematics would be impossible to understand. Almost all the math used in our formulas is ordinary math, consisting of arithmetic, simple logic, sets, and functions. You should know most of it already if you took an introductory university math course for computer science or engineering students. Ordinary math does not include the temporal logic introduced in Sections 3.4 and 3.5.

This chapter explains the foundation of the ordinary math used in this book. It describes the math needed to begin our study of abstract programs. Later chapters introduce additional math as needed, in special sections named Math I through Math XII. Math introduced in one chapter may be used in later chapters. A brief summary of all the ordinary math used in the book is in Appendix Section A.1. Longer and perhaps easier to understand intuitive explanations of most of the math we will use can be found on the Web.

An abstract program is written as a TLA formula. While most of that formula consists of ordinary math, TLA is a temporal logic, and temporal logic is not ordinary math. The meaning of TLA formulas will be explained in terms of ordinary math. However, although not hard to understand, temporal logic doesn't satisfy all the properties of ordinary math. Avoiding mistakes when using it requires understanding what its formulas mean. Giving a meaning to the formulas of a logic is called defining a semantics of the logic. This chapter explains how to define a semantics by defining the meaning of formulas of ordinary math. Even if you're familiar with the math presented here, the explanation of its semantics may be new to you.

Therefore, you should at least skim this chapter carefully.
In mathematics, the truth of an assertion is established by proof. A mathematician's proof is usually a sequence of paragraphs. This way of writing proofs is adequate for simple proofs. However, it's not reliable for complicated proofs. It's particularly unsuited to handling the many details in a proof of correctness of a program. This book uses a way of writing structured proofs that makes proofs easier to read, and therefore makes it harder to prove things that aren't true. Ordinary paragraph proofs are used only to prove simple results, and for proof sketches that aren't meant to be proofs.

Most of the proofs in this book are in the appendix. Before reading them, you should read Appendix Section A.2, which explains our structured proof style. I hope that, some day, all engineers will be able to write proofs of correctness of their abstract programs. The proofs mathematicians write are too unreliable to provide confidence that a program is correct. Engineers will have to use some way of structuring proofs like the one described in this book. Scientists would also benefit from using it.

Understanding a science of program correctness requires understanding how to prove correctness of a program. Later chapters of the main text therefore contain some proofs. Those chapters explain what you need to know about our proof style to understand their proofs.

The description of Euclid's algorithm in Chapter 1 used the program variables x and y. Program variables are different from the variables of ordinary math, such as the ones used in elementary algebra. The values of the program variables x and y in Euclid's algorithm change during execution of the algorithm. The values of the variables x and y of elementary algebra remain the same throughout a calculation. They are like the constants M and N of Euclid's algorithm. For now, we will use the term variable to mean a variable of ordinary math, like the ones of elementary algebra.

We begin with what I believe is the hardest math that you will have to know - a branch of math that takes people years to learn. It's much too difficult to explain here, so I will have to assume that you've already learned it. It's called arithmetic.

2.1 Arithmetic as a Mathematical Theory

Arithmetic is about numbers. The first numbers you learned about are the positive integers $1,2,3$, etc. You then learned about more and more kinds of numbers until eventually you learned about the real numbers, which include integers, rational numbers like $3 / 4$, and lots of other numbers like $-\sqrt{2}$ and π (which equals $3.14159 \ldots$). Although the numbers we will use are almost always integers, most of our discussion here applies to all real numbers, so we let number mean real number.

We use the same notation for the operators of arithmetic that you learned in school-for example + , / (division), and \geq; except that multiplication is written "*" because mathematicians use \times to mean something else.

An operator like $*$ is what we call a mapping. A mapping M takes some fixed number of arguments. If M takes two arguments, then $M(v, w)$ is a value for some values v and w. For the mapping $*$, if v and w are numbers, then $*(v, w)$ equals the number we usually write $v * w$. For the mapping $=$, if v and w are numbers, then $=(v, w)$ is a value we call true if v equals w, and it's a different value we call false if v doesn't equal $w .{ }^{1}$ The values true and false are called Booleans. A mapping such as $=$ whose value is a Boolean for all values of its arguments is called a predicate.

A mathematical theory contains expressions. An expression in the theory of arithmetic is a syntactically correct sequence of numbers, the operators of arithmetic, and parentheses - for example $2 *(3+42)$. It's best to think of $2 *(3+42)$ as a way of writing the expression $*(2,+(3,42))$. Since it's the normal way of writing expressions, we'll write $2 *(3+42)$; but we'll think of it as $*(2,+(3,42))$.

An expression like $2 *(3+42)$ whose value is a number is called a numeric expression. An expression like $2+2>22$ whose value is a Boolean is called a Boolean expression or, more commonly, a formula.

The semantics of a mathematical theory is a mapping that assigns a meaning to each expression. We write the meaning of an expression exp as $\llbracket e x p \rrbracket$. But you spent years learning the meaning of arithmetic expressions, so there's no need for me to explain it to you. If I define something in terms of arithmetic expressions, then you will understand it.

[^3]I have been told that many engineers freak out when they see a Greek letter like Υ in a formula. If you're one of them, now is the time to get over it. You had no trouble dealing with π as a child; you can now handle a few more Greek letters. They're used sparingly in this book, but sometimes representing a particular kind of object with Greek letters makes the text easier to read. Here are all the Greek letters used in the book, along with their English names. You don't have to remember their names; you just need to distinguish them from one another.

Lowercase

α	alpha	λ lambda	π	pi	τ tau	
β	beta	μ mu	ρ rho	ϕ phi		
δ	delta	ν nu	σ	sigma	ψ psi	
ϵ	epsilon	$($ also	written $\varepsilon)$			

Uppercase
Λ Lambda $\quad \Upsilon$ Upsilon $\quad \Pi$ Pi $\quad \Phi$ Phi
Δ Delta
Figure 2.1: Greek letters used in this book.

2.2 The Mathematical Theory of Algebra

By algebra, we mean here elementary algebra, which you probably learned as a teenager. In addition to numbers, algebra has variables that "stand for" numbers. For example, $3 * x-2 * y$ is a numeric expression of algebra, and $3 * x-2 * y=7$ is an algebraic formula, where x and y are variables.

The meaning of an algebraic expression is the value obtained by substituting arbitrary numbers for the variables. To state this precisely, we define an interpretation to be a mapping from variables to numbers. The meaning of an expression of algebra is a mapping from interpretations to values, where a value is a number or a Boolean. If exp is an expression and Υ is an interpretation, then $\llbracket \exp \rrbracket(\Upsilon)$ equals the value of the arithmetic expression obtained by replacing each variable v that occurs in exp with $\Upsilon(v)$. For example, suppose Υ is an interpretation such that $\Upsilon(x)$ equals 1 and $\Upsilon(y)$ equals -2 , then $\llbracket 3 * x-2 * y \rrbracket(\Upsilon)$ equals $3 * 1-2 *(-2)$, which equals 7 .

Observe that the $*$ and - in $\llbracket 3 * x-2 * y \rrbracket(\Upsilon)$ are different operators than the $*$ and - in $3 * 1-2 *(-2)$. In $\llbracket \ldots \rrbracket(\Upsilon)$ they are operators of algebra; in $3 * 1 \ldots$ they are operators of arithmetic. The meaning of the operator $*$ of algebra is defined in terms of the operator $*$ of arithmetic by the rule that,

If you're not used to reading formulas with Greek letters, go now to Figure 2.1.
for any algebraic expressions $\exp _{1}$ and $\exp _{2}$ and any interpretation Υ :

$$
\llbracket \exp _{1} * \exp _{2} \rrbracket(\Upsilon)=\llbracket \exp _{1} \rrbracket(\Upsilon) * \llbracket \exp _{2} \rrbracket(\Upsilon)
$$

There are similar rules for - and the other operators of algebra. There are also two other rules:

- $\llbracket v \rrbracket(\Upsilon)$ equals $\Upsilon(v)$, for any variable v.
- $\llbracket e x p \rrbracket(\Upsilon)$ equals \exp, if exp contains no variables (so it's an expression of arithmetic).

We can apply these rules to compute $\llbracket 3 * x-2 * y \rrbracket(\Upsilon)$ as follows:

$$
\begin{array}{rlrl}
\llbracket 3 & * x-2 * y \rrbracket(\Upsilon) & & \\
& =\llbracket 3 * x \rrbracket(\Upsilon)-\llbracket 2 * y \rrbracket(\Upsilon) & & \text { by the rule for - } \\
& =\llbracket 3 \rrbracket(\Upsilon) * \llbracket x \rrbracket(\Upsilon)-\llbracket 2 \rrbracket(\Upsilon) * \llbracket y \rrbracket(\Upsilon) & & \text { by the rule for } * \\
& =3 * \Upsilon(x)-2 * \Upsilon(y) & & \text { by the two rules above }
\end{array}
$$

An important class of formulas are ones that equal true no matter what values are substituted for their variables. Such a formula is said to be valid; and the assertion that F is valid is written $\models F$. For example, we write

$$
\begin{equation*}
\models p *(q+r)=p * q+p * r \tag{2.1}
\end{equation*}
$$

The thing we write as $\models F$ is not a formula of algebra. It's an assertion about the formula F. Formally, $\models F$ is a metamathematical formula or metaformula. We usually call it something else like an assertion or a condition. When $\models F$ is true for an interesting formula F, mathematicians generally call F a theorem. ${ }^{2}$ We might call (2.1) a theorem of algebra. An axiom is a theorem that we take to be an assumption. I will sometimes call $\models F$ a meta-formula to remind you that it's not a formula.

A proof rule tells us how to deduce the validity of one formula from the validity of one or more other formulas. A basic proof rule of algebra is that if a formula is valid, then the formula obtained by substituting numeric expressions for the formula's variables is also valid. For example, we can deduce from (2.1) the following meta-formula, for any numeric expressions exp $_{1}$, exp $_{2}$, and exp ${ }_{3}$,

$$
\models \exp _{1} *\left(\exp _{2}+\exp _{3}\right)=\exp _{1} * \exp _{2}+\exp _{1} * \exp _{3}
$$

[^4]Implicit in the informal definition of an interpretation given above is that an interpretation assigns values to all possible variables, not just the ones in any particular expression. The value of $\llbracket F \rrbracket(\Upsilon)$ for a formula F depends only on the values the interpretation Υ assigns to variables that occur in F. But letting an interpretation assign values to all variables simplifies things, because it means we don't have to keep track of which variables an interpretation is assigning values to.

We assume that there are infinitely many variables. We do this for the same reason we assume there are infinitely many integers even though we only ever use relatively few of them: it makes things simpler not to have to worry about running out of them.

2.3 Mathglish

Math is precise, but this book isn't written in math. It's written in English that explains math. Explaining the precise meaning of math in the imprecise language of English is not easy. To help them do this, English-speaking mathematicians speak and write in a dialect of English I call Mathglish. (I expect mathematicians use similar dialects of other languages.) Mathglish differs from English in two ways: It eliminates some of the imprecision of English by giving a precise meaning to some imprecise English words, and it makes the written language more compact by using mathematical formulas to replace English phrases.

This book is written in Mathglish. This chapter explains the Mathglish you need to know to read the book. This section discusses the second feature of Mathglish - the use of formulas to replace prose.

Consider these two sentences that might appear in a math book:

1. Substituting $y+1$ for z in formula (42) yields $x \geq y+1$.
2. Formula (42) shows us that $x \geq y+1$.

Grammatically, we can see that the two uses of " $x \geq y+1$ " are different. In sentence 1 it's a noun, while in sentence 2 it's a complete clause. In sentence 1 , " $x \geq y+1$ " is a formula; in sentence 2 it's an abbreviation for " x is greater than or equal to $y+1$ ". This grammatical difference tells us that the two sentences have very different meanings. Sentence 2 asserts that the formula $x \geq y+1$ is true. The first doesn't tell us whether it's true or false. For example, sentence 1 could be followed by:

Since (41) implies $x<y+1$, this proves that (42) is false.

It isn't always possible to tell from the grammar which way a formula is being used in a sentence. Sometimes we have to look at the context in which the sentence appears. The formula $x \geq y+1$ can be true only in a context in which some assumptions have been made about the values of x and y-assumptions that are expressed by formulas that are assumed to be true. Without such assumptions, the formula can be used only as a formula, which may be true or false. I have tried to make it clear by grammar or context what it means when a formula appears in a sentence in this book.

2.4 Boolean Arithmetic (Propositional Logic)

Arithmetic is about numbers. Boolean arithmetic is about Boolean values. Since there are only two Boolean values, true and false, Boolean arithmetic is infinitely simpler than ordinary arithmetic. A lot of mathematical reasoning can be described as Boolean arithmetic calculation. In fact, Boolean arithmetic is also called propositional logic. We'll first see how it's used in algebra.

We obtained an operator of algebra such as + from the corresponding operator + of arithmetic by defining $\llbracket \exp _{1}+\exp _{2} \rrbracket(\Upsilon)$ to equal $\llbracket \exp _{1} \rrbracket(\Upsilon)+\llbracket \exp _{2} \rrbracket(\Upsilon)$, for any numeric expressions $\exp _{1}$ and $\exp _{2}$ and any interpretation Υ. We can do the same thing with the operators of Boolean algebra. For example, the operator \wedge of Boolean algebra, which is defined below, can be made an operator of algebra by defining $\llbracket F \wedge G \rrbracket(\Upsilon)$ to equal $\llbracket F \rrbracket(\Upsilon) \wedge \llbracket G \rrbracket(\Upsilon)$ for any formulas (Boolean-valued expressions) F and G and any interpretation Υ.

When you studied algebra, you learned how to solve equations such as
(2.2) $3 * x-2 * y=7$ and $7 * x+3 * y=1$

You would have found that the solution is $x=1$ and $y=-2$. In calculating that solution, you actually proved that that's the only solution. That is, you proved that the equations (2.2) imply $x=1$ and $y=-2$. The concepts of and and imply are expressed by the operators \wedge and \Rightarrow of Boolean logic. In solving equations (2.2), you proved this theorem:

$$
\begin{equation*}
\vDash(3 * x-2 * y=7) \wedge(7 * x+3 * y=1) \Rightarrow(x=1) \wedge(y=-2) \tag{2.3}
\end{equation*}
$$

Mathematical theories generally have formulas, and the operators of Boolean arithmetic are turned into operators on formulas in all those theories the same way it's done with elementary algebra.

Since you probably already know them, the operators of Boolean arithmetic are presented only briefly. Here are the operators, their names, and how they're read in Mathglish:

\neg	negation	not	\Rightarrow	implication	implies
\wedge	conjunction	and	\equiv	equivalence	if and only if
\vee	disjunction	or			

Implication is sometimes written \rightarrow or \supset, and \equiv is sometimes written \Leftrightarrow or \leftrightarrow. Negation and conjunction are defined by

$$
\begin{array}{ll}
\neg \mathrm{TRUE}=\mathrm{FALSE} & \mathrm{TRUE} \wedge \mathrm{TRUE}=\mathrm{TRUE} \\
\neg \mathrm{FALSE}=\mathrm{TRUE} & \mathrm{TRUE} \wedge \mathrm{FALSE}=\mathrm{FALSE} \\
\text { FALSE } \wedge \mathrm{TRUE}=\mathrm{FALSE} \\
& \text { FALSE } \wedge \mathrm{FALSE}=\text { FALSE }
\end{array}
$$

The other operators can be defined in terms of \neg and \wedge. In these definitions, A and B represent Boolean values and \triangleq means equals by definition:

$$
\begin{aligned}
& A \vee B \triangleq \neg(\neg A \wedge \neg B) \\
& A \Rightarrow B \triangleq(\neg A) \vee B \\
& A \equiv B \triangleq(A \Rightarrow B) \wedge(B \Rightarrow A)
\end{aligned}
$$

If you're not familiar with Boolean arithmetic, you should write out the complete definitions of \vee, \Rightarrow, and \equiv, the way it's done above for \neg and \wedge. Here is a brief explanation of what these operators and their Mathglish counterparts mean-where is true means equals TRUE.
$\neg A$ asserts that A is not true, where not means the same thing in English and Mathglish.
$A \wedge B$ asserts that A is true and B is true, where and has the same meaning in both languages.
$A \vee B$ asserts that A is true or B is true (or both A and B are true). Unlike or in English, or in Mathglish allows the possibility that both formulas are true.
$A \Rightarrow B$ asserts that A is true implies B is true. This means that B must be true if A is true, but says nothing about B if A is false. Thus, FALSE \Rightarrow TRUE and FALSE \Rightarrow FALSE both equal TRUE. Reading \Rightarrow as implies is confusing because A implies B in English means that A being true causes B to be true, while implies in Mathglish does not.

Only in Mathglish would we say that $2+2=5$ implies $2+2=4$. A good way to understand \Rightarrow and the Mathglish implies is that we want

$$
(x>20) \underset{\text { implies }}{\Rightarrow} \quad(x>10)
$$

to be true for all numbers x, and substituting different numbers for x shows that we want $A \Rightarrow B$ to equal True except when $A=$ TRUE and $B=$ FALSE. Observe that in (2.3), the formula to the left of the \Rightarrow equals FALSE for an interpretation Υ unless $\Upsilon(x)=1$ and $\Upsilon(y)=-2$.
$A \equiv B$ asserts that A is true if and only if B is true. Thus, \equiv is the equality relation for Boolean values. We read \equiv as is equivalent to. Because we often want to express equivalence, written Mathglish has the abbreviation iff for if and only if. We sometimes write equals instead of is equivalent to because it's shorter.

Boolean arithmetic is often described as arithmetic with the two numbers 0 and 1 , where false is 0 and true is 1 . There is the following correspondence between the Boolean operators on FALSE and TRUE and the arithmetic operators on 0 and 1

$$
\wedge \leftrightarrow * \quad \vee \leftrightarrow+\quad \Rightarrow \leftrightarrow \leq \quad \equiv \leftrightarrow=
$$

except that $1+1$ is taken to equal 1 . Under this correspondence, the following laws of ordinary arithmetic become the following laws of Boolean arithmetic, where A, B, and C are any Boolean values:
\wedge and \vee are associate and commutative - where an operator \star is associative iff $(A \star B) \star C$ equals $A \star(B \star C)$, and \star is commutative iff $A \star B$ equals $B \star A$.
\Rightarrow and \equiv are transitive, where \star is transitive iff $A \star B$ and $B \star C$ imply $A \star C$. Transitivity is often used in proofs. For example, it allows us to prove $A \Rightarrow Z$ by proving $A \Rightarrow B$ and $B \Rightarrow C$ and \ldots and $Y \Rightarrow Z$.
\wedge distributes over \vee, which means that $A \wedge(B \vee C)$ equals $(A \wedge B) \vee(A \wedge C)$.

Boolean arithmetic also has the extra rule that \vee distributes over \wedge.

Negation is related to subtraction by $\neg A \leftrightarrow 1-A$, which leads to the following rules of Boolean arithmetic:

$$
\neg(A \wedge B) \text { equals }(\neg A) \vee(\neg B) \quad \neg(A \vee B) \text { equals }(\neg A) \wedge(\neg B)
$$

All expressions of Boolean arithmetic are Boolean valued, so they are formulas. When parsing these formulas, \neg has higher precedence (binds more tightly) than \wedge and \vee, which have higher precedence than \Rightarrow and \equiv. Thus

$$
\neg A \wedge B \Rightarrow C \vee D \quad \text { equals } \quad((\neg A) \wedge B) \Rightarrow(C \vee D)
$$

I don't know how the following expressions should be parsed, so don't write them:

$$
A \wedge B \vee C \quad A \equiv B \Rightarrow C
$$

When these operators are incorporated into algebra, they have lower precedence than arithmetic operators like + and $>$. However, it's best to put parentheses around purely algebraic formulas (like those of (2.2)) when using operators from Boolean arithmetic.

I like the name Boolean arithmetic because it makes the subject sound as simple as it really is. However, it's usually called propositional logic, so that's what we'll call it from now on. You can find propositional logic calculators on the Web that will check whether a formula like $(A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A)$ is true for all Boolean values A and B. They can help you become facile with propositional logic.

2.5 ZF

Computers do a lot more than numerical computation. To describe what computer systems do mathematically, our math needs more kinds of values than just numbers. The simplest way I know to make the math we need rigorous is to base it on what is called ZF set theory or simply ZF, where Z and F stand for the mathematicians Ernst Zermelo and Abraham Fraenkel. One thing that makes ZF simple is that every value is a set. In ZF, the terms set and value mean exactly the same thing. Sometimes I will write set/value instead of set or value to remind you that the two words are synonyms.

You've probably learned that a set is a collection of things. In ZF, those things are sets, so a set is a collection of sets. However, we will see below that not all collections are sets-in particular, the collection of all sets isn't a set. The fundamental operator on sets is \in, which is read is an element
of or simply $i n$. For every value/set S, the formula $e \in S$ equals true iff e is one of the values/sets that S is a collection of. We call the values in a set S the elements of S. Two values/sets are equal iff they have the same elements.

Two sets that we will use are the set \mathbb{R} of all real numbers and the set \boldsymbol{I} of integers. Thus, $\sqrt{2}$ is an element of \mathbb{R} but not an element of \mathbb{I}. Since the elements of a set are sets, this means a number must be a set. Logicians have used the operators of ZF set theory to define the set of real numbers. There's no need for us to do that; we just assume the real numbers exist and the arithmetic operators satisfy their usual properties. This means that 42 and $\sqrt{2}$ are sets, but we don't specify what their elements are. We know that $\sqrt{2} \in 42$ equals either true or false, but we don't know which. The Booleans TRUE and FALSE are also values. ${ }^{3}$ We generally use the term value for a set/value like 42 or TRUE for which we don't know what its elements are; and we use the term set for a set/value when we know what its elements are.

We define the semantics of ZF the same way we defined the semantics of algebra. The meaning 【exp】 of an expression exp of ZF is a mapping from interpretations to values, where an interpretation is a mapping from variables to values. The operators of propositional logic are incorporated into ZF the same way they were incorporated into algebra. A formula is an expression F such that $\llbracket F \rrbracket(\Upsilon)$ is a Boolean for every interpretation Υ.

You've probably learned a number of operations on sets, and you will need them if you want to write abstract programs that describe real systems. But the examples in this book are so simple that we'll need few of them. We often speak of one set being a subset of another-for example, \mathbb{I} is a subset of \mathbb{R} because every integer is a real number. The assertion that S is a subset of T is written \subseteq. It is effectively defined by this axiom:

$$
\models S \subseteq T \equiv((v \in S) \Rightarrow(v \in T))
$$

where S, T, and v are variables.
A simple way to describe a set is by enumerating its elements. If v_{1}, \ldots, v_{n} are any values, then they are the (only) elements of the set $\left\{v_{1}, \ldots, v_{n}\right\}$. This set need not have n elements. For example, the set $\{3, \sqrt{2}, 3,2+1,42,3\}$ contains only the three elements $\sqrt{2}, 3$, and 42 . It is equal to the set $\{42,42,3, \sqrt{2}\}$. (It is as silly to say that a set has two copies of the number 42 as it is to say that a football team has two copies of one

[^5]of its players.) For $n=0$, this defines $\}$ to be the empty set, which has no elements.

ZF contains the construct that mathematicians call set comprehension, but that I prefer to call subsetting. The expression $\{v \in S: F\}$ equals the set whose elements are all the elements in the set S for which the formula F is true. For example, we can define the set \mathbb{N} of natural numbers, which consists of all non-negative integers, by:

$$
\mathbb{N} \triangleq\{n \in \mathbb{I}: n \geq 0\}
$$

In the expression $\{v \in S: F\}$, the symbol v is what is called a bound variable. It can be used only in the formula F, but not in S. Bound variables are discussed in Section 2.7.

A kind of set that is often used in describing programs is a finite set of consecutive integers, such as $\{-1,0,1,2\}$. This set is written $-1 \ldots 2$. In general, we define:

$$
m \ldots n \triangleq\{i \in \mathbb{I}: m \leq i \leq n\}
$$

This definition implies that $m \ldots n$ equals the empty set $\}$ if $m>n$.
It's an axiom of ZF that if S is a set, then $\{v \in S: F\}$ is a set for any formula F. This axiom implies that the collection of all sets can't be a set. To show this, we assume the collection \mathbb{V} of all values/sets is a set and obtain a contradiction. If \mathbb{V} is a set, then $\{v \in \mathbb{V}: \neg(v \in v)\}$ is a set; let's call that set S. Since S is a set, the definition of \mathbb{V} implies $S \in \mathbb{V}$ is true. The definition of the subsetting construct then implies $S \in S$ is true iff $\neg(S \in S)$ is true, which is impossible since true doesn't equal false. Therefore, \mathbb{V} can't be a set. This argument is called Russell's paradox, because it was discovered by the mathematician and philosopher Bertrand Russell. Intuitively, the collection of all sets is too big to be a set.

2.6 Meaningless Expressions

The formula $x+y=y+x$ is a valid formula of algebra. However, validity of a formula in ZF means that it is true for every interpretation, where an interpretation is an assignment of a value/set to every variable. For $x+y=y+x$ to be a valid formula of ZF, $\mathbb{N}+$ true $=$ TRUE $+\mathbb{N}$ would have to equal true; and there's no reason why it should. What should be a valid formula of ZF is:

$$
(x \in \mathbb{R}) \wedge(y \in \mathbb{R}) \Rightarrow(x+y=y+x)
$$

But for this formula to be valid, this formula should be true:

$$
\begin{equation*}
(\mathbb{N} \in \mathbb{R}) \wedge(\operatorname{TRUE} \in \mathbb{R}) \Rightarrow(\mathbb{N}+\mathrm{TRUE}=\operatorname{TRUE}+\mathbb{N}) \tag{2.4}
\end{equation*}
$$

and (2.4) contains the meaningless expressions $\mathbb{N}+$ TRUE and TRUE $+\mathbb{N}$. This seems to be a problem.

Most computer scientists would say that the problem is solved by using types. The variables x and y in the formula $x+y=y+x$ should have type real number, so validity of that formula means that it's true for interpretations that assign real numbers to x and y. Types would make (2.4) an illegal formula.

I believe types are wonderful in a coding language, and I wouldn't want to write code in an untyped language. However, I have found the kind of types provided by coding languages to be unsuitable for representing abstract programs. For example, type correctness for Euclid's algorithm means that the values of the variables x and y are positive integers. The simple type systems of most coding languages don't allow a type like positive integer. Moreover, those type systems are overly restrictive, disallowing some reasonable expressions.

There are type systems that allow the type positive integer and are not restrictive. They are needed to formalize the kind of math that mathematicians do, so their proofs can be checked by computer. However, those type systems are so complicated that I never tried to learn them. I didn't have to because I realized that they are not needed for the math used to describe and reason about abstract programs. Instead, type correctness can be treated as a simple invariance property of programs. For example, type correctness of Euclid's algorithm is the invariance of the formula $\left(x \in \mathbb{N}^{+}\right) \wedge\left(y \in \mathbb{N}^{+}\right)$, where \mathbb{N}^{+}is the set $\{n \in \mathbb{I}: n>0\}$ of positive integers.

The solution to the problem of the meaningless formula (2.4) is to realize that it's not a problem, and formula (2.4) equals true. The expressions $\mathbb{N}+$ true and true $+\mathbb{N}$ are meaningless only in the sense that we have not assigned them a meaning. All we know about them is that they are values/sets. But that's enough to tell us that $\mathbb{N}+$ true $=$ True $+\mathbb{N}$ equals either true or false. We don't know whether or not \mathbb{N} and true are numbers. We know that 42 is a set, but we don't know what its elements are. It's possible that 42 is the set \mathbb{N}, or that it equals the value/set true. However, it doesn't matter if \mathbb{N} and true are numbers. If either or both of the them is not a number, then (2.4) equals false $\Rightarrow(\mathbb{N}+$ TRUE $=$ true $+\mathbb{N}$), which equals true since $\mathbb{N}+$ True $=$ True $+\mathbb{N}$ is a Boolean. The other possibility is that \mathbb{N} and True are both numbers. In that case, no matter what numbers they are, $\mathbb{N}+$ TRUE $=$ TRUE $+\mathbb{N}$ equals TRUE.

Since we haven't given the expression $\mathbb{N}+$ True a meaning, we will call it meaningless. But there's nothing harmful in writing such a meaningless expression. The expression is just useless because we don't know what it means. If correctness of a program depends on the value of a meaningless expression, then we can't prove that the program is correct. Moreover, a tool for checking correctness should report an error because it has to determine the value of a meaningless expression to decide if the program is correct. In practice, the kind of error in an abstract program that a simple type checker can catch is almost always quickly caught by model checking, and it is easily caught when trying to prove something about a type-incorrect expression.

Though not described in this way, ZF is usually considered to have a type system containing two types: Boolean and non-Boolean. For example, the commutativity of \wedge is expressed as

$$
\begin{equation*}
\models(A \wedge B) \equiv(B \wedge A) \tag{2.5}
\end{equation*}
$$

The assumption that A and B are Booleans isn't needed because it can be inferred that A and B have type Boolean. ${ }^{4}$ We can maintain that simplicity without having to introduce types by assuming that rules of predicate logic like (2.5) are true for all values A and B, not just for Booleans. We do that by assuming a mapping Bool such that $\operatorname{Bool}($ TRUE $)=$ true, $\operatorname{Bool}($ FALSE $)=$ false, and $\operatorname{Bool}(v) \in\{$ true, false $\}$ for all values v. We can then define predicate logic operators like \wedge such that $v \wedge w$ equals $\operatorname{Bool}(v) \wedge \operatorname{Bool}(w)$ for all values v and w. This means that, although we don't know what $2 \wedge\{3\}$ equals, we know that it's a Boolean value and that it equals $\{3\} \wedge 2$.

2.7 Quantification and Bound Variables

2.7.1 Quantification

Math has two Boolean-valued constructs called quantifiers whose symbols, names, and Mathglish pronunciation are:
\forall universal quantification for all
\exists existential quantification there exists
They have the following meanings, where v is a variable and F is any formula of ZF:

[^6]$\forall v: F$ is true iff F is true when any value is substituted for v.
$\exists v: F$ is true iff there is some value that, when substituted for v, makes F true.

These are called unbounded quantifiers because they make an assertion about all values. ${ }^{5}$ As we saw with the formula $x+y=y+x$, we are seldom interested in formulas that are satisfied by all values of a variable. We usually want to assert that a formula is true for all values in some set. It's also of little use to know that there exists a value of x such that $x^{2}=2$ if we don't know that that value is a number, since it's possible that TRUE ${ }^{2}=2$ even if TRUE isn't a number. We therefore usually use the two bounded quantifiers $\forall v \in S$ and $\exists v \in S$, defined by:

$$
\begin{aligned}
& \forall v \in S: F \triangleq \forall v:(v \in S) \Rightarrow F \\
& \exists v \in S: F \triangleq \exists v:(v \in S) \wedge F
\end{aligned}
$$

For example, the following formula asserts that there exists a (real) number whose square equals y :
(2.6) $\exists x \in \mathbb{R}: y=x^{2}$

Since x^{2} is a non-negative real number for any real number x, and a real number y has a square root (that's a real number) iff $y \geq 0$, this formula is equivalent to $y \geq 0$.

The two bounded quantifiers are related by these theorems:

$$
\begin{align*}
& \vDash(\forall v \in S: F) \equiv(\neg \exists v \in S: \neg F) \tag{2.7}\\
& \vDash(\exists v \in S: F) \equiv(\neg \forall v \in S: \neg F)
\end{align*}
$$

You should be able to check that they follow from the quantifiers' informal definitions. You should also be able to check that $\forall v \in\}: F$ equals true and $\exists v \in\}: F$ equals false for any formula F.

When parsing a formula, the scope of a quantifier extends as far as possible - for example, until terminated by the end of the formula or by a right parenthesis whose matching left parenthesis precedes the quantifier. We abbreviate $\forall v \in S: \forall w \in T: F$ as $\forall v \in S, w \in T: F$, and we abbreviate $\forall v \in S: \forall w \in S: F$ as $\forall v, w \in S: F$, with similar abbreviations for \exists and for the unbounded quantifiers.

Quantifiers and the rules for reasoning about them form what is called predicate logic. Predicate and propositional logic are the basis for reasoning

[^7]in ordinary mathematics. A valid formula whose validity is based solely on the laws of predicate and propositional logic, and not on the meanings of any other operators in the formula, is called a tautology. For example, the truth of
$$
\models(\exists v \in \mathbb{N}: M(v, x) \wedge(v+1>x)) \Rightarrow(\exists v \in \mathbb{N}: M(v, x))
$$
doesn't depend on the definitions of \mathbb{N} and the mapping M, or on the meaning of the arithmetic operators + and $>$. It follows from the rule $\vDash A \wedge B \Rightarrow A$ of propositional logic and the predicate logic rule that $\vDash F \Rightarrow G$ implies $\models(\exists v \in S: F) \Rightarrow(\exists v \in S: G)$. The theorems of predicate and propositional logic themselves are also called tautologies.

2.7.2 Bound Variables

As in the subsetting constructor $\{v \in S: F\}$, the v in the formulas $\forall v \in S: F$ and $\exists v \in S: F$ is a bound variable that can appear only in F, not in S. More precisely, these expressions declare v to be a variable whose scope is the formula F. Bound variables are somewhat subtle and must be used with care. To understand why, we need to examine variables and scoping.

Like coding languages, formal languages for mathematics usually have explicit variable declarations, and a variable can be used only within the scope of its declaration. In this book and in almost all math books, most of those declarations are implicit. For example, in the discussion of Euclid's algorithm in Section 1.5, the program variables x and y are implicitly declared with scopes that lie entirely within that section. Those program variables are unrelated to the mathematical variables x and y that appear in Section 2.6.

Every expression we write occurs in a context, which specifies the variable declarations within whose scope the expression occurs. For example, the context of the subformula $y=x^{2}$ of formula (2.6) contains the same variable declarations as the complete formula (2.6), except it includes the declaration of x made by the quantifier $\exists x$. A bound variable of a formula F is one that is declared by a quantifier or a subsetting constructer within F. A variable that is not bound in F is called a free variable of F. For example, x is a bound variable and y a free variable of formula (2.6).

Things get complicated if formula (2.6) occurs within the scope of another declaration of x. It's best to view the x declared in the context of (2.6) and the x declared by its quantifier as two different variables with the same name. (This means that an interpretation must be a mapping from variables to values, not from variable names to values. That should seem
natural if you've done any programming, because a program's code can contain multiple program variables with the same name that may have different values.)

Having two different variables with the same name can produce errors if you're not careful. For example, formula (2.6) is equivalent to $y \geq 0$. Therefore, substituting an expression exp for y in that formula should yield the formula $\exp \geq 0$. Let's take \exp to be $x^{2}+1$, where x is the variable whose declaration's scope contains formula (2.6). Naively substituting $x^{2}+1$ for y in (2.6) produces $\exists x \in \mathbb{R}: x^{2}+1=x^{2}$, which equals FALSE, rather than $x^{2}+1 \geq 0$. The problem is that we should have substituted for y in (2.6) the formula $x^{2}+1$ in which x is the variable declared outside the formula, not the formula's bound variable. Such a substitution would produce a formula that's equivalent to $x^{2}+1 \geq 0$; but that formula would contain two different variables named x, and our math provides no way to write such a formula. ${ }^{6}$ Logicians call the error produced by the naive substitution variable capture.

Fortunately, there's an easy way to avoid variable capture. The underlying mathematics doesn't depend on what we name variables. If we change the name of the bound variable in (2.6) to anything other than y, for example writing it as $\exists w \in \mathbb{R}: y=w^{2}$, then we get an equivalent formula. Naively substituting $x^{2}+1$ for y in that formula yields a formula equivalent to $x^{2}+1 \geq 0$, as it should.

We can avoid having to rename the bound variable in (2.6) if we use a name different from the name of any variable declared in its context. That is, we can avoid such variable capture by obeying this rule:

Safe Scoping Rule Never declare a bound variable within the scope of a declaration of a variable with the same name.

The rule prevents writing (2.6) in any context in which we could write a formula like $x^{2}+1$ to substitute for y.

The Safe Scoping Rule will help keep you out of trouble, but it isn't enough. There are unlikely situations involving definitions in which this rule alone will not prevent variable capture. Section 2.8 .1 below mentions another way variable capture can still occur. So when writing hand proofs, you should always be aware that variable capture is a potential problem, and it may require renaming bound variables to avoid it.

[^8]
2.8 Defining Mappings and Functions

2.8.1 Mappings

Programs can be quite complex. The way to handle complexity is by hierarchical composition. Mathematics has a very simple and very powerful mechanism for hierarchical composition: the definition. We now examine definitions.

We introduced the symbol \triangleq, meaning is defined to equal, and defined \vee by writing $A \vee B \triangleq \ldots$ The Boolean operator \vee is a mapping that takes two arguments, and $A \vee B$ is an abbreviation of $\vee(A, B)$. We also defined \mathbb{N} by writing $\mathbb{N} \triangleq \ldots$. We can consider \mathbb{N} to be a mapping that takes zero arguments, so every definition defines a mapping.

The definition

$$
\begin{equation*}
M(a, b) \triangleq a^{2}+b^{2} \tag{2.8}
\end{equation*}
$$

defines the mapping M such that $M\left(\exp _{1}, \exp _{2}\right)$ equals $\left(\exp _{1}\right)^{2}+\left(\exp _{2}\right)^{2}$, for any expressions $\exp _{1}$ and $\exp _{2}$. A mapping that has one or more arguments is not a value. The string $M+42$ is not an expression; it's nonsense, like $3+=7$. (Appendix A. 3 explains why mappings can't all be values.) The mapping M can appear in an expression only in a subexpression of the form $M\left(\exp _{1}, \exp _{2}\right)$. However, (2.8) defines this subexpression to equal $\left(\exp _{1}\right)^{2}+\left(\exp _{2}\right)^{2}$, for all expressions $\exp _{1}$ and $\exp _{2}$ - even if $\exp _{1}$ equals \mathbf{R} and $\exp _{2}$ equals FALSE.

The symbols a and b in (2.8) are called the parameters of the definition. Definition parameters are bound variables, whose scope is the right-hand side of the definition. However, they pose no problem of variable capture because they are replaced by expressions when the defined symbol appears in a formula. The Safe Scoping Rule should still be applied to them because the definition (2.8) would be confusing if it appeared within the scope of the declaration of a variable named a or b.

While definition parameters are bound variables that can't do any "capturing", variable capture is still possible with a definition such as

$$
P(a, b) \triangleq(a>b) \wedge \exists x \in \mathbb{R}: b=x^{2}
$$

whose right-hand side declares the bound variable x. The Safe Scoping Rule ensures that this definition does not occur in the scope of a variable named x. However, P may later be used in an expression that is in the scope of a variable x. Avoiding variable capture when substituting in that expression may require changing the name of the bound variable in the definition of P.

A fundamental rule of mathematics you may have learned as a teenager is that circular definitions are forbidden. We can't define M in terms of P, and P in terms of Q, and Q in terms of M. The obvious way to enforce this rule is to require that a definition use only previously defined mappings. However, to understand the definitions, it's often best to write them in the opposite order, so higher-level concepts are defined before defining the lowerlevel concepts on which they are built. So, we will order definitions to make them easier to understand, while avoiding circular definitions.

A special class of circular definitions are allowed in which a mapping is defined in terms of itself. They're called recursive definitions and are introduced in Section 3.5.

2.8.2 Functions

You may have learned about functions, and you undoubtedly did if you studied calculus. If you did learn about them, you may have wondered why I use the term mapping rather than function. Most mathematicians consider them to be the same. We'll see why they must be different.

Here, we describe functions of a single argument. Functions of multiple arguments are defined in Section 2.8.3 below. We consider a function to be a special kind of mapping that differs from other mappings in two ways:

- A function f has a domain, called $\operatorname{domain}(f)$, and the value of $f(v)$ can be specified only for values v in $\operatorname{Domain}(f)$.
- A function is a value; other mappings need not be.

The first difference implies that the mapping M defined by

$$
M(S) \triangleq \mathbb{N} \in S
$$

defines $M(S)$ to equal the Boolean $\mathbb{N} \in S$ for all values S because its value is specified for all sets/values S. We know that $M(S)$ equals $\mathbb{N} \in S$, which is a Boolean, for any value S. But M is not a function because its domain would have to be the set of all values/sets, and we saw in Section 2.5 that the collection of all sets can't be a set.

If you've studied calculus, you've seen functions like the function f, whose domain is the set $\{x \in \mathbb{R}: x \neq 0\}$ of non-zero real numbers, defined by letting $f(x)$ equal $1 / x^{2}$ for all numbers x in that set. Mathematicians seem to have no convenient notation for writing such a function. We will write that function f as $v \in\{x \in \mathbb{R}: x \neq 0\} \mapsto 1 / v^{2}$. In general,

$$
f \triangleq v \in S \mapsto \exp
$$

defines f to be the function with $\operatorname{Domain}(f)$ equal to S such that $f(v)=\exp$ for all $x \in S$. In the expression $v \in S \mapsto e x p, v$ is a bound variable whose scope is the expression exp. This definition tells us nothing about the value of $f(v)$ if v is not an element of S. However, f is a value. This is important because the value of a program variable must be a value, so we can use functions as ordinary values, just like numbers, when describing abstract programs.

Mathematicians generally define a function to be a set of pairs of values. However, while a function is a set/value, I prefer not to specify what its elements are - in part, because I prefer to define a pair as a function. All we know about a function is that it is completely determined by its domain and the value it assigns to elements of that domain. Thus, if f and g are two functions with domain S and $f(v)=g(v)$ for all $v \in S$, then the two functions are equal.

2.8.3 Sequences and Tuples

Lists are omnipresent-from shopping lists to lists of transactions on a bank statement. A list is represented mathematically as a sequence, which is a function f whose domain is a consecutive sequence of natural numbers, where $f(i)$ is element number i of the sequence. We will use two kinds of sequences that are numbered in different ways:

Ordinal The items of an ordinal sequence are numbered starting with item 1 . The sequence represents a list whose items are naturally named with the ordinal numbers first, second, third, etc. For example, in a list of people waiting to be served, the second person to be served is naturally called person number 2 .

Cardinal The items of a cardinal sequence are numbered starting with item 0 . It represents a list in which it is natural to name an item by its distance from an item numbered 0 . For example, in the list of floors in a building, the ground floor is naturally named floor 0 , and floor number 2 is two floors above it.

When I started describing abstract programs with mathematical formulas, I discovered that the formulas were usually simpler if I described finite lists as ordinal sequences. However, the meaning and properties of the formulas are defined in terms of infinite sequences and finite prefixes of those sequences; and the math is simpler if those are cardinal sequences. So, we will use both kinds of sequences.

Mathematicians often use tuples. We represent a tuple as a finite ordinal sequence. Mathematicians enclose tuples in parentheses, but parentheses are used for lots of other things, so we make formulas containing tuples easier to read by using angle brackets \langle and \rangle instead. Thus, the ordinal sequence $\langle J o h n$, Mary, John \rangle is the function with domain $1 . .3$ such that $\langle J o h n$, Mary, John $\rangle(2)$ equals Mary. The empty sequence, which is the unique function whose domain is the empty set, is written \rangle. It is the one sequence that is both an ordinal and a cardinal sequence. The Cartesian product operator \times is used to describe sets of tuples. For example, $S \times T \times U$ is the set of all triples (3-tuples) $\langle s, t, u\rangle$ such that $s \in S$, $t \in T$, and $u \in U$.

A mapping with n arguments can be considered to be a mapping with a single argument that is an n-tuple. There is no need to do that for arbitrary mappings, but we do it for functions. We define a function of n arguments to be a function whose domain is a set of n-tuples, where $f\left(v_{1}, \ldots, v_{n}\right)$ is an abbreviation for $f\left(\left\langle v_{1}, \ldots, v_{n}\right\rangle\right)$. By a rule of ZF that hasn't yet been introduced, any set of n-tuples is a subset of the Cartesian product of n sets.

The lists that we will represent by cardinal sequences consist of things that happen one after the other. They will be written with their items separated by \rightarrow symbols, as in the sequence of four states that is the execution of Euclid's algorithm shown in Section 1.5.

2.9 Some Useful Notation

Here are two pieces of notation that mathematicians don't seem to need, but that I find essential for writing formulas that describe programs.

2.9.1 IF/THEN/ELSE

A programmer who read enough math would notice that mathematicians lack anything corresponding to the if/then/else statement of coding languages. Instead, they use either prose or a very awkward typographical convention. We let the expression

```
    IF P THEN exp 1 ELSE exp 2
equal exp
```

While it's inspired by the if /then/else coding language statement, you should not think of an IF/THEN/ELSE expression as instructions for computing something. It's somewhat like the expression written in the C language and its descendants as P ? $\exp _{1}: \exp _{2}$. However, coding languages usually specify the order in which the expressions $P, \exp _{1}$, and $\exp _{2}$ are evaluated. In mathematics there is no concept of evaluation. An expression simply has a value for any particular interpretation.

2.9.2 Conjunction and Disjunction Lists

Abstract mathematical descriptions of real systems can be quite long. Definitions are used to decompose them into shorter formulas that are easier to understand. However, those shorter formulas can still be a few dozen lines long. They are understandable because mathematical formulas have a natural hierarchical structure. To take full advantage of that structure, we use a simple bit of notation that mathematicians and many computer scientists find heretical, but that engineers appreciate.

There are two simple ideas: a list of formulas bulleted by \wedge or \vee represents the conjunction or disjunction, respectively, of those formulas; and indentation is used to replace parentheses. For example, if A, B, \ldots, J are formulas, then:
$\wedge \vee A \wedge B$
$\vee C$
$\wedge D \Rightarrow E$
$\wedge \vee \exists x: F$
$\vee \wedge G \equiv H$ $\wedge J$

$$
\begin{aligned}
& \left(\begin{array}{l}
\\
\\
\vee \\
C
\end{array}\right) \\
\wedge & (D \Rightarrow E) \\
\wedge & (\exists x: F) \\
& \left(\exists\left(\begin{array}{l}
(G \equiv H) \\
\\
\\
\\
\\
\wedge J
\end{array}\right)\right)
\end{aligned}
$$

Note how the implicit parentheses in the bulleted lists delimit the scope of the \Rightarrow and $\exists x$ operators in this formula.

Making indentation significant is a feature of the currently popular Python coding language, but it works even better in this notation because the use of \wedge and \vee as "bullets" makes the logical structure easier to see.

Chapter 3

Describing Abstract Programs with Math

3.1 The Behavior of Physical Systems

Programs are meant to be executed on physical computers. I have been guided by the principle that any statement I make about a program should be understandable as a statement about its execution on one or more computers. I believe this was the principle that guided Turing in defining the Turing machine as an abstraction of a physical computing device.

The description of our science of concurrent programs begins by examining the physics of computing devices. We don't care about the actual details of how transistors and digital circuits work. We are just interested in how scientists describe physical systems. As a simple example, we look at a planet orbiting a star the way an astronomer might.

We consider the one-planet system's behavior starting at some time t_{0}, after the star and planet have been formed and the planet has settled into its current orbit. We assume that the planet remains in that orbit forever. Let \mathbb{R}^{\geq}be the set $\left\{r \in \mathbb{R}: r \geq t_{0}\right\}$ of all real numbers r with $r \geq t_{0}$. The behavior of the one-planet system is described by its state at each instant of time. We assume the star is much more massive than the planet, so we can assume that it doesn't move. We also assume that there are no other objects massive enough to influence the orbit of the planet, so the state of the system is described by the values of six state variables: three describing the three spatial coordinates of the planet's position and three describing the direction and magnitude of its momentum. Let's call those state variables v_{1}, \ldots, v_{6}; we won't worry about which of the six values each represents. The quantities these variables represent change with time, so the value of each variable v_{i} is a function, where $v_{i}(t)$ represents the value at time t.

The behavior of the system is described mathematically by the function σ with domain \mathbb{R}^{\geq}such that $\sigma(t)$ is the tuple $\left\langle v_{1}(t), \ldots, v_{6}(t)\right\rangle$ of numbers, for every $t \in \mathbb{R}^{\geq}$. Physicists call $\sigma(t)$ the state of the system at time t.

In this description, the planet is modeled as a point mass. Real planets are more complicated, composed of things like mountains, oceans, and atmospheres. For simplicity, the model ignores those details. This limits the model's usefulness. For example, it's no good for predicting a planet's weather. But models of planets as point masses are sometimes used to plan the trajectories of a real spacecraft. It's also not quite correct to say that the model ignores details like mountains and oceans. The mass of the model's point mass is the total mass of the planet, including its mountains and oceans, and its position is the planet's center of mass. The model abstracts those details, it doesn't ignore them.

The laws that determine the point-mass planet's behavior σ are expressed by six differential equations of this form:

$$
\begin{equation*}
\frac{d v_{i}}{d t}(t)=f_{i}(t) \tag{3.1}
\end{equation*}
$$

where $t \in \mathbb{R}^{\geq}$and each f_{i} is a function with domain \mathbb{R}^{\geq}such that $f_{i}(t)$ is a formula containing the expressions $v_{1}(t), \ldots, v_{6}(t)$. Don't worry if you haven't studied calculus and don't know what equation (3.1) means. All you need to know is that it asserts the following approximate equality for small non-negative values of $d t$:

$$
\begin{equation*}
v_{i}(t+d t) \approx v_{i}(t)+f_{i}(t) * d t \tag{3.2}
\end{equation*}
$$

and the approximation gets better as $d t$ gets smaller, reaching equality when $d t=0$. The differential equations (3.1) have the property that for any time $t>t_{0}$ and any time $r>t$, the values of the six numbers $v_{i}(t)$ and the functions f_{i} completely determine the six values $v_{i}(r)$ and hence the value of $\sigma(r)$. That is, the equations imply:

History Independence For any time $t \in \mathbb{R}^{\geq}$, the state $\sigma(r)$ of the system at any time $r>t$ depends only on its state $\sigma(t)$ at time t, not on anything that happened before time t.

The generalization from a planetary system to an arbitrary physical system starting at time t_{0} is straightforward. The system is described by state variables v_{1}, \ldots, v_{n}, and its behavior σ is described mathematically as the function with domain \mathbb{R}^{\geq}such that $\sigma(t)$ equals $\left\langle v_{1}(t), \ldots, v_{n}(t)\right\rangle$. History
independence is satisfied by any isolated physical system - that is, by any system that is assumed not to be influenced by anything outside the system. ${ }^{1}$

There is one way our one-planet system differs from most systems. For this system, it is possible to solve the differential equations (3.1) to write the functions v_{i} as formulas in terms of ordinary mathematical operations. Even for two planets around a star that is not much heavier than them, it is impossible to write such a solution. The functions v_{i} can be proved to exist and be unique, but the best we can do in general is find very close approximations to those functions for some finite interval of time.

Physics describes systems with math. Remember that in math, there are infinitely many variables. A description of any particular system contains only a finite number of them - the system variables. The description (3.1) of a planet orbiting a star contains only the six system variables describing the planet's state. It doesn't say that there is nothing else in the universe. It just says nothing about any other planets. Instead of thinking of (3.1) and (3.2) as describing a planet orbiting a star, it's more accurate to think of them as describing a universe in which the planet is orbiting the star. They also describe a universe containing both the planet and a spacecraft that orbits the star; they just say nothing about the spacecraft, since the spacecraft is too small to affect the planet's motion. (The spacecraft's motion could be affected by the planet.) Formulas (3.1) and (3.2) just say nothing about the spacecraft.

Physical science is descriptive. The laws of physics describe how a planet moves; they don't instruct the planet. Programs are prescriptive; they tell a computer what to do. This may make it seem strange to use physical science as a guide to a science of programs. But being descriptive or prescriptive is not a property of the math. It's just how we choose to view that math. We can view the equations of planetary motion not only as a description of how a planet moves, but also as commands given to the planet by nature. The math is agnostic. Our science views a program as a description of what behaviors it allows, not as commands for producing those behaviors. This view allows much more freedom in describing programs.

[^9]
3.2 Behaviors of Digital Systems

Math I

The Operator \% For any integers m and n with $n>0$, the value of $m \% n$ is defined to be the remainder when m is divided by n. The precise definition is that $m \% n$ equals the unique integer r satisfying

$$
(m=d * n+r) \wedge(0 \leq r<n)
$$

for some integer d. The operator $\%$ is pronounced modulo and is written mod by mathematicians.

Mathematical Induction You have probably encountered mathematical induction; if not, you may want to read about it on the Web. Simple mathematical induction proves that a formula is true for all $n \in \mathbb{N}$ by proving that it is true for $n=0$ and that if it is true for n then it is true for $n+1$. It is stated more precisely by this proof rule, where P is any mapping:

$$
\models P(0) \text { and } \models n \in \mathbb{N}: P(n) \Rightarrow P(n+1) \text { implies } \models \forall n \in \mathbb{N}: P(n)
$$

This rule is a meta-formula, and the Mathglish terms and and implies are used to represent the Boolean operators \wedge and \Rightarrow to make it clear that it is a meta-formula and not a formula.

Strong mathematical induction allows proving that the formula is true for $n+1$ by assuming that it is true for all numbers in $0 \ldots n$, not just true for n. It is stated as:

$$
\begin{aligned}
& \models \forall n \in \mathbb{N}:(\forall m \in 0 \ldots(n-1): P(m)) \Rightarrow P(n) \\
& \quad \text { implies } \models \forall n \in \mathbb{N}: P(n)
\end{aligned}
$$

In this rule, for $n=0$ the hypothesis implies

$$
\models(\forall m \in 0 . .-1: P(m)) \Rightarrow P(0)
$$

which equals $\models P(0)$, since $\forall m \in\}: P(m)$ equals true.

3.2.1 From Continuous to Discrete Time

Digital systems are physical systems, usually electromagnetic, in which certain stable states represent a collection of one-bit values. For example, at a certain point in a circuit, 0 volts may represent a 0 and 3.3 volts may represent a 1 . Classical physics describes the behavior of physical systems
as continuous. ${ }^{2}$ If the voltage at some point in a circuit changes from 0 volts to 3.3 volts, it must pass through 1 and $\sqrt{2}$ volts.

Computers and other digital systems are designed so that each bit can be thought of as passing instantaneously from one stable state to the next. This means that we can think of there being a sequence of discrete times t_{0}, t_{1}, t_{2}, \ldots that are the only times at which the value of a bit can change. (We assume there is an event at time t_{0} that initializes all the bits of the device.) We pretend that between times t_{j} and t_{j+1}, the part of the circuit representing each bit is in a stable state. Moreover, whether a bit changes its value at time t_{j+1} depends on the (stable) values of the bits immediately before time $t_{j+1} \cdot{ }^{3}$ Thus, the system is history independent.

Although built from one-bit registers, digital systems are designed so that larger components can also be viewed as changing their state instantaneously-for example, a 128 -bit register or even all the bits in a chip controlled by a single clock. We can pretend that the entire component changes its value in discrete steps that can occur only at the times t_{j}. Thus, we can view a digital system as one whose components are represented by state variables that can have more than two values.

When a digital system is executing a program, the state of the program does not correspond directly to the state of the system. The value of a program variable might be represented by different parts of the system at different times. For example, its value may at some times be stored in a memory chip, at some times it may be in a register of a processor chip, and at some times it might be stored on a disk. Later, we'll see what it means mathematically for a digital system to implement a program in this way. For now, consider a concrete program to be just a digital system described by discretely changing variables whose values are not just bits but may be any data structure provided by the language - for example, 128-bit integers. An abstract program is the same, except the value of a variable may be any value - for example a real number such as $\sqrt{2}$, not just a finite-precision approximation like 1.414213562 . Modeling a science of programs on the science of physical systems ensures that it can address real problems, and we are not just creating a science of angels dancing on the head of a pin.

[^10](However, the science should be able to describe any discretely behaving angels, wherever they might be dancing.)

We are seldom interested in the actual times t_{j} at which state variables can change. To simplify things, we consider only the sequence of states through which the system passes, ignoring the times at which it enters and leaves those states. We call the state created at time t_{j} state number j. Instead of letting a state variable v be a function that assumes the value $v(t)$ at time t, we consider it to be a function that assumes the value $v(j)$ in state number j. In other words, the value of a state variable v is a sequence of values. A behavior σ of a program is also a sequence, where $\sigma(j)$, its state number j, describes the values of the device's variables in that state.

If a program or a digital device runs forever, then the sequence of times t_{j} is infinite and therefore so is the sequence σ of its states. But if a program terminates, then those sequences can be finite. Other than parallel programs, in which concurrency is added to a traditional program so it can run faster by using multiple processors, most concurrent programs are not supposed to stop. A concrete concurrent program will not really run forever, but we describe it as running forever for the same reason there are an infinite number of integers even though we only use a finite number of them: it makes things simpler.

Still, some concurrent programs are supposed to stop, so we have to describe them. For simplicity, we describe those programs as well with infinite state sequences. Exceptionally observant readers will have noticed that while the times t_{j} had to be chosen so we can pretend that the state changes only at those times, we did not require that the state had to change at each of those times. There can be times t_{j} at which none of the program variables' values change. In particular, if the program stops, we can add an infinite number of times t_{j} after it has stopped. This leads to an infinite sequence of states such that, for some k, the values of the program's variables after state number k are the same. We call a pair $\langle\sigma(j), \sigma(j+1)\rangle$ of successive states in a behavior σ a step of σ. A step in which the values of the program's variables do not change is called a stuttering step of the program.

We call a behavior ending in infinitely many stuttering steps a halting behavior of the program. It describes an execution in which the program stops. There are many reasons a program might stop-for example, an error might cause it to abort. If the program stops because it has completed what it was supposed to do, we say that it terminates. The term halting covers all cases when the program stops.

Mathematically, a behavior of a digital system or an abstract program is an infinite cardinal sequence of states, where each state is an assignment

```
variables }x=1,y=1\mathrm{ ;
while TRUE do
    a:x:=x+y+2;
        y:=y+2
end while
```

Figure 3.1: The simple abstract program Sqrs.
of values/sets to variables. There is a natural tendency to think of state number j of a behavior as occurring at time j on some clock that ticks at a constant rate. Don't think of it like that. A microsecond might elapse between when the system reaches state number j and when it reaches state number $j+1$, and a day or a femtosecond might then elapse before it reaches state number $j+2$. All we know is that the system can't reach state number $j+1$ before it reaches state number j.

By removing any information about the physical time at which things happen, it may appear that we have eliminated the possibility of describing how much actual time it takes for something to happen. That's not the case, and Section 4.4 explains how it's done. However, correctness of few programs depends on exactly how long it takes the program to do something, and I know of no commonly used coding language that allows us to write such programs. To my knowledge, nothing in the definition of the Java coding language assures us that executing the statement $\mathrm{x}=\mathrm{x}+1$ takes less than a century.

3.2.2 An Example: Sqrs

Our first example is a very simple abstract program called Sqrs that is described in Figure 3.1 with pseudocode. The variables statement describes the program variables and their initial values (their values in state 0). In this example, the program variables are x and y, and their initial values are both 1. The program's code consists of a while true loop, which means that the body of the loop is repeatedly executed forever. Program Sqrs is an abstract program because it runs forever, producing a behavior with an infinite number of states, unlike a concrete program that would halt with an error when x became too big.

In a science, it would be crazy to let " $=$ " mean anything other than what it has meant in mathematics for several centuries, so we use ":=" to mean assignment. Except for the label a that you can ignore for the moment, it should be obvious what an execution of the loop body does. What's
not obvious in most pseudocode and in virtually all real code is how to represent the execution in a behavior-which means as a sequence of states. In particular, how many different steps in the behavior describe a single execution of the loop body?

We would expect to describe execution of the loop body of $S q r$ with at least one step. But should there be more? For example, should evaluating $x+y$ in the first assignment statement be a separate step? Coding languages seldom answer this question because it makes no difference to the result computed by a traditional program. However, it can make a big difference for concurrent programs.

We will adopt the PlusCal algorithm language's [36] convention of using labels to indicate what the separate steps of a behavior are. The rule is that execution from one label to the next constitutes a single step. This means that a step begins and ends with program execution at a label. For program Sqrs, this implies that execution of the entire loop body, starting from label a and finishing when the program reaches a again, is a single step. With this choice of what constitutes a step in the behavior, the values $x(j)$ and $y(j)$ of the variables in each state j of the behavior are determined by two formulas:

$$
\begin{align*}
(x(0)=1) & \wedge(y(0)=1) \tag{3.3}\\
\forall j \in \mathbb{N}: & \wedge x(j+1)=x(j)+y(j)+2 \tag{3.4}\\
& \wedge y(j+1)=y(j)+2
\end{align*}
$$

We call (3.3) the initial predicate. It determines the initial state. Formula (3.4) is called the step predicate. It's the discrete analog of the differential equations (3.1) that describe the orbiting planet. Instead of describing how the values of the variables change in the continuous behavior when time increases by the infinitesimal amount $d t$, the step predicate (3.4) describes how they change when the state number of the discrete behavior increases by one.

You can check that (3.3) and (3.4) define a behavior that begins as follows where, for example, $[x:: 16, y:: 7]_{3}$ indicates that state number 3 assigns the values 16 to x and 7 to y, and the arrows are purely decorative.

$$
\left[\begin{array}{lll}
x:: & 1 \\
y:: & 1
\end{array}\right]_{0} \rightarrow\left[\begin{array}{l}
x:: \\
y:: \\
y
\end{array}\right]_{1} \rightarrow\left[\begin{array}{l}
x:: \\
y:: \\
y
\end{array}\right]_{2} \rightarrow\left[\begin{array}{ccc}
x:: & 16 \\
y:: & 7
\end{array}\right]_{3} \rightarrow\left[\begin{array}{lll}
x:: & 25 \\
y:: & 9
\end{array}\right]_{4} \rightarrow \cdots
$$

These first few states of the behavior suggest that in the complete behavior,
x and y equal the following functions:

$$
\begin{align*}
& x=\left(j \in \mathbb{N} \mapsto(j+1)^{2}\right) \tag{3.5}\\
& y=(j \in \mathbb{N} \mapsto 2 * j+1)
\end{align*}
$$

To prove that (3.3) and (3.4) imply (3.5), we must prove they imply:
(3.6) $\forall j \in \mathbb{N}:\left(x(j)=(j+1)^{2}\right) \wedge(y(j)=2 * j+1)$

A proof by mathematical induction that (3.3) and (3.4) imply (3.6) is a nice exercise in algebraic calculation.

We can think of (3.5) as the solution of (3.3) and (3.4), just as the formulas describing the position and momentum of the planet at each time t are solutions of the differential equations (3.1). It is mathematically impossible to find solutions to the differential equations describing arbitrary multi-planet systems. It is mathematically possible to write explicit descriptions of variables as functions of the state number like (3.5) for the abstract programs written in practice, but those descriptions are almost always much too complicated to be of any use. Instead, we reason about the initial predicate and the step predicate, though in Section 3.4.1 we'll see how to write them in a more convenient way.

The interesting thing about program Sqrs is that the sequence of values assumed by x in an execution of the program is the sequence of all positive integers that are perfect squares, and this is accomplished using only addition. This is obvious from (3.5), but for nontrivial examples we won't have such an explicit description of each state of a behavior. Remember that history independence implies that, at any point in a behavior, what the program does in the future depends only on its current state. What is it about the current state that ensures that if x is a perfect square in that state, then it will equal all greater perfect squares in the future? There is a large body of work on reasoning about traditional programs, initiated by Robert Floyd in 1967 [14], that shows how to answer this question. If you're familiar with that work, the answer may seem obvious. If not, it may seem like it was pulled out of a magician's hat. Obvious or magic, the answer is that the following formula is true for every state number j in the behavior of Sqrs:

$$
\begin{equation*}
\wedge(x(j) \in \mathbb{N}) \wedge(y(j) \in \mathbb{N}) \tag{3.7}
\end{equation*}
$$

$\wedge y(j) \% 2=1$
$\wedge x(j)=\left(\frac{y(j)+1}{2}\right)^{2}$

This formula implies that $x(j)$ is a perfect square, since the first two conjuncts imply that $y(j)$ is an odd natural number. Moreover, since $y(j+1)=$ $y(j)+2$, the last conjunct implies that $x(j+1)$ is the next larger perfect square after $x(j)$. So, the truth of (3.7) for every state number j explains why the algorithm sets x to all perfect squares in increasing order.

A predicate like (3.7) that is true for every state number j of a behavior is called an invariant of the behavior. By mathematical induction, we can prove that a predicate is an invariant by proving these two conditions:

I1. The predicate is true for $j=0$.
I2. For any $k \in \mathbb{N}$, if the predicate is true for $j=k$ then it's true for $j=k+1$.

For (3.7), I1 follows from the initial predicate (3.3), and I2 follows from the step predicate (3.4). (You should have no trouble writing the proof if you're used to writing proofs; otherwise, it might be challenging.)

A predicate that can be proved to be an invariant by proving I1 from an initial predicate and I2 from a step predicate is called an inductive invariant. Model checkers can check whether a state predicate is an invariant of small instances of an abstract program. But the only way to prove it is an invariant is to prove that it either is or is implied by an inductive invariant. For any invariant P, there is an inductive invariant that implies P. However, writing an inductive invariant for which we can prove I1 and I2 is a skill that can be acquired only with practice. Tools to find it for you have been developed [15, 39], but I don't know how well they would work on industrial examples.

The first conjunct of the invariant (3.7) asserts the two invariants $x(j) \in \mathbb{N}$ and $y(j) \in \mathbb{N}$. An invariant of the form $v(j) \in S$ for a variable v is called a type invariant for v. An inductive invariant almost always must imply a type invariant for each of its variables. For example, without the hypotheses that $x(j)$ and $y(j)$ are numbers, we can deduce nothing about the values of $x(j+1)$ and $y(j+1)$ from the step predicate (3.4).

Most mathematicians would not bother to write the first conjunct of (3.7), simply assuming it to be obvious. However, mathematicians aren't good at getting things exactly right. They can easily omit some uninteresting corner case - for example, the assumption that a set is nonempty. Those "uninteresting corner cases" are the source of many errors in programs. To avoid such errors, we need to state explicitly all necessary requirements, including type invariants.

```
variables }x=1,y=1,pc=a
while true do
    a: x :=x+y+2;
    b:y:=y+2
end while
```

Figure 3.2: The finer-grained abstract program FGSqrs.

3.2.3 A Finer-Grained Example: FGSqrs

Now consider a modified version of our abstract program Sqrs in which the execution of each assignment statement in the body of the while loop is represented as a separate step of the behavior. This is specified in the pseudocode by adding a label right before the second assignment statement. The label is b and the program is called FGSqrs.

The natural way to describe the state of FGSqrs is with the variables x and y and an additional variable to specify which assignment statement is the next one to be executed. ${ }^{4}$ Such a variable isn't needed in Sqrs because that program has just a single label. The variable we add is traditionally called $p c$ (for p rogram counter). We will let its value equal the label from which the execution described by the next step begins. (That execution ends when it reaches the following label.) We assume that a and b are two arbitrary distinct values.

The pseudocode for FGSqrs is in Figure 3.2. The variables declaration contains $p c$ and its initial value, even though we know $p c$ is needed because there's more than one label, and program execution is normally assumed to start at the beginning of the code. But, a little redundancy doesn't hurt. A little redundancy doesn't hurt.

Here is the mathematical description of the behavior of program FGSqrs. As with Sqrs, it consists of an initial predicate and a step predicate.

Initial Predicate $(x(0)=1) \wedge(y(0)=1) \wedge(p c(0)=a)$

Step Predicate

[^11]\[

$$
\begin{aligned}
\forall j \in \mathbb{N}: \text { IF } p c(j) & =a \\
\text { THEN } & \wedge x(j+1)=x(j)+y(j)+2 \\
& \wedge y(j+1)=y(j) \\
& \wedge p c(j+1)=b \\
\operatorname{ELSE} & \wedge x(j+1)=x(j) \\
& \wedge y(j+1)=y(j)+2 \\
& \wedge p c(j+1)=a
\end{aligned}
$$
\]

When they see this step predicate, most programmers and many computer scientists think that the conjuncts $y(j+1)=y(j)$ and $x(j+1)=x(j)$ are unnecessary. They think that not saying what the new value of a variable equals should mean that it equals its previous value. But if that were the case, then what we wrote wouldn't be math. We would be giving up the benefits of centuries of mathematical development-the benefits that are the reason science is based on math. An essential aspect of math is that a formula means exactly what it says-nothing more and nothing less. If the step predicate didn't say what $y(j+1)$ equals when $p c(j)=a$ is true, then there would be no more reason for it to equal $y(j)$ than for it to equal $i \in \mathbb{N} \mapsto \sqrt{-42}$.

You may find it discouraging that the mathematical description of FGSqrs is more complicated than its pseudocode in Figure (3.2). Please be patient. You will see in Section 3.4.1 how a little notation can simplify it. We can always write an abstract program more compactly in pseudocode than in math, as long as we don't have to explain precisely what the pseudocode means. But science is precise, and a science of abstract programs must explain exactly what they mean. Moreover, tools can't check an imprecise description of a program. Math is the simplest way to explain things precisely.

PlusCal is a precise language for describing abstract programs in what looks like pseudocode. (However, it's infinitely more expressive than ordinary pseudocode because its expressions can be any mathematical expressions - even uncomputable ones.) A PlusCal program is translated to a mathematical description of the program in TLA ${ }^{+}$. I often find it easier to write an abstract program in PlusCal than directly in TLA ${ }^{+}$. However, I reason about the TLA ${ }^{+}$translation, not the PlusCal code. And for many abstract programs, including most distributed algorithms, it's easier to write the program directly in TLA ${ }^{+}$than in PlusCal.

The code whose execution is described as a single step of the behavior is called an atomic operation. Because a single step in a behavior describing the execution of Sqrs is replaced by two steps in the behavior describing the execution of FGSqrs, we say that FGSqrs has a finer grain of atomicity
than Sqrs. Having a finer grain of atomicity implies that the step predicate is more complicated.

Having a finer grain of atomicity also implies that the inductive invariant that explains why the abstract program works will be more complicated. However, there is a trick for obtaining the invariant for FGSqrs from the invariant (3.7) of Sqrs. Define $y y(j)$ to equal $y(j)$ if execution FGSqrs is at label a, and to equal the value $y(j)$ will have after executing statement b if execution is at b. The mathematical definition is:

$$
y y(j) \triangleq \operatorname{IF} p c(j)=a \text { THEN } y(j) \text { ELSE } y(j)+2
$$

Observe that x and $y y$ are changed at the same time by statement a of FGSqrs exactly the same way that the loop body of Sqrs changes x and y. Statement b of FGSqrs leaves x and $y y$ unchanged. This implies that, because (3.7) is an inductive invariant of Sqrs, the formula obtained from (3.7) by substituting $y y$ for y satisfies condition I2 for FGSqrs. It's easy to check that this formula also satisfies I1, so it is an inductive invariant of FGSqrs. This trick of finding an expression (such as $y y(j)$) that is changed by the fine grained program the way the coarse-grained program changes a variable (such as y) can often be used to obtain an invariant for a finergrained abstract program from an invariant of a coarser-grained one. It is also at the heart of program refinement, the subject of Chapter 5.

3.3 Nondeterminism

Math II

The \# Operator The operator \# is defined so that if S is a finite set, then $\#(S)$ equals the number of elements of S. If S is not a finite set (so it must be an infinite set), then $\#(S)$ is a meaningless expression.

More About Functions For any sets D and S, ZF defines $D \rightarrow S$ to be the collection, which is assumed to be a set, of all functions f with domain D such that $f(x) \in S$ for all $x \in D$. A value f is a function with domain D iff f equals $v \in D \mapsto f(v)$. Therefore, this is an axiom of ZF:

$$
\begin{aligned}
\models f \in(D \rightarrow S) \equiv & \wedge f=(v \in D \mapsto f(v)) \\
& \wedge \forall v \in D: f(v) \in S
\end{aligned}
$$

An array in modern coding languages is described mathematically as a function, where the expression $f[x]$ in the language means $f(x)$. For a variable
f whose value is an array/function, assigning the value 4.2 to $f[14]$ changes the value of f to a new array/function that we can write as:

$$
x \in \operatorname{DOMAIN}(f) \mapsto \text { IF } x=14 \text { THEN } 4.2 \text { ELSE } f(x)
$$

Mathematicians have little need to write such a function, but it occurs often when math is used to describe programs, so we need a more compact notation for it. We write it like this:

$$
f \text { EXCEPT } 14 \mapsto 4.2
$$

3.3.1 Sources of Nondeterminism

The laws of classical physics, such as the laws of planetary motion, are deterministic. Given the initial values of all the variables, their values at any later time are completed determined. Causes of nondeterminism are either negligible because they have an insignificant effect-for example, meteor showers - or are simply assumed not to happen-for example, cataclysmic collisions with errant asteroids.

A program is nondeterministic if the initial state of a behavior doesn't determine the complete behavior. Even when executed on supposedly deterministic digital systems, nondeterminism is the norm in programs - especially concurrent ones. Here are some sources of nondeterminism in programs:

User Input The user giving a value to the program is usually described as an action of the program that nondeterministically chooses the value provided by the user. The user can also be described as a separate process that nondeterministically chooses the value to provide.

Random Algorithms Some algorithms can achieve better average performance by making random choices. The science of programs presented here is not meant for describing average properties of possible behaviors, so it can't distinguish this case from one in which random choices are the result of user input.

Generality We may want an abstract program to allow multiple possible implementations. Those possibilities appear as nondeterminism in the abstract program.

Faults Physical devices don't always behave the way they're supposed to. In particular, they can fail in various ways. Programs that tolerate failures describe a failure as an operation that may or may not be executed.

Timing Uncertainty The time taken to perform operations in an individual process can vary from one execution to another for several reasons, including (i) being run on different hardware and (ii) competition for resources with other processes in the same program or in concurrently executed programs. This results in multiple behaviors in which operations in different processes are executed in different orders. Those different orders can lead to very different behaviors.

Timing uncertainty is the most important source of errors due to nondeterminism that affects all concurrent programs (not just fault-tolerant ones). Let's examine a simple example of it.

3.3.2 An Example: Increment

The example is a trivial abstract multiprocess program called Increment. It has a variable x that initially equals 0 , and each process just increments x by 1 and terminates. A process does this in two steps: the first step reads the current value of x, and the second step sets x to one plus the value it read. You should convince yourself that with N processes, an execution can terminate with x having any value from 1 through N. The final value of x will be N if each process executes its two steps with no intervening step by any other process. The final value will be 1 if all processes read x before any process sets the value of x.

This abstract program is described with pseudocode in Figure 3.3, where Procs is the set of processes. (Procs is really a set of process identifiers, but for convenience we call its elements processes.) The only assumption we make about this set is that it is finite and nonempty. The process statement declares that there is a process for every element of Procs, and it gives the code for an arbitrary process p in Procs. The variables t and $p c$ are local to process p, each process having its own copy of these two variables. Variable x is global, accessed by all the processes. Process p saves the result of reading x in its variable t. The initial value of t doesn't matter, but letting all variables have reasonable initial values makes a type invariant simpler, so we let t initially equal 0 .

The mathematical description of the abstract program Increment is in Figure (3.4). The process-local variables t and $p c$ are represented by mathematical variables whose values in each state are functions with domain Procs, where $t(p)$ and $p c(p)$ are the values of those variables for process p. The initial predicate, describing the values of the variables in state number 0 , is simple. The possible steps in a behavior are described by a predicate

```
variables \(x=0\);
process \(p \in\) Procs
    variables \(t=0, p c=a\);
        \(a: t:=x\);
        \(b: x:=t+1\)
end process
```

Figure 3.3: The Increment abstract program for a set Procs of processes.

Initial Predicate

$\wedge x(0)=0$
$\wedge t(0)=(p \in$ Procs $\mapsto 0)$
$\wedge p c(0)=(p \in$ Procs $\mapsto a)$

Step Predicate

$\forall j \in \mathbb{N}: \operatorname{PgmStep}(j) \vee \operatorname{Stutter}(j)$
where
$\operatorname{PgmStep}(j) \triangleq \exists p \in \operatorname{Procs}: \operatorname{aStep}(p, j) \vee b \operatorname{Step}(p, j)$
$\operatorname{aStep}(p, j) \triangleq \wedge p c(j)(p)=a$
$\wedge x(j+1)=x(j)$
$\wedge t(j+1)=(t(j)$ EXCEPT $p \mapsto x(j))$
$\wedge p c(j+1)=(p c(j) \operatorname{EXCEPT} p \mapsto b)$
$\operatorname{bStep}(p, j) \triangleq \wedge p c(j)(p)=b$
$\wedge x(j+1)=t(j)(p)+1$
$\wedge t(j+1)=t(j)$
$\wedge p c(j+1)=(p c(j) \operatorname{EXCEPT} p \mapsto d o n e)$
$\operatorname{Stutter}(j) \triangleq \wedge \forall p \in \operatorname{Procs}: p c(j)(p)=$ done
$\wedge\langle x(j+1), t(j+1), p c(j+1)\rangle=\langle x(j), t(j), p c(j)\rangle$
Figure 3.4: The Increment abstract program in math.
that, for each j, gives the values of $x(j+1), t(j+1)$, and $p c(j+1)$ for any assignment of values to $x(j), t(j)$, and $p c(j)$. It asserts that there are two possibilities, described by formulas $\operatorname{PgmStep}(j)$ and $\operatorname{Stutter}(j)$, that are explained below.
$\operatorname{PgmStep}(j)$ describes the possible result of some process executing one step starting in state j. The predicate equals true iff there exists a process p for which $\operatorname{aStep}(p, j)$ or $b \operatorname{Step}(p, j)$ is true, where:
aStep (p, j) describes a step in which process p executes its statement labeled a in state number j. Its last three conjuncts describe the values of the three variables x, t, and p in state $j+1$. Many people are tempted to write $t(j+1)(p)=x(j)$ and $p c(j+1)(p)=b$ instead of the third and fourth conjuncts. But that would permit $t(j+1)(q)$ and $p c(j+1)(q)$ to equal any values for $q \neq p$. Instead we must use the EXCEPT operator defined in Section 2.8.2. The first conjunct is a predicate that is true or false of state j. It is an enabling condition, allowing the step described by the following three conjuncts to occur iff that condition is true.
$\operatorname{bStep}(p, j)$ describes a step in which process p executes its statement labeled b in state number j. It is similar to $\operatorname{aStep}(p, j)$. Its enabling condition is $p c(j)(p)=b$. The step sets $p c(j+1)(p)$ to done, which is a value indicating that the process has reached the end of its code and terminated.
$\operatorname{Stutter}(j)$ describes a stuttering step starting in state j. It is enabled iff $p c(j)(p)$ equals done for all $p \in$ Procs, so all processes have terminated. At that point, $\operatorname{PgmStep}(j)$ is not enabled, so only an infinite sequence of stuttering steps can occur, as required for a terminated abstract program. Note that the second conjunct in the definition of $\operatorname{Stutter}(j)$ uses the fact that two tuples are equal iff their corresponding elements are equal to write the following formula more compactly:

$$
(x(j+1)=x(j)) \wedge(t(j+1)=t(j)) \wedge(p c(j+1)=p c(j))
$$

A property we might like to prove about abstract program Increment is that, when it has terminated, the value of x lies between 1 and the number of processes. Let's define N to equal \#(Procs), the number of processes. Since a process has terminated iff its local $p c$ variable equals done, the property we want to prove is that this formula is an invariant of Increment-that is, true for every $j \in \mathbb{N}$:

$$
\begin{equation*}
(\forall p \in \operatorname{Procs}: p c(j)(p)=\text { done }) \Rightarrow(x(j) \in 1 \ldots N) \tag{3.8}
\end{equation*}
$$

This is not an inductive invariant because condition I2 is not satisfied. For example, suppose the following is true:

- $p c(j)(p)=b$ and $p c(j)(q)=d o n e$ for all $q \neq p$
- $t(j)(p)=N$

Then (3.8) is true in state number j, but false in state number $j+1$.
To show that (3.8) is an invariant of Increment, we must find an inductive invariant that implies it. Stopping now and trying to find that inductive invariant by yourself is a good exercise. But it's not easy if you don't have practice finding inductive invariants and don't have a tool to check if what you think is an inductive invariant actually is one. So, I will write one for you.

An inductive invariant almost always requires a type invariant for each variable. We start by defining TypeOK to assert a type invariant for each of the three variables:

$$
\begin{aligned}
\text { TypeOK }(j) \triangleq & \wedge x(j) \in 0 \ldots N \\
& \wedge t(j) \in(\text { ProcSet } \rightarrow 0 \ldots N) \\
& \wedge p c(j) \in(\text { ProcSet } \rightarrow\{a, b, \text { done }\})
\end{aligned}
$$

Type $O K$ is an invariant, but not an inductive invariant. For example, if $x(j)=1, t(j)(p)=N$, and $p c(j)(p)=b$, then TypeOK (j) is true but a step satisfying $b \operatorname{Step}(p, j)$ makes TypeOK $(j+1)$ false. We can make TypeOK an inductive invariant by weakening it, replacing the two occurrences of $0 . . N$ with \mathbb{N}. However, I prefer a stronger, more informative type invariant.

To write the rest of the inductive invariant, we define NumberDone (j) to be the number of processes that have terminated in state j. The precise definition is:

$$
\operatorname{NumberDone}(j) \triangleq \#(\{p \in \operatorname{Procs}: p c(j)(p)=\text { done }\})
$$

The complete inductive invariant, which we call Inv, is defined by:

$$
\begin{align*}
\operatorname{Inv}(j) \triangleq & \wedge \text { TypeOK }(j) \tag{3.9}\\
& \wedge \forall p \in \operatorname{Procs}: \\
& (p c(j)(p)=b) \Rightarrow(t(j)(p) \leq \operatorname{NumberDone}(j)) \\
& \wedge x(j) \leq \text { NumberDone }(j)
\end{align*}
$$

To prove that $I n v$ is an inductive invariant of program Increment, we must prove I1 and I2. I1 asserts that the initial predicate implies $\operatorname{Inv}(0)$, and I2 asserts that the step predicate implies $\operatorname{Inv}(j) \Rightarrow \operatorname{Inv}(j+1)$. We will not consider how these conditions are proved until we have a more convenient way of writing them.

3.4 Temporal Logic

Math III

Proof by Contradiction An ordinary proof of $P \Rightarrow Q$ assumes that P is true and proves Q is true. A proof by contradiction proves $P \Rightarrow Q$ by assuming that $P \wedge \neg Q$ is true and proving false. Russell's paradox, explained in Section 2.5, is a proof by contradiction of:
$\{v \in S: F\}$ is a set for any formula F
\quad implies the collection of all sets isn't a set

Proof by contradiction is an application of this theorem of propositional logic:

$$
\models(P \Rightarrow Q) \equiv(P \wedge \neg Q \Rightarrow \text { FALSE })
$$

Many mathematicians dislike proofs by contradiction because they find them inelegant. If you write a proof to make sure that what you're trying to prove is true, then you should always write a proof by contradiction. It's never harder and can make it easier to write the proof. I like to view proofs by contradiction in terms of this theorem of propositional logic:

$$
\models(P \Rightarrow Q) \equiv(P \wedge \neg Q \Rightarrow Q)
$$

It asserts that to prove P implies Q, we can assume both P and $\neg Q$ and prove Q. This gives us an additional hypothesis. Moreover, it's a very strong hypothesis. If $P \Rightarrow Q$ is true, then P implies that $\neg Q$ is equivalent to FALSE, which is the strongest possible hypothesis (since FALSE implies anything). If you wind up not using the additional hypothesis, you can just delete it.

Structured Proofs The simplest structured proof consists of a sequence of numbered steps. Each step consists of an assertion and its proof, except that the assertion of the last step is Q.E.D., which stands for the goal of the proof-that is, what the final step must prove. Each step's proof is an ordinary paragraph proof. It can use rules of logic, previously assumed or proved theorems, assumptions in the statement of the theorem, and assertions of previous steps in the proof. It must explicitly mention every theorem, assumption, and previous step's assertion that is needed by the step's proof. This requirement makes a structured proof easier to understand than a typical mathematician's proof.

3.4.1 The Logic of Actions

3.4.1.1 Eliminating State Numbers

There's an easy way to simplify initial predicates, step predicates, and invariants: remove the explicit state numbers. It's obvious that an initial predicate is about state number 0 , so we can eliminate every "(0)" in it. An invariant is true for all states, so we don't have to say which states it's about. For a step predicate, we just have to distinguish between $v(j)$ and $v(j+1)$ for a variable v. A notation for doing this that dates back at least to the early 1980 s is to replace $v(j)$ by v and $v(j+1)$ by v^{\prime}. The initial and step predicates of program Increment have been rewritten this way in Figure 3.5, where they've been given the names Init and Next. The inductive invariant (3.9) is also rewritten without the " (j) " and named Inv. (The " (j) " has been implicitly removed from the definition of NumberDone.) Make sure that you understand Figure 3.5 by comparing it with Figure 3.4.

Mathematically, the big leap from Figure 3.4 to Figure 3.5 is removing the explicit mention of state numbers - for example, writing x instead of $x(j)$. In Figure 3.4, Procs and x are both ordinary mathematical variables. The value of Procs is a set of processes and the value of x is a function whose domain is \mathbb{N}. In Figure 3.5, the value of Procs is a set of processes - the same set throughout a behavior of the program. However, the value of x depends on the state of the behavior.

The price of removing explicit state numbers from our formulas is leaving the domain of ordinary math, with a single kind of variable, and entering a new kind of math in which there are two kinds of variables: mathematical variables like Procs, whose values are the same in every state of a behavior, and program variables like x that are implicit functions of the state. Program variables like x look weird to mathematicians. In math, the value of a variable x is fixed. We've seen in Chapter 2 that when a mathematician does something else and introduces a variable x, it's really a completely different variable that happens also to be written " x ". Of course, you're familiar with program variables because they're the variables of coding languages, whose values change in the course of a computation.

Since this book is about a science of programs, we will henceforth use the name variable for program variables. Mathematical variables like Procs will be called constants. When describing a program mathematically, variables correspond to what we normally think of as program variables. Constants are parameters of the program, such as a fixed set of processes. Early coding languages had constants as well as variables. In modern coding languages,

Initial Predicate

$$
\begin{aligned}
& \text { Init } \triangleq \wedge x=0 \\
& \wedge t=(p \in \text { Procs } \mapsto 0) \\
& \wedge p c=(p \in \text { Procs } \mapsto a)
\end{aligned}
$$

Step Predicate

```
Next \(\triangleq\) PgmStep \(\vee\) Stutter
    where
    PgmStep \(\triangleq \exists p \in\) Procs : aStep \((p) \vee b S t e p(p)\)
    \(\operatorname{aStep}(p) \triangleq \wedge p c(p)=a\)
        \(\wedge x^{\prime}=x\)
        \(\wedge t^{\prime}=(t \operatorname{EXCEPT} p \mapsto x)\)
        \(\wedge p c^{\prime}=(p c \operatorname{EXCEPT} p \mapsto b)\)
    \(b \operatorname{Step}(p) \triangleq \wedge p c(p)=b\)
            \(\wedge x^{\prime}=t(p)+1\)
            \(\wedge t^{\prime}=t\)
            \(\wedge p c^{\prime}=(p c \operatorname{EXCEPT} p \mapsto\) done \()\)
    Stutter \(\triangleq \wedge \forall p \in\) Procs : pc \((p)=\) done
        \(\wedge\left\langle x^{\prime}, t^{\prime}, p c^{\prime}\right\rangle=\langle x, t, p c\rangle\)
```


Inductive Invariant

$$
\begin{aligned}
\text { Inv } \triangleq & \wedge \text { TypeOK } \\
& \wedge \forall p \in \operatorname{Procs}:(p c(p)=b) \Rightarrow(t(p) \leq \text { NumberDone }) \\
& \wedge x \leq \text { NumberDone }
\end{aligned}
$$

Figure 3.5: Abstract program Increment and its invariant Inv in simpler math.
constants are buried in the code, where they are called static final variables of an object.

In this book, the variables in pseudocode are explicitly declared, and undeclared identifiers like Procs are constants. For formulas, the text indicates which identifiers are variables and which are constants.

In addition to having both variables and constants, the formulas in Figure 3.5 have primed variables, like x^{\prime}. An expression that may contain primed and unprimed variables, constants, and the operators and values of ordinary math (which means everything described in Chapter 2) is called a step expression. A Boolean-valued step expression is called an action. The math whose formulas are actions is called the Logic of Actions, or LA for short.

3.4.1.2 The Semantics of the Logic of Actions

As we did in defining the semantics of elementary algebra in Section 2.2, we define the meaning 【exp】of an expression of LA to be a mapping on interpretations. An interpretation assigns values to variables. Since LA has both constants and variables, there are two parts to an interpretation: an assignment of values to constants and an assignment of values to variables.

Since constants are ordinary mathematical values, and we have already discussed the semantics of ordinary math, we will ignore the part of an interpretation for LA that assigns values to them. When discussing a formula of LA, we assume that there is some fixed interpretation Υ that assigns values to the constants. Constants are usually assumed to satisfy some conditions. For example, the constants M and N of Euclid's algorithm in Section 1.5 are assumed to be positive integers, and the constant Procs of program Increment in Section 3.3 is assumed to be a finite set. We assume that the fixed interpretation Υ satisfies those assumptions. We define $\models F$ for a formula F of LA to mean that $\llbracket F \rrbracket$ is true for all interpretations in which the assignment of values to the constants satisfies the assumptions.

In LA, there are effectively two kinds of variables: unprimed and primed. An interpretation of LA assigns values to each of those kinds of variables, where the values assigned to v and v^{\prime} are independent of one another.

We have defined a state to be an assignment of values to program variables. So, since we're neglecting constants, an interpretation for an LA formula is a pair of states - the first assigning values to the unprimed variables and the second assigning values to the primed variables. We have used the term step to mean a pair of successive states in a behavior. We now let it mean any pair of states. We will write the step consisting of the states s
and t as $s \rightarrow t$ rather than $\langle s, t\rangle$ because that makes it clear that s and t are states.

To define the semantics of LA, we therefore have to define $\llbracket \exp \rrbracket(s \rightarrow t)$ for any states s and t. We have not yet defined any operators for LA, so the only operators that can appear in an LA expression are ordinary mathematical operators like + and Tail. They have the usual semantics in LA. For example

$$
\llbracket \exp 1+\exp 2 \rrbracket(s \rightarrow t) \triangleq \llbracket \exp 1 \rrbracket(s \rightarrow t)+\llbracket \exp 2 \rrbracket(s \rightarrow t)
$$

For an unprimed variable v, we define $\llbracket v \rrbracket(s \rightarrow t)$ to equal $s(v)$, the value assigned to variable v by state s. For a primed variable v^{\prime}, we define $\llbracket v^{\prime} \rrbracket(s \rightarrow t)$ to equal $t(v)$.

We call an LA expression a step expression and an LA formula an action. For an action A and step $s \rightarrow t$, we say that $s \rightarrow t$ satisfies A or is an A step iff $\llbracket A \rrbracket(s \rightarrow t)$ equals TRUE.

A state expression is an LA expression that contains no primed variables, and a state formula is a Boolean-valued state expression. For a state expression \exp, the value of $\llbracket \exp \rrbracket(s \rightarrow t)$ depends only on s, so we can write it as $\llbracket \exp \rrbracket(s)$.

Because the meaning of an LA expression assigns different values to v and v^{\prime}, we can treat v and v^{\prime} as two unrelated variables. This means that we can reason about LA formulas as if constants, unprimed variables, and primed variables were all different mathematical variables. Thus, for LA as defined so far, we can regard LA as ordinary math with some mathematical variables having names like v^{\prime} ending with '.

3.4.1.3 The Prime Operator (')

In Figure 3.5, only variables are primed. In the Logic of Actions, we can prime not just a variable but any state expression - that is, any expression containing no primes. For a state expression exp, the value of the step expression exp ${ }^{\prime}$ on a step $s \rightarrow t$ is the value of exp on t. More precisely, the meaning of $e x p^{\prime}$ is defined by $\llbracket e^{\prime} p^{\prime} \rrbracket(s \rightarrow t)=\llbracket \exp \rrbracket(t)$. This means that $e_{x p}{ }^{\prime}$ is equivalent to the step expression obtained by priming all the variables in exp. The priming operator (${ }^{\prime}$) can be applied only to state expressions. In LA, priming an expression that contains a prime is a syntax error. That means that it is illegal to prime an expression containing a defined symbol whose definition contains a prime. For example, if e is defined to equal $x^{\prime}+1$, then e^{\prime} is syntactically illegal.

A constant has the same value in both states of a step. Therefore, $\vDash c^{\prime}=c$ is true for any constant c. More generally, a constant expression is an expression with no (primed or unprimed) variable; and $\models e x p^{\prime}=e x p$ is true for any constant expression exp. The bound identifiers of predicate logic are like ordinary mathematical variables, which means they are treated like constants in the Logic of Actions. For example, $(\exists i \in \mathbb{N}: y=x+i)^{\prime}$ equals $\exists i \in \mathbb{N}: y^{\prime}=x^{\prime}+i$. We therefore call bound identifiers bound constants. Appendix Section A. 4 gives an example of how you can get into trouble by forgetting that bound identifiers are constants.

The semantics of LA imply that the prime operator distributes over the operators and constructs of ordinary math-for example, that $(F \vee G)^{\prime}$ equals $F^{\prime} \vee G^{\prime}$. By expanding all definitions and distributing primes in this way, we obtain a formula in which the prime operator is applied only to variables. We don't have to expand all definitions to obtain such a formula. We need only expand definitions that contain a prime or that appear within a primed expression and contain a variable. Once we have reached an expression in which only variables are primed, we can reason about the resulting expression as if constants, variables, and primed variables were all ordinary mathematical variables. We therefore need no additional rules for reasoning about LA formulas.

Section 3.2.2 defined an inductive invariant Inv of a program to be a state predicate satisfying conditions I1 and I2, which we can restate as:

I1. Inv is implied by the program's initial state.
I2. If $I n v$ is true in a state, then the program's next-state predicate implies that it is true in the next state.

For program Increment, whose initial predicate is Init and whose next-state action is Next, these two conditions can be expressed in LA as:

$$
\begin{align*}
& \models I n i t \Rightarrow I n v \tag{3.10}\\
& \models I n v \wedge \text { Next } \Rightarrow I n v^{\prime}
\end{align*}
$$

The proof of these conditions for program Increment is discussed in Appendix Section B.1.

Thus far, the correctness properties of programs that have concerned us have been invariance properties. All the reasoning we have done to verify that a program satisfies an invariance property is naturally expressed in LA. The safety property usually proved of a traditional program is that it cannot produce a wrong answer-which is expressed as the invariance of
the property asserting that the program has not terminated with a wrong answer. The most popular way of proving such a property is Hoare logic [21]. Appendix Section A. 5 explains Hoare logic and its relation to the Logic of Actions.

3.4.1.4 Action Composition

The Logic of Actions contains another operator that is almost never used in describing abstract programs and will not play a major role for us until Section 7.1. However, it does make brief appearances in Sections 4.3.2 and 5.4.4.3, so it is explained here.

For actions A and B, the action $A \cdot B$ is defined to be true of a step $s \rightarrow t$ iff there is a state u such that $s \rightarrow u$ is an A step and $u \rightarrow t$ is a B step. If actions A and B describe two pseudocode statements S_{a} and S_{b}, then $A \cdot B$ describes the statement $S_{a} ; S_{b}$ executed by executing S_{a} followed by S_{b}. For example, the statements labeled a and b in process p of program Increment shown in Figure 3.3 are described by actions $a \operatorname{Step}(p)$ and $\operatorname{bStep}(p)$ of Figure 3.5, and: ${ }^{5}$

$$
\begin{aligned}
\operatorname{aStep}(p) \cdot \operatorname{bStep}(p) \equiv & \wedge p c(p)=a \\
& \wedge x^{\prime}=t(p)+1 \\
& \wedge t^{\prime}=(t \operatorname{EXCEPT} p \mapsto x) \\
& \wedge p c^{\prime}=(p c \operatorname{EXCEPT} p \mapsto \text { done })
\end{aligned}
$$

Replacing the actions $a \operatorname{Step}(p)$ and $b \operatorname{Step}(p)$ with $\operatorname{aStep}(p) \cdot b \operatorname{Step}(p)$ in the definition of the next-state action Next of program Increment produces a program with a coarser grain of atomicity. Choosing the grain of atomicity of an abstract program involves a tradeoff between making the program detailed enough to be useful and simple enough to be usable. Section 7.1 addresses this tradeoff using action composition.

The operator "." is associative, meaning $(A \cdot B) \cdot C=A \cdot(B \cdot C)$ for any actions A, B, and C. We can therefore omit parentheses and simply write $A \cdot B \cdot C$.

For any action A, we define the action A^{+}to be satisfied by a step $s \rightarrow t$ iff state t can be reached from state s by a sequence of one or more A steps. In other words:

$$
A^{+} \triangleq A \vee(A \cdot A) \vee(A \cdot A \cdot A) \vee(A \cdot A \cdot A \cdot A) \vee \ldots
$$

[^12]
3.4.2 The Temporal Logic RTLA

In 1977, Amir Pnueli [47] had the idea of using an obscure branch of mathematics called temporal logic to express time-dependent properties without explicitly mentioning times or state numbers. He used a temporal logic containing the single temporal operator \square and operators defined in terms of \square. You can read \square as always, but when you become more familiar with it you'll probably just call it box. Intuitively, the formula $\square F$ asserts that the formula F is true at all times. For example, if P is a state predicate, then $\square P$ asserts that P is true in all states of a behavior.

From now on, we will be discussing and using temporal logic. We will continue to ignore assignments of values to constants, assuming some fixed interpretation satisfying the assumptions made about those constants.

In the kind of temporal logic Pnueli used, called linear-time temporal logic, the meaning of a formula is a predicate on behaviors, where a behavior is an infinite cardinal sequence of states. In other words, a behavior σ is a function from \mathbb{N} to states. We think of $\sigma(n)$ as the state at time n, so the first state of σ is $\sigma(0)$. But remember, the only resemblance of the state number n to a time is that state $\sigma(n)$ does not occur later than state $\sigma(n+1)$. (In Section 4.4, we'll see that they could both occur at the same time.) We'll sometimes write σ as $\sigma(0) \rightarrow \sigma(1) \rightarrow \cdots$.

RTLA is the temporal logic containing the same temporal operators as Pnueli's original logic, all defined in terms of \square, but having the formulas of LA as the basic formulas. The formulas of RTLA can all be written as LA formulas and formulas obtained from them using the operator \square and the usual Boolean operators and quantifiers of ordinary math. The only expressions of RTLA are formulas. Prime (') can appear only in the basic LA formulas. It's illegal to prime a formula containing a \square.

The TLA in RTLA stands for Temporal Logic of Actions. The R stands for Raw, in the sense of unrefined. We'll see later that RTLA allows us to write formulas that we shouldn't write. TLA is the logic obtained by restricting RTLA to make it impossible to write those formulas. But that's a complication we don't need to worry about now, so we'll start with the simpler "raw" logic.

In temporal logic formulas, the operator \square binds more tightly than the operators of propositional logic. For example, $\square F \vee G$ is parsed as $(\square F) \vee G$.

3.4.2.1 Simple RTLA

In RTLA, the operator \square can be applied to any RTLA formula, so we can write formulas like $\square(A \Rightarrow \square B)$ where A and B are actions. We will begin by considering simple RTLA, in which the operator \square is applied only to actions, not to formulas containing \square.

A formula of a temporal logic is called a temporal formula. For any assignment of values to constants, the meaning $\llbracket F \rrbracket$ of a temporal formula is a behavior predicate - that is, a mapping that assigns Boolean values to behaviors. An action A is a formula of RTLA, where it is viewed as a behavior predicate. As a formula of LA, we've viewed A as a step predicate. As a formula of RTLA, we view it as a behavior predicate that is true on a behavior iff, viewed as a step predicate, it is true of the behavior's first step.

To state that precisely, let $\llbracket A \rrbracket_{L A}$ be the meaning of A as an LA formula. We define its meaning $\llbracket A \rrbracket_{R T L A}$ as an RTLA formula as follows. For any behavior σ, which equals $\sigma(0) \rightarrow \sigma(1) \rightarrow \sigma(2) \rightarrow \cdots$, we define

$$
\begin{equation*}
\llbracket A \rrbracket_{R T L A}(\sigma) \triangleq \llbracket A \rrbracket_{L A}(\sigma(0) \rightarrow \sigma(1)) \tag{3.11}
\end{equation*}
$$

From now on, $\llbracket F \rrbracket$ means $\llbracket F \rrbracket_{R T L A}$ for all RTLA formulas, including actions. We will explicitly write $\llbracket A \rrbracket_{L A}$ to denote the meaning of A as an LA formula.

For an action A, we define $\square A$ to be the temporal formula that is true of a behavior iff A is true of all steps of the behavior. In other words, we define the meaning $\llbracket \square A \rrbracket$ of the RTLA formula $\square A$ by

$$
\begin{equation*}
\llbracket \square A \rrbracket(\sigma) \triangleq \forall n \in \mathbb{N}: \llbracket A \rrbracket_{L A}(\sigma(n) \rightarrow \sigma(n+1)) \tag{3.12}
\end{equation*}
$$

Like most logics, RTLA contains the propositional logic operators, where they have their standard meanings. For example, $\llbracket F \wedge G \rrbracket(\sigma)$ equals $\llbracket F \rrbracket(\sigma) \wedge \llbracket G \rrbracket(\sigma)$. We will write a quantified formula like $\exists i \in S: F$ with F a temporal formula only when S is a constant expression, in which case $\llbracket \exists i \in S: F \rrbracket(\sigma)$ equals $\exists i \in \llbracket S \rrbracket: \llbracket F \rrbracket(\sigma)$, where $\llbracket S \rrbracket$ is the value of S under the assumed assignment of values to constants. As in LA, bound identifiers are called bound constants and they act like constants, having the same value in all states of a behavior.

It's important to remember that a behavior is any cardinal sequence of states. It doesn't have to be a behavior of any particular program. Since any step is the first step of lots of behaviors, it's obvious that if A is an LA formula, then $\models A$ is true when A is viewed as an RTLA formula iff it's true when A is viewed as an LA formula.

Now let's return to the description of program Increment in Figure 3.5. It tells us that a behavior σ is a behavior of the program iff (i) the initial
predicate Init is true of its first state $\sigma(0)$ and (ii) the step predicate Next is true for every step $\sigma(n) \rightarrow \sigma(n+1)$ of σ. Condition (i) is expressed by $\llbracket I n i t \rrbracket$, since (3.11) tells us that $\llbracket I n i t \rrbracket(\sigma)$ equals $\llbracket I n i t \rrbracket_{L A}(\sigma(0) \rightarrow \sigma(1))$; and since Init is a state predicate, it's true of a step iff it's true of the first state of the step. By (3.12), condition (ii) is expressed as $\llbracket \square N e x t \rrbracket$. Thus (the meaning of) the formula Init $\wedge \square N e x t$ is true of a behavior σ iff σ is a behavior of program Increment.

Of course, this is true for an arbitrary program. The behaviors that satisfy a program with initial predicate Init and next-state action Next are described by the simple RTLA formula Init $\wedge \square N e x t$. Any program is described by an RTLA formula of this form. As promised, we can write any program as a mathematical formula. It's an RTLA formula rather than a TLA formula, and we'll see that it needs to be modified. But for now, it's close enough to the final TLA formula.

By (3.12), the state predicate $I n v$ is true in all states of a behavior iff $\square I n v$ is true of that behavior. That Inv is an invariant of Increment means that, for any behavior σ, if σ is a behavior of Increment then Inv is true in all states of σ. Thus, that Inv is an invariant of Increment is expressed by this condition:

$$
\begin{equation*}
\vDash \text { Init } \wedge \square N e x t \Rightarrow \square I n v \tag{3.13}
\end{equation*}
$$

Remember that in (3.10) and (3.13), when Init, Next, and Inv are the formulas defined in Figure 3.5, $\models F$ means that F is true for all interpretations satisfying the assumptions we made about the constants of Incrementnamely, that Procs is a finite set and the implicit assumption that the values of a, b, and done are different from one another.

In general, the conditions I1 and I2 for showing that a state predicate Inv is an invariant of a program Init $\wedge \square N e x t$ are expressed in LA by conditions (3.10). It is an RTLA proof rule that these conditions imply (3.13). When we prove a safety property like (3.13), the major part of the reasoning depends on the definitions of the formulas Init, Next, and Inv. That reasoning is reasoning about actions, which is formalized by LA. The temporal logic reasoning, which is done in RTLA, is trivial. Describing the program with a single formula is elegant. But it is really useful only when verifying liveness properties, which requires nontrivial temporal reasoning.

Because it's often forgotten, it is worth repeating that a state is any assignment of values to variables, and a behavior is any infinite sequence of states. Even when we are discussing program Increment, "state" means any state, including states in which x has the value $\langle\sqrt{2}, 1 \ldots 147\rangle$. In (3.13), \models means true for any behavior, even behaviors in which the initial value of x
is $\langle\sqrt{2}, 1 \ldots 147\rangle$. It is true for those behaviors because Init equals FALSE for them (unless $\langle\sqrt{2}, 1 \ldots 147\rangle$ happens to equal 0 , which it might).

3.4.2.2 The Complete RTLA

Simple RTLA suffices for reasoning about safety properties, but not for liveness properties. For example, we want to express the liveness property of program Increment that a process p eventually terminates. Termination of p means that $p c(p)$ eventually equals done and remains equal to done forever. In terms of explicit state numbers, where $p c(n)$ is the value of $p c$ in state number n, this property can be written:

$$
\begin{equation*}
\exists j \in \mathbb{N}: \forall k \in \mathbb{N}: p c(j+k)(p)=\text { done } \tag{3.14}
\end{equation*}
$$

To write it without explicit state numbers, we need full RTLA, in which \square can be applied to any RTLA formula, not just to an action. To define the meaning of all RTLA formulas, we first define σ^{+n}, for any behavior σ and natural number n, to be the behavior obtained by removing the first n states from the sequence σ. That is, σ^{+n} is the behavior

$$
\sigma(n) \rightarrow \sigma(n+1) \rightarrow \sigma(n+2) \rightarrow \cdots
$$

so σ^{+n} equals $i \in \mathbb{N} \mapsto \sigma(i+n)$.
For any RTLA formula F, the RTLA formula $\square F$ is true of a behavior σ iff it is true of the behaviors σ^{+n} for all $n \in \mathbb{N}$. In other words:

$$
\begin{equation*}
\llbracket \square F \rrbracket(\sigma) \triangleq \forall n \in \mathbb{N}: \llbracket F \rrbracket\left(\sigma^{+n}\right) \tag{3.15}
\end{equation*}
$$

for any behavior σ. When F is an action A, this is the same definition as (3.12) because the first step $\sigma^{+n}(0) \rightarrow \sigma^{+n}(1)$ of σ^{+n} is $\sigma(n) \rightarrow \sigma(n+1)$.

Although \square has a simple definition, temporal formulas can be hard to understand at first. It helps to think of a temporal formula as an assertion about the present and future. The state $\sigma(n)$ of a behavior σ is the state at time n, and the behavior σ^{+n} is the part of the behavior σ that begins at time n. We can then think of $\llbracket F \rrbracket\left(\sigma^{+n}\right)$ as asserting that F is true at time n of behavior σ. Thus, $\llbracket F \rrbracket(\sigma)$ asserts that F is true at time 0 of σ, and $\llbracket \square F \rrbracket(\sigma)$ asserts that F is true at all times of σ. The formula $\square F$ therefore asserts that F is true at all times - that is, F is always true. (Remember that time n is just some instant of time; it is not n time units after time 0 .)

We now drop the 【】 and think about temporal logic the same way we think about ordinary math, conflating a formula with its meaning. So, we'll think of a temporal formula F as a Boolean-value function on behaviors.

However, we will still turn to the formal meaning (3.15) of \square when it is useful.

Since we will now be working with temporal logic formulas, we consider a tautology to be any valid formula whose validity depends only on theorems of temporal logic, which include theorems of ordinary predicate and propositional logic. We will therefore call theorems of temporal logic tautologies. Sections 3.4.2.3-3.4.2.8 below examine \square and temporal operators defined in terms of \square. They present quite a few temporal logic tautologies. Understanding intuitively why those tautologies are true will make you comfortable reading temporal logic formulas and thinking in terms of them.

3.4.2.3 The \square Operator

We first consider some temporal logic tautologies - theorems about arbitrary temporal formulas. If they are not obvious, rewrite them in terms of the meanings of the formulas. The first tautology asserts the obvious fact that if F is always true, then it is true now:

$$
\begin{equation*}
\vDash \square F \Rightarrow F \tag{3.16}
\end{equation*}
$$

The next tautology asserts that $F \wedge G$ true at all times is equivalent to F true at all times and G true at all times:

$$
\begin{equation*}
\vDash \square(F \wedge G) \equiv(\square F) \wedge(\square G) \tag{3.17}
\end{equation*}
$$

You should check that (3.17) follows from the definition (3.15) of \square and the predicate-logic tautology:

$$
\vDash(\forall n \in S: P \wedge Q) \equiv(\forall n \in S: P) \wedge(\forall n \in S: Q)
$$

Observe that $\square(F \vee G)$ and $(\square F) \vee(\square G)$ are not equivalent. For example, $\square(F \vee G)$ is true of a behavior in which F is true only in the initial state and G is false in the initial state and true in all other states. However, neither $\square F$ nor $\square G$ is true of that behavior.

We can generalize (3.17) to any conjunction, including an infinite conjunction - that is, quantification over an infinite set of formulas. If F_{i} is a temporal formula for all $i \in S$, then:

$$
\begin{equation*}
\vDash \square\left(\forall i \in S: F_{i}\right) \equiv\left(\forall i \in S: \square F_{i}\right) \tag{3.18}
\end{equation*}
$$

The next tautology should also be obvious. It asserts that if F implies G is true at all times, then F is true at all times implies G is true at all times:

$$
\begin{equation*}
\vDash \square(F \Rightarrow G) \Rightarrow(\square F \Rightarrow \square G) \tag{3.19}
\end{equation*}
$$

Perhaps less obvious is this proof rule, which is sort of a converse of (3.16):

$$
\begin{equation*}
\models F \text { implies } \models \square F \tag{3.20}
\end{equation*}
$$

The assertion $\models F$ means that F is true of all behaviors. The assertion $\vDash \square F$ asserts that for any behavior, F is true of the part of that behavior starting at any time. But that part of the behavior is itself a behavior, so $\models F$ implies that F is true of it. If this is not obvious to you, then you may be thinking of a behavior as a behavior of some program. A behavior is any infinite sequence of states, so if you remove the first n states of any behavior, you get a behavior.

From (3.19) and (3.20) we easily derive:

$$
\begin{equation*}
\models F \Rightarrow G \text { implies } \models \square F \Rightarrow \square G \tag{3.21}
\end{equation*}
$$

This rule lies at the heart of much temporal logic reasoning.
We now examine some additional temporal assertions that can be defined using \square.

3.4.2.4 Eventually (\diamond)

The operator \diamond is defined to be the dual of \square :

$$
\begin{equation*}
\diamond F \triangleq \neg \square \neg F \tag{3.22}
\end{equation*}
$$

Like \square, the operator \diamond binds more tightly than the operators of propositional logic, so $\diamond F \wedge G$ is parsed as $(\diamond F) \wedge G$. To understand \diamond, we derive the meaning $\llbracket \diamond F \rrbracket$ of a formula $\diamond F$ from (3.15):

$$
\begin{aligned}
\llbracket \diamond F \rrbracket(\sigma) & \equiv \llbracket \neg \square \neg F \rrbracket(\sigma) & & \text { by definition of } \diamond \\
& \equiv \neg \llbracket \square \neg F \rrbracket(\sigma) & & \text { by the meaning of } \neg \\
& \equiv \neg \forall n \in \mathbb{N}: \llbracket \neg F \rrbracket\left(\sigma^{+n}\right) & & \text { by (3.15) } \\
& \equiv \neg \forall n \in \mathbb{N}: \neg \llbracket F \rrbracket\left(\sigma^{+n}\right) & & \text { by the meaning of } \neg \\
& \equiv \exists n \in \mathbb{N}: \llbracket F \rrbracket\left(\sigma^{+n}\right) & & \text { by }(2.7) \text { of Section } 2.7
\end{aligned}
$$

Hence, $\diamond F$ asserts that F is true at some time - either now or in the future. We read \diamond as eventually, where by being eventually true we include the possibility of being true only now. Corresponding to the tautologies (3.16) and (3.17) for \square are these tautologies for \diamond :

$$
\begin{equation*}
\vDash F \Rightarrow \diamond F \quad \models \diamond(F \vee G) \equiv(\diamond F \vee \diamond G) \tag{3.23}
\end{equation*}
$$

Make sure you understand why they are true from the meaning of \diamond as eventually. These two tautologies can be derived from (3.16) and (3.17). For example:

$$
\begin{align*}
(F \Rightarrow \diamond F) & \equiv(\neg(\neg F) \Rightarrow \neg(\square \neg F)) & & \text { By logic and the definition of } \diamond . \tag{3.24}\\
& \equiv(\square \neg F \Rightarrow \neg F) & & \text { By propositional logic. }
\end{align*}
$$

and $\vDash \square \neg F \Rightarrow \neg F$ follows from (3.16). You should convince yourself that $\diamond(F \wedge G)$ and $(\diamond F) \wedge(\diamond G)$ need not be equivalent. The equivalence of $\diamond(F \vee G)$ and $\diamond F \vee \diamond G$ generalizes to arbitrary disjunctions:

$$
\models \diamond\left(\exists i \in S: F_{i}\right) \equiv\left(\exists i \in S: \diamond F_{i}\right)
$$

Here are three tautologies relating \diamond and \square. The first is obtained by negating $\diamond F$ and its definition; the second by substituting $\neg F$ for F in that definition; and the third by substituting $\neg F$ for F in the first:

$$
\begin{equation*}
\vDash \neg \diamond F \equiv \square \neg F \quad \models \neg \square F \equiv \diamond \neg F \quad \models \square F \equiv \neg \diamond \neg F \tag{3.25}
\end{equation*}
$$

They should be obvious from thinking of \square as always and \diamond as eventually. The first two tell us that moving \neg over a temporal operator \square or \diamond changes \square to \diamond and \diamond to \square. Note the similarity between \square / \diamond and \forall / \exists, a similarity that arises from the meanings of \square and \diamond. Here is another tautology that follows from the intuitive meanings of \square and \diamond :

$$
\begin{equation*}
\vDash(\square F \wedge \diamond G) \Rightarrow \diamond(\square F \wedge G) \tag{3.26}
\end{equation*}
$$

It asserts that if F is true from now on and G is true at some time in the future, then at some time in the future F is true from then on and G is true then.

We can express liveness properties with \diamond. For example, the assertion that some state predicate P is eventually true is a liveness property. The assertion that the program whose formula is F satisfies this property is $\vDash F \Rightarrow \diamond P$. Since the assertion that something eventually happens is a liveness property, most of the formulas we write that contain \diamond express liveness.

The equivalence of $\neg \diamond P$ and $\square \neg P$ for any formula P implies the tautology $\models \diamond P \vee \square \neg P$. This tautology is central to many liveness proofs. To prove that a program described by formula F satisfies the liveness property $\diamond P$, we must prove $\models F \Rightarrow \diamond P$. The tautology $\models \diamond P \vee \square \neg P$ and propositional logic imply that we can prove this by proving $\models F \wedge \square \neg P \Rightarrow \diamond P$. This is a proof by contradiction, allowing us to use the additional hypothesis $\square \neg P$, which should be false. For example, if P is a state predicate, this gives us an invariant $\neg P$ that can be used to prove other invariants.

3.4.2.5 Eventually Always ($\diamond \square$)

Recall that termination of process p of program Increment means that $p c(p)$ eventually equals done and remains forever equal to done, a property expressed with explicit state numbers by (3.14). It can be stated as: It's eventually true that $p c(p)=$ done is always true. This is expressed in RTLA as $\diamond \square(p c(p)=$ done $)$. You should check that $\llbracket \diamond \square(p c(p)=d o n e) \rrbracket(\sigma)$ is equivalent to (3.14) because $\left(\sigma^{+j}\right)^{+k}$ equals $\sigma^{+(j+k)}$, so $p c(j+k)(p)$ in (3.14) equals $\llbracket p c(p) \rrbracket\left(\sigma^{+(j+k)}\right)$.

We can think of $\diamond \square$ as a temporal operator meaning eventually always. Convince yourself that this is a tautology:

$$
\models \diamond \square(F \wedge G) \equiv(\diamond \square F) \wedge(\diamond \square G)
$$

3.4.2.6 Infinitely Often ($\square \diamond$)

It should now seem natural to think of $\square \diamond F$ as meaning always eventually F is true. If you're not used to thinking about infinite sequences, it may not be obvious that always eventually is equivalent to infinitely often. So, let's prove it.

Theorem 3.1 F is infinitely often true iff it is always eventually true.
Define S_{σ} to be the set of times at which F is true of a behavior σ.

1. F is infinitely often true of σ iff S_{σ} is an infinite set.

Proof: By definition of infinitely often.
2. S_{σ} is an infinite set iff for every time n, there is a time $m \geq n$ such that $m \in S_{\sigma}$.
Proof: A set of natural numbers is infinite iff it has no largest element.
3. The statement that for every time n there exists a time $m \geq n$ such that $m \in S_{\sigma}$ is equivalent to the statement that F is always eventually true.
Proof: By the definitions of S_{σ} and always eventually.
4. Q.E.D.

Proof: By propositional logic, because steps 1-3 are of the form A iff B, B iff C, and C iff D, and the theorem asserts A iff D.

It is usually most helpful to think of $\square \diamond$ as meaning infinitely often rather than always eventually. For example, consider the formula $\square \diamond(F \vee G)$. It asserts that $F \vee G$ is true infinitely often, which means that F or G is true
infinitely often. But F or G is true infinitely often iff at least one of them is true infinitely often. This yields the following tautology:

$$
\begin{equation*}
\models \square \diamond(F \vee G) \equiv(\square \diamond F) \vee(\square \diamond G) \tag{3.27}
\end{equation*}
$$

The rules for moving \neg over \square and \diamond that are implied by the first two tautologies of (3.25) yield the following two tautologies. For example, the first comes from $\neg \square \diamond F \equiv \diamond \neg \diamond F \equiv \diamond \square \neg F$.

$$
\begin{equation*}
\models \neg \square \diamond F \equiv \diamond \square \neg F \quad \models \neg \diamond \square F \equiv \square \diamond \neg F \tag{3.28}
\end{equation*}
$$

3.4.2.7 The End of the Line

You might expect that we can keep constructing more and more complicated operators like $\square \diamond \diamond \square \diamond \square$ with sequences of \square and \diamond. We can't. Any such sequence is equivalent to $\square, \diamond, \square \diamond$ or $\diamond \square$. To see this, first observe that always always is the same as always. That is, $\square \square F$ is equivalent to $\square F$. That's because $\forall i, j \in \mathbb{N}: P(i+j)$ is equivalent to $\forall k \in \mathbb{N}: P(k)$, for any P.

Similarly, eventually eventually is the same as eventually, so $\diamond \diamond F$ is equivalent to $\diamond F$. The equivalence of $\diamond \diamond$ and \diamond also follows from the definition of \diamond and the equivalence of $\square \square$ and \square by:

$$
\diamond \diamond F \equiv \neg \square \neg \neg \square \neg F \equiv \neg \square \square \neg F \equiv \neg \square \neg F \equiv \diamond F
$$

So, we can only get a new operator by alternating \square and \diamond. However, $\square \diamond$ and $\diamond \square$ is as far as we can go because of the following tautologies:

$$
\begin{equation*}
\models \diamond \square \diamond F \equiv \square \diamond F \quad \models \square \diamond \square F \equiv \diamond \square F \tag{3.29}
\end{equation*}
$$

The first one is obvious if we read $\diamond \square \diamond$ as eventually infinitely often, because F is true at infinitely many times iff it is true at infinitely many times after some time has passed. You can convince yourself that the second is true by realizing that infinitely often F always true is equivalent to F being always true starting at some time. Alternatively, you can show that the first tautology implies the second by figuring out why each of the following equivalences is true:

$$
\begin{aligned}
& \square \diamond \square F \equiv \neg \diamond \neg \neg \square \neg \neg \diamond \neg F \equiv \neg \diamond \square \diamond \neg F \equiv \neg \square \diamond \neg F \\
& \quad \equiv \neg \neg \diamond \neg \neg \square \neg \neg F \equiv \diamond \square F
\end{aligned}
$$

3.4.2.8 Leads To (~)

Although there are no more operators to be defined by directly stacking \square and \diamond, there is another useful temporal operator defined in terms of them: the operator \leadsto, read leads to, defined by:

$$
F \leadsto G \triangleq \square(F \Rightarrow \diamond G)
$$

The operator \leadsto is parsed like \Rightarrow.
Formula $F \leadsto G$ asserts of a behavior that, whenever F is true, G is true then or later. You should convince yourself that \leadsto is transitive, meaning:

$$
\models(F \leadsto G) \wedge(G \leadsto H) \Rightarrow(F \leadsto H)
$$

Here are two additional tautologies that should be obvious:

$$
\begin{align*}
& \models((F \vee G) \leadsto H) \equiv(F \leadsto H) \wedge(G \leadsto H) \tag{3.30}\\
& \models(F \leadsto G) \wedge \square(G \Rightarrow H) \Rightarrow(F \leadsto H)
\end{align*}
$$

The first of these tautologies generalizes to:

$$
\begin{equation*}
\vDash\left(\left(\exists i \in S: F_{i}\right) \leadsto H\right) \equiv\left(\forall i \in S:\left(F_{i} \leadsto H\right)\right) \tag{3.31}
\end{equation*}
$$

Here are three more tautologies involving $\sim \rightarrow$; try to understand why they're true.
(a) $\vDash \square F \wedge(F \leadsto G) \Rightarrow \square \diamond G$
(b) $\vDash(F \leadsto G) \equiv(F \wedge \square \neg G \leadsto G)$
(c) $\vDash(F \wedge \square G \sim H) \equiv(F \wedge \square G \leadsto H \wedge \square G)$

Here's how I understand them:
(a) $F \leadsto G$ implies that whenever F is true, G is true then or later; and $\square F$ implies that F is always true. Therefore, $\square F \wedge(F \leadsto G)$ implies G is true infinitely often.
(b) $F \leadsto G \equiv \square(F \Rightarrow \diamond G) \quad$ Definition of \leadsto. $\equiv \square(F \wedge \neg \diamond G \Rightarrow \diamond G) \quad$ Propositional logic. $\equiv \square(F \wedge \square \neg G \Rightarrow \diamond G) \quad$ By (3.25). $\equiv F \wedge \square \neg G \leadsto G \quad$ Definition of \leadsto.
(c) $F \wedge \square G \leadsto H$ asserts that, for all t, if $F \wedge \square G$ is true at time t, then H is true at some time $u \geq t$; and $\square G$ true at time t implies it is still true at time u, so $H \wedge \square G$ is true at time u.

Observe that tautology (b) justifies a proof by contradiction: to prove that F true implies G is eventually true, we can assume that G is never true.

Proving \leadsto properties is at the heart of liveness proofs. For example, here's how we prove termination of Euclid's algorithm, discussed in Section 1.5. The algorithm terminates because while $x \neq y$ is true, the sum of x and y keeps decreasing, which can't continue forever because the algorithm satisfies the invariant that x and y are positive integers. Therefore, eventually $x=y$ and the algorithm terminates. This argument is formalized in RTLA as follows.

To prove termination, we must prove that every behavior of the algorithm satisfies $\diamond(x=y)$. The proof uses this tautology, which follows from the meanings of the operators \square, \sim, and ':

$$
\begin{equation*}
\vDash \square\left(P \Rightarrow Q^{\prime}\right) \Rightarrow(P \leadsto Q) \tag{3.33}
\end{equation*}
$$

The tautology $\models \diamond P \vee \square \neg P$ allows us to prove $\diamond(x=y)$ by assuming that a behavior of the algorithm satisfies $\square(x \neq y)$ and obtaining a contradiction. Let R_{i} be the state predicate $x+y \leq i$. We prove that $\square(x \neq y)$ and the invariant that x and y are positive integers imply that, for all $i>0$, the program satisfies $\square\left(R_{i} \Rightarrow\left(R_{i-1}\right)^{\prime}\right)$. By (3.33), this implies $R_{i} \leadsto R_{i-1}$. By the transitivity of \leadsto and mathematical induction, this implies $R_{M+N} \leadsto R_{0}$. Since the program implies that R_{M+N} is true in the initial state, this implies that $\diamond R_{0}$ is true, contradicting the invariant that x and y are always positive.

3.4.2.9 Warning

Although elegant and useful, temporal logic is weird. It's not ordinary math. In ordinary math, any operator $O p$ we can define satisfies the condition, sometimes called substitutivity, that the value of an expression $O p\left(e_{1}, \ldots, e_{n}\right)$ is unchanged if we replace any e_{i} by an expression equal to e_{i}. If $O p$ takes a single argument, substitutivity means that

$$
\begin{equation*}
\models\left(\exp _{1}=\exp _{2}\right) \Rightarrow\left(O p\left(\exp _{1}\right)=O p\left(\exp _{2}\right)\right) \tag{3.34}
\end{equation*}
$$

is true for any expressions $\exp _{1}$ and $\exp _{2}$. For example, (3.34) is true for the operator Tail. However, the temporal operator \square is not substitutive. For example let $\exp _{1}$ and $\exp _{2}$ be the state predicates $x=0$ and $y=0$, respectively; and let σ be a behavior such that for each $j \in \mathbb{N}$, the state $\sigma(j)$ assigns the value 0 to x and the value j to y. Then $\exp _{1}$ and $\exp _{2}$ both equal true for σ because they are both true for $\sigma(0)$. Formula
$\square \exp _{1}$ is true for σ because $x=0$ is true in all its states, but $\square \exp _{2}$ is false for σ because $y=0$ is true only in the first state $\sigma(0)$. Hence, the value of the formula $\left(\exp _{1}=\exp _{2}\right) \Rightarrow\left(\square \exp _{1}=\square \exp _{2}\right)$ for this behavior is (TRUE $=$ TRUE $) \Rightarrow($ TRUE $=$ FALSE $)$, which equals FALSE. The operator ' (prime) is similarly not substitutive, so it too is weird. This weirdness affects all temporal logics and makes temporal logic reasoning tricky.

3.5 TLA

Math IV

Simple Recursive Definitions A recursive definition of a mapping M is one in which M appears in its definition. (Mathematicians call them inductive definitions.) A simple recursive definition defines a function f with domain \mathbb{N} by defining the value of $f(0)$ to equal some expression not containing f and, for every $n>0$, defining $f(n)$ in terms of $f(n-1)$. The classic recursive definition is that of n ! (pronounced n factorial), which equals the product of the numbers from 1 through n, with 0 ! defined to equal 1. If we consider $n!$ to be an abbreviation of $!(n)$ for the function !, we can define! by

$$
!\triangleq n \in \mathbb{N} \mapsto \text { IF } n=0 \text { THEN } 1 \text { ELSE } n *!(n-1)
$$

An arbitrary definition $f \triangleq n \in \mathbb{N} \mapsto \exp$ where f appears in the expression \exp does not necessarily define f to equal $n \in \mathbb{N} \mapsto \exp$. For example, if I had written ! $(n+1)$ instead of ! $(n-1)$ in the definition of !, then it's not obvious what that definition would mean. (Its meaning is defined in Appendix Section A.1.9.) But all you need to know is that it would define $!(n)$ to be a meaningless expression for any value $n .{ }^{6}$

The actual definition given above does define ! to be a function that equals the right-hand side of its definition. The intuitive reason is that the definition allows us to compute ! (n) in a finite number of steps for any natural number n. For example, we can compute !(42) by computing !(41), which we can compute by computing !(40), which we can compute by ..., which we can compute by computing! (0), which equals 1 .

[^13]
3.5.1 The Problem

There is something terribly wrong with our RTLA descriptions of abstract programs, because there is something terribly wrong with the descriptions like the one in Figure 3.4 that we wrote using explicit step numbers. To see why, let's return to the discussion in Section 3.1 of how astronomers describe a planet orbiting a star. As explained there, the mathematical description of the orbiting planet is best thought of as describing a universe containing the planet, saying nothing about what else is or is not in the universe. In particular, that description applies just as well to a universe in which there is a spacecraft close to the star that orbits it very fastperhaps going around the star 60 times every time the planet goes around it once. Since the spacecraft is too small to affect the motion of the planet, we would obtain a description of the system composed of the planet and the spacecraft by adding (conjoining) a description of the spacecraft's motion to the description of the planet's motion. The description of the planet's motion remains an accurate description of that planet in the presence of the spacecraft. It would be crazy if we had to write different formulas to describe the planet because of the spacecraft that has no effect on it.

Now consider the descriptions of abstract programs we've been writing. In particular, consider an RTLA formula HM describing how the values of the hour and minute displays of a 24 -hour clock change. Using the variables $h r$ and min to describe the current hour and minute being displayed, we might define $H M$ to equal Init $\wedge \square N e x t$, where:

$$
\begin{align*}
\text { Init } \triangleq & (h r=0) \wedge(\min =0) \tag{3.35}\\
\text { Next } \triangleq & \wedge \min ^{\prime}=(\min +1) \% 60 \\
& \wedge h r^{\prime}=\mathrm{IF} \min =59 \mathrm{THEN}(h r+1) \% 24 \text { ELSE } h r
\end{align*}
$$

But suppose that the clock also displays seconds. The RTLA formula $H M S$ that also describes the second display might use a variable sec to describe that display. A behavior σ allowed by $H M S$ would not be allowed by $H M$ because $H M$ requires every step to change the value of \min, while σ must change the value of sec in every step and the value of \min in only every $60^{\text {th }}$ step.

It is just as crazy for an abstract program describing an hour-minute clock not to describe a clock that also displays seconds as it is for a description of a planet's motion no longer to describe that motion because of a spacecraft that doesn't affect the planet. It means that anything we've said about the hour and minute display might be invalid if there's also a second display. And it doesn't matter if the minute display is on a digital clock on
my desk and the second display is on a phone in my pocket. More generally, it means if we've proved things about completely separate digital devices and we look at those two devices at the same time, nothing we've proved about them remains true unless those devices are somehow synchronized to run in lock step. The more you think about it, the crazier it seems.

3.5.2 The Solution

To figure out how to fix this problem, let's first see where we went wrong. It happened in Section 3.2.1, when we went from a sequence $t_{0}, t_{1}, t_{2}, \ldots$ of times to a sequence $0,1,2, \ldots$ of state numbers. We were writing a description of a particular system. But math and science don't describe a system; they describe a universe containing that system. And that universe can contain many systems. A different system might lead to a different sequence $u_{0}, u_{1}, u_{2}, \ldots$ of times, with only t_{0} and u_{0} equal. Our error was converting two possibly different times t_{i} and u_{i} into the same state number. The result was that when we thought we were writing a description of a particular system, we were actually writing a description of a universe in which the values of all variables, including ones describing other systems, could change only when the variables of that particular system changed.

You might think that because the error occurred when we were throwing away times, we need to represent the time at which a state holds, not just a state number. Fortunately, there is a simpler solution. It's the one we used to eliminate finite behaviors and consider only infinite behaviors. We observed that we could do that by adding stuttering steps at the end of a finite sequence of states-steps that just repeat the previous state of the program. Eliminating finite behaviors was not simply a matter of convenience. The real reason to do it was to eliminate one source of craziness. Since a behavior is not just a behavior of a particular program but a behavior of the entire universe, a finite behavior is one in which everything in the universe stops changing. The description of a halting program execution as a finite behavior therefore asserts that the entire universe halts when the program does. Those infinitely many stuttering steps, in which the value of no variable of the program changes, allows other programs' variables to keep changing.

We can add those stuttering steps because of the observation that the conversion from times to state numbers requires that a program variable be allowed to change only at time t_{i} for some i. It does not require that any variable does change at that time. The mistake was writing descriptions that, until the program halts, requires some variable to change value at each
time t_{i}. Instead, we should have added to the sequence of times t_{i} times at which no program variable changes. Adding such a time adds a step in which other variables describing other programs can change while the program's variables remain unchanged. Thus, if the description allows a behavior σ, then it should allow the behavior obtained by inserting stuttering steps of the program in σ. This is easy to do. For the description of the hour/minute display, we just change the definition of $H M$ to

$$
H M \triangleq \text { Init } \wedge \square\left(N e x t \vee\left(\left(h r^{\prime}=h r\right) \wedge\left(\min ^{\prime}=\min \right)\right)\right)
$$

We can write this formula more compactly as

$$
\begin{equation*}
H M \triangleq \text { Init } \wedge \square\left(N e x t \vee\left(\langle h r, \min \rangle^{\prime}=\langle h r, \min \rangle\right)\right) \tag{3.36}
\end{equation*}
$$

because $\langle h r, \min \rangle^{\prime}$ equals $\left\langle h r^{\prime}, \min ^{\prime}\right\rangle$, and two tuples are equal iff their corresponding components are equal.

We can similarly fix every other example we've seen so far by changing the next-state action Next in its RTLA description to $\operatorname{Next} \vee\left(v^{\prime}=v\right)$, where v is the tuple of all variables that appear in the RTLA formula. Since this will have to be done all the time, we abbreviate $A \vee\left(v^{\prime}=v\right)$ as $[A]_{v}$ for any action A and state expression v.

We can add stuttering steps to a pseudocode description of an algorithm by adding a separate process that just takes stuttering steps. However, we won't bother to do this. We will just consider all pseudocode to allow stuttering steps.

When $H M$ is defined by (3.36), if $H M S$ is true of a behavior then $H M$ is also true of the behavior. This remains true when $H M S$ is modified to allow stuttering steps. Thus, $H M S$ implements $H M$, and $\models H M S \Rightarrow H M$ is true. Implementation is implication. How elegant!

There is an apparent problem with formula $H M$ of (3.36). It allows behaviors in which the program takes a finite number of steps (possibly zero steps) and then takes nothing but stuttering steps. In other words, it allows behaviors in which the clock stops. Most computer scientists will say that we should never allow behaviors in which an abstract program stops when it is possible for it to continue executing. This is because they are used to thinking about traditional programs. In many cases, we don't want to require a concurrent abstract program to do something just because it can.

Never stopping is a liveness property. Taking only steps satisfying $[\text { Next }]_{v}$ is a safety property. My experience has taught me that we should describe safety properties separately from liveness properties because we reason about them differently and we should think about them differently. Formula HM
describes the safety property that the hour-minute clock should satisfy. We will see later how we conjoin a liveness property to $H M$ if we want to require the clock to run forever. It is a feature not a problem that this definition of $H M$ asserts only what the clock may do and not what it must do.

In general, the safety property of an abstract program is written in the form Init $\wedge \square[N e x t]_{v}$, where Init is the initial predicate and $[N e x t]_{v}$ is the next-state action. The formula $\square[N e x t]_{v}$ always allows stuttering steps because $[N e x t]_{v}$ has the form $\ldots \vee\left(v^{\prime}=v\right)$, and $v^{\prime}=v$ allows stuttering steps. However, $v^{\prime}=v$ allows lots of non-stuttering steps. In particular, it allows steps in which any variable that does not appear in v can have any values in the two states of the step. To describe an abstract program, the state expression v in $\square[N e x t]_{v}$ must ensure that $v^{\prime}=v$ allows only steps that do not change any of the program's variables. Therefore, unless stated otherwise, in a formula of the form $\square[N e x t]_{v}$ where Next is the next-state action of a program, the subscript v is assumed to be the tuple of all program variables. (However, that subscript need not be called v.)

3.5.3 Stuttering Insensitivity

We have seen that the safety property of an abstract program should have the form Init $\wedge \square[N e x t]_{v}$, so it allows stuttering steps. But what can we say in general about formulas for describing systems or abstract programs?

Stuttering steps are created by adding extra times t_{i} at which we report the values of a program's variables. A stuttering step does not represent the program doing anything. It's just a mathematical way to allow the descriptions of the universe with which we describe different abstract programs to be made consistent with one another. Therefore, any assertion we make about a behavior of an abstract program should not depend on whether we add or remove steps that leave the program's variables unchanged. Since the assertion depends only on the values a behavior assigns to the program's variables, this condition is satisfied iff the assertion does not depend on whether we add or remove steps that leave all variables unchanged. We've used the term stuttering step to mean a step that leaves a program's variables unchanged. We will now call such a step a stuttering step of the program. We define a stuttering step to be a step that leaves all variables unchanged.

A sensible predicate F on behaviors should satisfy the condition that the value of $\llbracket F \rrbracket(\sigma)$ is not changed by adding stuttering steps to, or removing them from, a behavior σ. This means that the value of $\llbracket F \rrbracket(\sigma)$ is not changed even if an infinite number of stuttering steps are added and an infinite number removed. (However, the behavior must still be infinite, so if σ ends
in an infinite number of stuttering steps, those steps can't be removed.) A predicate on behaviors satisfying this condition for all behaviors σ is called stuttering insensitive, or SI for short. When describing abstract programs or the properties they satisfy, we should use only SI predicates on behaviors.

To define SI precisely, we first define $h(\sigma)$ to be the behavior obtained by removing from the behavior σ all stuttering steps except those belonging to an infinite sequence of stuttering steps at the end. We do this by defining $\mathfrak{h}(\sigma)(n)$ to equal $\sigma\left(f_{\sigma}(n)\right)$ where f_{σ} is defined recursively by $f_{\sigma}(0)=0$ and $f_{\sigma}(n)$ for $n>0$ is the smallest value i greater than $f_{\sigma}(n-1)$ such that $\sigma(i)$ is unequal to $\sigma\left(f_{\sigma}(n-1)\right)$, or i equals $f_{\sigma}(n-1)+1$ if σ stutters forever after state number $f_{\sigma}(n-1)$.

To write the definition of f_{σ}, we first let $\operatorname{Min}(S)$ be the smallest element of S for any set S of natural numbers. Such a smallest element exists for any nonempty subset S of \mathbb{N}, even if S is infinite. We next let $n^{>}$be the set $\{i \in \mathbb{N}: i>n\}$ of all natural numbers greater than n. The recursive definition of f_{σ} is then:

$$
\begin{aligned}
& f_{\sigma} \triangleq n \in \mathbb{N} \mapsto \\
& \text { IF } n=0 \\
& \quad \text { THEN } 0 \\
& \quad \text { ELSE } \quad \text { IF } \forall i \in f_{\sigma}(n-1)^{>}: \sigma(i)=\sigma\left(f_{\sigma}(n-1)\right) \\
& \\
& \quad \quad \text { THEN } f_{\sigma}(n-1)+1 \\
& \\
& \quad \text { eLSE } \operatorname{Min}\left(\left\{i \in f_{\sigma}(n-1)^{>}: \sigma(i) \neq \sigma\left(f_{\sigma}(n-1)\right)\right\}\right)
\end{aligned}
$$

A predicate on behaviors is defined to be SI iff, for any behavior σ, the predicate is true of σ iff it is true of $\bigsqcup(\sigma)$. SI is a semantic condition-that is, a condition on the meanings of formulas. Since we are conflating formulas and their meanings, saying that a formula F is SI means that $\llbracket F \rrbracket$ is SI.

We have been using the term property informally to mean some condition on the behaviors of a system or abstract program. We now define it to mean an SI predicate on behaviors. Behavior predicate still means any predicate on behaviors, not just SI ones.

3.5.4 The Definition of TLA

We now define TLA to be a language that is a sublanguage of RTLA in which every formula is a property - that is, an SI formula. Defining a language means giving syntactic rules for a formula to belong to the language.

We begin by defining a state predicate to be a TLA formula. Viewed as a temporal formula, a state predicate is SI because it depends only on the first
state of a behavior, which isn't changed by adding or removing stuttering steps.

The operators of propositional logic applied to SI formulas produce SI formulas. For example, if adding or removing stuttering steps doesn't change whether formulas F and G satisfy a behavior, then they don't change whether $F \wedge G$ satisfies the behavior. So we let TLA include all formulas obtained by applying propositional logic operators to TLA formulas. Similarly, we can let TLA include all formulas obtained by applying the ordinary operators of predicate logic. For example, $\exists x \in S: F$ is a TLA formula if F is one and S is a constant expression. ${ }^{7}$

It's easy to find actions A that, when viewed as a temporal formula, are not SI. For example, $x^{\prime} \neq x$ is not SI because if σ is a behavior that satisfies $x^{\prime} \neq x$, then the behavior obtained by adding a stuttering step to the beginning of σ doesn't satisfy it. However, the formula $\square[A]_{v}$ is SI for any action A and state expression v, so we let TLA contain all such formulas.

The formula $\square[A]_{v}$ asserts that an action, namely one of the form $[A]_{v}$, is true of all steps of a behavior. For reasoning about liveness, we will need to assert that an action is eventually true in some step of a behavior. The formula $\diamond A$ is not SI for an arbitrary action A because if A is true on some stuttering step, then $\diamond A$ might be false on a behavior σ and true on a behavior obtained by adding such a stuttering step to σ. However, if A does not allow stuttering steps, then $\diamond A$ is SI. In particular, the formula $\diamond\left(A \wedge\left(v^{\prime} \neq v\right)\right)$ is SI for any state expression v. We define $\langle A\rangle_{v}$ to equal $A \wedge\left(v^{\prime} \neq v\right)$; and we let TLA contain all formulas $\diamond\langle A\rangle_{v}$, for any action A and state expression v.

You can convince yourself that adding or removing stuttering steps from a behavior doesn't change whether it satisfies $\diamond\langle A\rangle_{v}$. However, since $\neg \square[\neg A]_{v}$ is SI, the following theorem shows that $\diamond\langle A\rangle_{v}$ is SI:

$$
\begin{equation*}
\vDash \diamond\langle A\rangle_{v} \equiv \neg \square[\neg A]_{v} \tag{3.37}
\end{equation*}
$$

This equivalence follows from the definition of \diamond and the following assertion, which can be proved by propositional logic from the definitions of $[\ldots]_{v}$ and $\langle\ldots\rangle_{v}$:

$$
\models\langle A\rangle_{v} \equiv \neg[\neg A]_{v}
$$

From (3.37) we see that $\neg \diamond\langle A\rangle_{v}$ is equivalent to $\square[\neg A]_{v}$. This means that an $\langle A\rangle_{v}$ step never occurs in a behavior iff every step of the behavior is a

[^14]$[\neg A]_{v}$ step. This fact is used in proofs by contradiction of formulas of the form $\diamond\langle A\rangle_{v}$.

The only temporal operator we have defined besides \square and \diamond is \leadsto. We define $F \leadsto \diamond\langle A\rangle_{v}$ to be a TLA formula if F is one, A is an action, and v is a state expression. This formula is SI, since expanding the definition of \leadsto in it produces what we have already defined to be a TLA formula.

Combining all this, we see that a TLA formula is one of the following:

- A state predicate.
- Obtained by applying propositional logic operators to TLA formulas.
- $\forall \exists c: F$ or $\forall \exists c \in S: F$ where $\forall \exists$ is \forall or \exists, for a bound constant c, a TLA formula F, and a constant expression S.
- $\square[A]_{v}, \diamond\langle A\rangle_{v}$, or $F \leadsto \diamond\langle A\rangle_{v}$, for an action A, a state expression v, and a TLA formula F.

Abstract programs and the properties they satisfy should be TLA formulas. However, we can use RTLA proof rules and even RTLA formulas when reasoning about TLA formulas. For example, we can prove that Inv is an invariant of Init $\wedge \square[N e x t]_{v}$ by substituting $[N e x t]_{v}$ for Next in the RTLA proof rule that (3.10) implies (3.13). This yields the following rule:

$$
\begin{array}{r}
\models(\text { Init } \Rightarrow \text { Inv }) \wedge\left(I n v \wedge[N e x t]_{v} \Rightarrow I n v^{\prime}\right) \\
\quad \text { implies } \quad \models \text { Init } \wedge \square[N e x t]_{v} \Rightarrow \square I n v
\end{array}
$$

In this rule, the first \models means validity in LA while the second \models means validity in TLA. A feature of TLA is that as much reasoning as possible is done in LA, which becomes ordinary mathematical reasoning when the necessary definitions are expanded and primes are distributed across operators so only variables are primed.

Chapter 4

Safety, Liveness, and Fairness

4.1 Safety and Liveness

Math V

Assume/Prove Proof Steps We usually prove a formula of the form $F \Rightarrow G$ by assuming F is true and proving G is true. In our structured proof style, we write such a proof with the following proof step:

Assume: F
Prove: G
Proof: ...
This step asserts the truth of $F \Rightarrow G$. However, the proof of a step that asserts the formula $F \Rightarrow G$ has as its goal to prove $F \Rightarrow G$. (It might do that by proving $F \Rightarrow H$ and $H \Rightarrow G$ for some H.) The proof of this Assume/Prove step has as its goal to prove G, using the assumption that F is true. The statement of a theorem is sometimes written as such an Assume/Prove. It has the same meaning as for a proof step, asserting $F \Rightarrow G$ and that the proof assumes F and proves G.

Instead of being a single formula, the Assume clause can be a list of assertions-sometimes a numbered list. That's equivalent to assuming the conjunction of those assertions. A paragraph proof should state what previous steps and assumptions it uses, identifying them by step and assumption numbers.

Countable Sets A countable set is one whose elements can be counted. That is, a set S is countable iff we can assign a different natural number to each of its elements. More precisely, a set S is countable iff there exists a
function $f \in \mathbb{N} \rightarrow S$ such that $\forall s \in S: \exists n \in \mathbb{N}: f(n)=s$. All finite sets are countable. Here is a function f that shows that the set II of all integers is countable.

$$
\begin{array}{rcccccccccc}
n: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
& \downarrow & \\
f(n): & 0 & 1 & -1 & 2 & -2 & 3 & -3 & 4 & -4 & \ldots
\end{array}
$$

We will need this theorem:
Theorem 4.1 If S is a countable set, then there is a function f in $\mathbb{N} \rightarrow S$ such that for every $s \in S$, there are infinitely many $n \in \mathbb{N}$ with $f(n)=s$.

Proof: Since S is countable, we can number its elements $s_{0}, s_{1}, s_{2}, \ldots$. If S is finite, we can let f equal $n \in \mathbb{N} \mapsto s_{n} \% \#(S)$. Therefore, we can assume S is infinite. Here is a picture that shows how such a function f can be defined:

$$
\begin{array}{rccccccccccc}
n: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
& \downarrow & \imath & \imath & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \uparrow & \downarrow & \\
f(n): & s_{0} & s_{0} & s_{1} & s_{0} & s_{1} & s_{2} & s_{0} & s_{1} & s_{2} & s_{3} & \ldots
\end{array}
$$

However, I don't see an easy way to define that function mathematically. Here's an easy way to define a function f that works. Let g be the function in $\mathbb{N} \rightarrow \mathbb{N}$ such that $g(n)$ is the largest integer satisfying $g(n)^{2} \leq n$, so $g\left(n^{2}\right)=n$ and $g(n)^{2} \leq n<(g(n)+1)^{2}$ for all $n \in \mathbb{N}$. Define $f(n) \triangleq$ $s_{n-g(n)^{2}}$ for all $n \in \mathbb{N}$. This function has the desired property because for any $n \in \mathbb{N}$, for any $m \geq n$ there exists $i \in m^{2} . .\left((m+1)^{2}-1\right)$ such that $f(i)=s_{n}$. End Proof

4.1.1 Definitions

Safety and liveness properties have been described intuitively as specifying what the program is allowed to do and what it must do. To define them precisely, we begin by observing that they have these characteristics:

Safety If a behavior doesn't satisfy a safety property, then we can point to the place in the behavior where it violates the property. For example, if a behavior doesn't satisfy an invariance property, it violates the property in the first state in which the invariant is false.

Liveness We have to look at an entire infinite behavior to see that it doesn't satisfy a liveness property. For example, we can't see that the property
x eventually equals 42 is violated by looking at a finite part of the behavior. ${ }^{1}$

This characterization was turned into precise definitions of safety and liveness for arbitrary behavior predicates by Alpern and Schneider [3]. Since we're interested only in properties (which are SI), we will use a somewhat simpler definition of safety. But first, we need a few preliminary definitions.

We call a finite, nonempty cardinal sequence of states a finite behavior. (A behavior, without the adjective finite, still means an infinite cardinal sequence of states.) We'll write a finite behavior ρ as $\rho(0) \rightarrow \cdots \rightarrow \rho(n)$. A nonempty finite prefix of a behavior is a finite behavior. We define the completion ρ^{\uparrow} of a finite behavior to be the behavior obtained by repeating the last state of ρ infinitely many times - that is, adding infinitely many stuttering steps. A finite behavior ρ is defined to satisfy a behavior predicate iff its completion ρ^{\uparrow} satisfies it. We can now precisely define safety and liveness.

Safety A property F is a safety property iff it satisfies the following condition: A behavior satisfies F iff every nonempty finite prefix of the behavior satisfies F.

Liveness A property F is a liveness property iff every finite behavior is the prefix of a behavior that satisfies F.

A state predicate is a safety property because it is satisfied by a behavior iff the state predicate is true on the initial state, and a behavior and all its nonempty prefixes have the same initial state. The formula $\square[A]_{v}$ is a safety property for any action A and state expression v; here is the proof that every nonempty finite prefix of a behavior σ satisfies $\square[A]_{v}$ iff σ satisfies $\square[A]_{v}$.

1. Assume: Every nonempty finite prefix of σ satisfies $\square[A]_{v}$.

Prove: σ satisfies $\square[A]_{v}$
Proof: σ satisfies $\square[A]_{v}$ iff every step of σ satisfies $[A]_{v}$, and every step of σ is a step of some finite prefix of σ, so it satisfies $\square[A]_{v}$ by the assumption.
2. Assume: σ satisfies $\square[A]_{v}$

Prove: Every nonempty finite prefix of σ satisfies $\square[A]_{v}$.

[^15]Proof: Every step of a nonempty finite prefix of σ is either a step of σ, so it satisfies $[A]_{v}$ by the assumption, or it is a stuttering step, which satisfies $[A]_{v}$ by definition of $[\ldots]_{v}$.
3. Q.E.D.

Proof: Obvious, by steps 1 and 2 .
It also follows easily from the definition of safety that the conjunction of safety properties is a safety property. Therefore, as expected, the formula Init $\wedge \square[N e x t]_{v}$ that we have been calling the safety property of a program is indeed a safety property.

The property that asserts that a program halts is a liveness property. That property is true of a behavior σ iff σ ends with infinitely many steps that leave the program's variables unchanged. It's a liveness property because every finite behavior ρ is a prefix of its completion ρ^{\uparrow}, which satisfies the property.

Safety and liveness are conditions on properties, which are SI behavior predicates. When we say that a TLA formula $\square[A]_{v}$ is a safety property, we are conflating the formula with its meaning. We should remember that it's actually $\llbracket \square[A]_{v} \rrbracket$ that is the safety property.

4.1.2 A Completeness Theorem

TLA is quite simple, adding only the two operators ' (prime) and \square to ordinary math. In theory, this simplicity makes it quite inexpressive. For example, here is a property F_{12} that neither TLA nor RTLA can express: the value of x must equal 1 before it can equal 2 . It's expressed in terms of explicit states as:

$$
\begin{equation*}
F_{12} \triangleq \forall j \in \mathbb{N}:(x(j)=2) \Rightarrow \exists k \in \mathbb{N}:(k<j) \wedge(x(k)=1) \tag{4.1}
\end{equation*}
$$

This behavior predicate is a property because it's SI; adding or removing stuttering steps doesn't affect whether a behavior satisfies it. Property F_{12} is a safety property because it's not satisfied by a behavior σ iff there's a point in σ at which it's violated-namely, a state $\sigma(j)$ in which $x=2$ and $x \neq 1$ in all the states $\sigma(0), \ldots, \sigma(j-1)$.

If TLA is inexpressive, how can we describe programs with it? The answer is, by using variables. We can express F_{12} as an abstract program described by a TLA formula S_{12} if we add a Boolean-valued variable, let's call it y, whose value is TRUE iff x equals 1 or has previously equaled 1 . We let the initial predicate Init of S_{12} assert that $x \neq 2$ and that $y=$ TRUE iff
$x=1$. The next-state relation Next allows x^{\prime} to equal 2 only if $y=$ true, and it sets y to true if $x=1$. Here are the definitions:

$$
\begin{align*}
& S_{12} \triangleq \text { Init } \wedge \square[\text { Next }]_{\langle x, y\rangle} \tag{4.2}\\
& \text { Init } \triangleq(x \neq 2) \wedge(y=(x=1)) \\
& \text { Next } \triangleq \wedge\left(x^{\prime}=2\right) \Rightarrow y \\
& \wedge y^{\prime}=(y \vee(x=1))
\end{align*}
$$

It's not obvious in what sense formula S_{12} expresses property F_{12}, since S_{12} contains the variables x and y while F_{12} describes only the values of x. Intuitively, S_{12} makes the same assertion as F_{12} if we ignore the value of y. Section 6.1 describes a TLA operator $\boldsymbol{\exists}$ such that $\boldsymbol{\exists} y: S_{12}$ means S_{12} if we ignore the value of y. We'll then see that $\llbracket \exists y: S_{12} \rrbracket$ equals F_{12}. However, there's no need to introduce $\boldsymbol{\exists}$ here. The relevant condition that S_{12} satisfies is that if G is any TLA formula that does not contain the variable y, then

$$
\models F_{12} \Rightarrow \llbracket G \rrbracket \text { iff } \models S_{12} \Rightarrow G
$$

The idea of adding a variable to express a property works in general. We state it now only for safety properties. We can't express every safety property as a TLA formula. A formula is a finite string of finitely many symbols, and there are only a countable number of such strings; but there are uncountably many safety properties. (For example, there are uncountably many real numbers, so there are uncountably many properties asserting that the initial value of x is a particular real number.) What we can show is that any safety property (which is a predicate on behaviors) that can be described by a mathematical formula - that is, by a formula of ZF-can be expressed as a TLA formula. We do that by showing that if the mapping F from behaviors to Boolean values is a safety property, then we can use F to write a TLA formula that describes it the way S_{12} describes F_{12} in our example. One condition satisfied by a mathematical formula is that it contains only a finite number of variables, and its value depends only on the values of those variables. Remember that we are assuming that the language LA for writing actions contains all the operators of ZF.

The theorem is expressed with the convention of letting a boldface identifier like \mathbf{x} be the list x_{1}, \ldots, x_{n} of subscripted non-bold versions of the identifier, for some n. Thus, $\langle\mathbf{x}\rangle$ is the tuple of those identifiers. The theorem is a special case of Theorem 4.9 in Section 4.2 .7 below, so the proof is omitted.

Theorem 4.2 Let \mathbf{x} be the list x_{1}, \ldots, x_{n} of variables and let F be a safety property such that $F(\sigma)$ depends only on the values of the variables \mathbf{x} in a
behavior σ. There exists a formula S equal to Init $\wedge \square[N e x t]_{\langle\mathbf{x}, y\rangle}$, where Init and Next are defined in terms of F, y is a variable not among the variables \mathbf{x}, and the variables of S are \mathbf{x} and y, such that $\models F \Rightarrow \llbracket G \rrbracket \mathrm{iff} \models S \Rightarrow G$, for any property G.

This theorem is a completeness result, showing that TLA can express as an abstract program any safety property that can be expressed semantically. While this shows that there is no fundamental lack of expressiveness in TLA, it is of little practical significance. The proof assumes a description of the property F and uses it to write F as an abstract program. If there were a better way to describe properties mathematically than with abstract programs, we should use it. There are other temporal logics that can express the simple property F_{12} with a formula that's easier to understand than S_{12}. However, S_{12} is not hard to understand, and abstract programs are the only practical way I know to express all the properties of concrete concurrent programs that we need to describe. ${ }^{2}$

4.1.3 The Operator \mathcal{C}

We now define the operator \mathcal{C} so that $\mathcal{C}(F)$ is the strongest safety property implied by F, for any property F. Remember that property G stronger than property H means every behavior satisfying G satisfies H-that is, $\vDash G \Rightarrow H$. The operator \mathcal{C} is not part of the TLA language; we do not use it to write abstract programs. What we do is show that under certain conditions some G equals $\mathcal{C}(F)$ for some other program F. It would be better to write that $\llbracket G \rrbracket$ equals $\mathcal{C}(\llbracket F \rrbracket)$, but we won't bother because we regularly conflate a formula and its meaning.

If we want $\mathcal{C}(F)$ to be the strongest safety property implied by F, it should be satisfied by the behaviors satisfying F plus the fewest additional behaviors needed to make it a safety property. The appropriate definition is: A behavior σ satisfies $\mathcal{C}(F)$ iff every finite prefix of σ is a prefix of a behavior that satisfies F. For example, suppose F is the property satisfied only by behaviors in which x initially equals $0, x$ keeps being incremented by 1 , and eventually the behavior halts. For this property F, the property $\mathcal{C}(F)$ is satisfied by a behavior that either satisfies F or in which x initially equals 0 and keeps being incremented by 1 forever. The following theorem shows that this is the correct definition of \mathcal{C}. Its proof is in the Appendix.

[^16]Theorem 4.3 If F is a property, then $\mathcal{C}(F)$ is a safety property such that $\vDash F \Rightarrow \mathcal{C}(F)$ and, for any safety property G, if $\models F \Rightarrow G$ then $\models \mathcal{C}(F) \Rightarrow G$.

Alpern and Schneider proved that every property is the conjunction of a safety property and a liveness property. ${ }^{3}$ They actually proved this stronger result, whose proof is in the Appendix:

Theorem 4.4 Every property F is equivalent to $\mathcal{C}(F) \wedge L$ for a liveness property L.

We have been describing abstract programs by formulas of the form Init $\wedge \square[N e x t]_{v}$, which are safety properties. As we've observed, like any safety property, this formula allows behaviors that halt at any point in the behavior. We usually don't want to allow such behaviors, so we must conjoin a liveness property to this formula to describe most abstract programs. For example, we can rule out behaviors of program Increment that don't halt prematurely with the liveness property

$$
\forall p \in \text { Procs }: \diamond(p c[p]=\text { done })
$$

However, we'll see later why that's not a good liveness property to use.
There's another method of describing safety and liveness that helps me understand them intuitively. It's based on topology. The method and the necessary topology are explained in Appendix Section A.6.

4.1.4 What Good is Liveness?

Safety predicates constrain the finite behavior of a system. They describe what must be true of finite prefixes of a behavior. Liveness properties say nothing about finite prefixes; they describe what must be true if the system runs forever. Since we don't live forever, why should we care about liveness properties?

In theory, liveness is useless; but in practice it's useful. Consider the liveness property required of a traditional program: it eventually terminates. In theory, that's useless because it might not terminate in a billion years. In practice, proving that a program will terminate within a given amount of time isn't easy. Proving that it eventually terminates is easier, and it is useful because the program is certainly not going to terminate soon enough if it never does. But proving liveness provides more than that. Understanding why a program eventually terminates requires understanding what it must

[^17]do in order to finish. That understanding helps you decide if it will terminate soon enough. This applies to other liveness properties as well.

Using a model checker doesn't give you the understanding that you get from writing a proof. However, using a model checker to check liveness properties is a good way to detect errors-both in the program you intended to write and in what you actually wrote. A program that does nothing satisfies most safety properties, and an error in translating your intention into mathematics might disallow behaviors in which the program fails to satisfy a safety property. Checking that the program satisfies liveness properties that it should can catch such errors, as well as errors in the program you wanted to write.

4.2 Fairness

Expressing mathematically the way computer scientists and engineers described their algorithms and programs led us to describe the safety property satisfied by an abstract program with the formula Init $\wedge \square[N e x t]_{v}$, where v is the tuple of all the program's variables. We must conjoin to that formula another formula to describe the program's liveness property. To see how this should be done, we first examine how scientists and engineers expressed liveness.

4.2.1 Traditional Programs and the Enabled Operator \mathbb{E}

We start with traditional programs. It was assumed, usually without needing to be stated explicitly, that a program kept executing statements until it terminated. If termination is expressed by $p c=$ done, then this assumption can be stated as the requirement that when $p c \neq d o n e$, a Next step must eventually occur. This is expressed by the TLA formula

$$
\begin{equation*}
(p c \neq \text { done }) \sim\left\langle\text { Next }^{\prime}\right\rangle_{v} \tag{4.3}
\end{equation*}
$$

The $\langle\ldots\rangle_{v}$ is a bit of a nuisance, but it's required by TLA to prevent a liveness property from being satisfied by a stuttering step, which would make no sense. Usually, the next-state action Next does not permit stuttering steps, so (4.3) is equivalent to the RTLA formula $(p c \neq d o n e) \sim N e x t$.

Formula (4.3) assumes a particular way of expressing termination. In general, termination of a traditional program means it's no longer possible for the program to take steps. We should replace (4.3) by $E \leadsto\langle N e x t\rangle_{v}$, where E is a state predicate that is true in a state iff it's possible to take a
$\langle N e x t\rangle_{v}$ step in that state. We write that state predicate E as $\mathbb{E}\langle N e x t\rangle_{v}$, where \mathbb{E} is read enabled.

In general, for any action A, we define $\mathbb{E}(A)$ to be the state predicate that is true in a state s iff there exists a state t such that $s \rightarrow t$ is an A step. In other words, \mathbb{E} is an LA operator, where for any action A the state predicate $\mathbb{E}(A)$ is defined by:

$$
\llbracket \mathbb{E}(A) \rrbracket(s) \triangleq \exists t: \llbracket A \rrbracket(s \rightarrow t)
$$

In the common case when A has the form $\langle B\rangle_{v}$, we omit the parentheses and write simply $\mathbb{E}\langle B\rangle_{v}$. The liveness property assumed of a traditional program whose safety property is described by the formula Init $\wedge \square[N e x t]_{v}$ is $\mathbb{E}\langle\text { Next }\rangle_{v} \leadsto\langle\text { Next }\rangle_{v}$.

4.2.2 Concurrent Programs

In traditional programs, when the program hasn't terminated there is just one program statement that can be executed. In multiprocess programs, it is usually possible for there to be multiple statements that can be executed, each in a different process. Moreover, a process can stop not just because it has terminated, but because it is waiting for another process to do something. The liveness property $\mathbb{E}\langle\text { Next }\rangle_{v} \leadsto\langle\text { Next }\rangle_{v}$ ensures that the program keeps executing statements as long as some process hasn't halted. It is satisfied if one process keeps executing statements. It allows other processes to halt, even if they could keep executing statements. Those other processes are said to be starved.

It was generally accepted that processes should be treated "fairly". Multiprocess programs were usually executed on computers having fewer processors than there were processes - for many years, usually just a single processor. It was sometimes proposed that fairness should guarantee the stronger condition that each process gets a fair share of processor time. However, it came to be generally accepted that fairness should not specify how long (in terms of program steps) a process that can execute a statement might wait before executing it. Therefore, fairness came to mean simply that no process should be starved.

In a program with a set Procs of processes, the next-state action is defined by

$$
\text { Next } \triangleq \exists p \in \text { Procs : PNext }(p)
$$

where $\operatorname{PNext}(p)$ is the next-state action of process p. The obvious generalization of the liveness requirement for a traditional program suggests that
fairness for all the processes in a multiprocess program should mean:

$$
\begin{equation*}
\forall p \in \text { Procs }: \mathbb{E}\langle\operatorname{PNext}(p)\rangle_{v} \leadsto\langle\operatorname{PNext}(p)\rangle_{v} \tag{4.4}
\end{equation*}
$$

However, this is not the way fairness should be expressed, and it is not an appropriate liveness property for multiprocess programs. To see why, we consider mutual exclusion algorithms.

4.2.2.1 Mutual Exclusion

The concept of fairness in a concurrent program appeared implicitly in Edsger Dijkstra's seminal 1965 paper that launched the study of concurrent algorithms [9]. That paper defined mutual exclusion and presented the first algorithm that implemented it.

In mutual exclusion, we assume a set of processes that each alternately executes two sections of code called the noncritical and critical sections. A mutual exclusion algorithm must ensure that no two processes can be executing their critical sections at the same time. For example, the processes may occasionally print output on the same printer, and two processes printing at the same time would produce an unreadable mixture of the two outputs. To prevent that, the processes execute a mutual exclusion algorithm, and a process prints only when in its critical section.

The outline of a mutual exclusion algorithm is shown in Figure 4.1, where Procs is the set of processes. We don't care what the processes do in their noncritical and critical sections, so we represent them by atomic skip statements labeled ncs and $c s$ that do nothing when executed except change the value of $p c$. The nontrivial part of the algorithm consists of the two sections of code, the waiting and exiting sections, that begin with the labels wait and exit. Each of those sections can contain multiple labeled statements, using variables declared in the two variables statements.

The safety property that a mutual exclusion algorithm must satisfy is that no two processes are executing their critical sections at the same time meaning that $p c(p)$ and $p c(q)$ cannot both equal $c s$ for two different processes p and q. This is an invariance property. A cute way of expressing it compactly is:

$$
\begin{equation*}
\square(\forall p, q \in \operatorname{Procs}:(p \neq q) \Rightarrow(\{p c(p), p c(q)\} \neq\{c s\})) \tag{4.5}
\end{equation*}
$$

We will not yet state a precise liveness condition a mutual exclusion algorithm should satisfy. All we need to know for now is that if some processes enter the waiting section, they can't all wait forever without entering the critical section.
variables...; global variables
process $p \in$ Procs
variables $p c=n c s, \ldots ; \quad$ process-local variables
while TRUE do
ncs: skip ; noncritical section
wait: : waiting section
cs: skip ; critical section
exit: \quad exiting section
end while
end process

Figure 4.1: The outline of a mutual exclusion algorithm.

Most people viewing the outline in Figure 4.1 will think this is an unrealistic description of a mutual exclusion algorithm because, by describing the execution of the critical section with a single skip step, we are assuming that the entire critical section is executed as a single step. Of course, we realize that this isn't the case. It no more says that the critical section is executed as a single step than our description of an hour-minute clock says that nothing else happens between the step that changes the clock's display to 7:29 and the step that changes it to 7:30. Just as 59 changes to a seconds display can occur between those two steps, process p can print the entire Bhagavad Gita while $p c(p)$ equals $c s$. A mutual exclusion algorithm simply describes all that printing as stuttering steps of the algorithm.

Figure 4.2 describes a program named $U M$, which is an abbreviation of Unacceptable Mutual exclusion algorithm. Technically, it's a mutual exclusion algorithm because it satisfies property (4.5) with Procs equal to the set $\{0,1\}$ of processes. But for reasons that will be discussed later, it isn't considered to be an acceptable algorithm.

This pseudocode program is the first one we've seen with an await statement. For a state predicate P, the statement await P can be executed only when control is at the statement and P equals true. We could write the statement a : await P as:
a : if $\neg P$ then goto a end if
Executing this statement in a state with P equal to TRUE just moves control to the next statement. Executing it in a state with P equal to FALSE does not change the value of any program variable, so it's a stuttering step of the

```
variables \(x=(p \in\{0,1\} \mapsto\) FALSE \()\);
process \(p \in\{0,1\}\)
        variables \(p c=n c s\);
        while TRUE do
            \(n c s: ~ s k i p ;\)
            wait: \(x[p]:=\) TRUE ;
            \(w 2\) : await \(\neg x[1-p]\);
            \(c s: \quad\) skip ;
            exit: \(x[p]:=\) FALSE
    end while
end process
```

Figure 4.2: The unacceptable mutual exclusion algorithm $U M$.
program. Since a stuttering step is always allowed, executing the statement await P when P equals FALSE is the same as not executing it. So, while we can think of the statement await P continually evaluating the expression P and moving to the next statement iff it finds P equal to TrUE, mathematically that's equivalent to describing it as an action A such that $\mathbb{E}(\mathrm{A})$ equals $(p c=a) \wedge P$.

This is also the first pseudocode we've seen with explicit array variables. An array variable x is an array-valued variable, where an array is a function and $x[p]$ just means $x(p)$. We've already seen implicit array variablesnamely, the local variables t and $p c$ of program Increment are represented by function-valued variables in Figure 3.5. I have decided to write $x[p]$ instead of $x(p)$ in pseudocode to make the pseudocode look more like real code. However, the value of an array variable can be any function, not just a finite ordinal sequence; and we write $x(p)$ instead of $x[p]$ when discussing the program mathematically. As we've seen in Figure 3.5, an assignment statement $x[p]:=\ldots$ is described mathematically as $x^{\prime}=(x \operatorname{EXCEPT} p \mapsto \ldots)$.

Algorithm $U M$ is quite simple. The processes communicate through the variable x, with process p writing to $x(p)$. The initial value of $x(p)$ for each process p is FALSE. To enter the critical section, process p sets $x(p)$ to TRUE and then enters its critical section when $x(1-p)$ (the array element written by the other process) equals FALSE.

It's easy to see that the two processes cannot be in their critical sections at the same time. If they were, the last process p to enter its critical section would have read $x(1-p)$ equal to TRUE when executing statement $w 2$, so it couldn't have entered its critical section. Since mutual exclusion is an
invariance property, it can be proved mathematically by finding an inductive invariant that implies mutual exclusion. You can check that the following formula is such an inductive invariant of $U M$:

$$
\begin{align*}
& \wedge \text { TypeOK } \tag{4.6}\\
& \begin{aligned}
\wedge \forall p \in\{0,1\}: & \wedge(p c(p) \in\{w 2, c s\}) \Rightarrow x(p) \\
& \wedge(p c(p)=c s) \Rightarrow(p c(1-p) \neq c s)
\end{aligned}
\end{align*}
$$

where TypeOK is the type-correctness invariant:

$$
\begin{aligned}
\text { Type } O K \triangleq & \wedge x \in(\{0,1\} \rightarrow\{\text { TRUE, FALSE }\}) \\
& \wedge p c \in(\{0,1\} \rightarrow\{n c s, \text { wait, w } 2, c s, \text { exit }\})
\end{aligned}
$$

Let UMSafe be the safety property described by the pseudocode. We want to conjoin a property UMLive to UMSafe to state a fairness requirement of the program's behaviors. Let's make the obvious choice of defining UMLive to be formula (4.4) with Procs equal to $\{0,1\}$ and v equal to $\langle x, p c\rangle$. This implies that both processes keep taking steps forever, executing their critical sections infinitely often, which makes it seem like a good choice. Actually, that makes it a bad choice.

Algorithm $U M$ is unacceptable because formula UMSafe, which describes the pseudocode, permits deadlock. If both processes execute statement wait before either executes $w 2$, the algorithm reaches the deadlocked state in which neither await statement is enabled. Conjoining UMLive to UMSafe produces a formula asserting that such a deadlocked state cannot occur. It ensures the liveness property we want, that processes keep executing their critical sections. However, it does this not by requiring only that processes keep taking steps, but also by preventing them from taking some steps - namely, ones that produce a deadlocked state. A fairness property shouldn't do that.

Before going further, let's see why UMSafe \wedge UMLive doesn't allow such a deadlocked state to be reached. The reason is that the formula satisfies this invariant:

$$
\begin{equation*}
\neg(p c(0)=p c(1)=w 2) \tag{4.7}
\end{equation*}
$$

This is an invariant of UMSafe \wedge UMLive because it is true initially and it can be made false only by a step in which a process p executes its wait statement in a state s with $p c(1-p)=w 2$; and we now show that such a step cannot occur.

It's an invariant of UMSafe, and hence of UMSafe \wedge UMLive, that $p c(p)=$ wait implies $x(p)=$ FALSE. Hence, $p c(1-p)=w 2$ and $x(p)=$ FALSE
in state s, which implies $\mathbb{E}\langle\operatorname{PNext}(1-p)\rangle_{v}$ is true. Therefore, UMLive implies that $\diamond\langle P N e x t(1-p)\rangle_{v}$ must be true at state s of the behavior. This implies that the process p step can't occur, because it would lead to deadlock which would make such a $\langle P N e x t(1-p)\rangle_{v}$ step impossible. Therefore, no step of the program can make (4.7) false. Since it is true in an initial state, (4.7) is an invariant of UMSafe \wedge UMLive.

Thus, UMLive should not be the fairness property for algorithm $U M$, because it disallows a program step allowed by UMSafe. Before determining what the fairness property should be, let's characterize exactly what's wrong with property UMLive.

4.2.2.2 Machine Closure

The general principle illustrated by program $U M$ is that fairness for a program should require only that something eventually happens, so it should rule out only infinite behaviors in which that thing never happens. It should not rule out finite behaviors.

A liveness property by itself does not rule out any finite behaviors. A liveness property L by definition allows any finite behavior to be completed to a behavior that satisfies L. Property UMLive is a liveness property, so the finite behavior in which the program reaches a deadlocked state can be completed to a behavior satisfying UMLive. For example, we can concatenate to that finite behavior a complete behavior satisfying UMSafe \wedge UMLive. (There are many behaviors of UMSafe that don't deadlock.) Since that concatenation contains infinitely many steps of each process, it satisfies UMLive. However, it doesn't satisfy UMSafe because the step between the last state of the deadlocked finite behavior (which is a deadlocked state) and the first state of a complete behavior does not satisfy the program's next-state action. It is impossible to complete that deadlocked behavior to a behavior satisfying both UMLive and UMSafe because the next-state action of UMSafe does not allow any non-stuttering step from a deadlocked state.

For a liveness property L to be a fairness property for UMSafe, it should not just require that any finite behavior can be completed to a behavior satisfying L; it should require that any finite behavior that satisfies UMSafe can be completed to a behavior that satisfies UMSafe $\wedge L$.

In general, a pair $\langle S, L\rangle$, where S is a safety property and L a liveness property, is defined to be machine closed iff every behavior satisfying S can be completed to a behavior satisfying $S \wedge L$. We require that a fairness property for a program having the safety property S be a liveness property L such that $\langle S, L\rangle$ is machine closed. The following theorem, proved in the

Appendix, provides a nice mathematical characterization of machine closure.
Theorem 4.5 If S is a safety property and L a liveness property, then $\langle S, L\rangle$ is machine closed iff $\models \mathcal{C}(S \wedge L) \equiv S$.

4.2.3 Weak Fairness

Let's now see how to describe fairness with a machine-closed liveness property. Using the requirement

$$
\begin{equation*}
\mathbb{E}\langle P N e x t(p)\rangle_{v} \leadsto\langle P N e x t(p)\rangle_{v} \tag{4.8}
\end{equation*}
$$

worked fine for program Increment. It failed for program $U M$. The reason it worked for program Increment is that when $\operatorname{PNext}(p)$ is enabled, it remains enabled until a $\operatorname{PNext}(p)$ step occurs. In program $U M$, process p can reach a state in which $p c(p)$ equals $w 2$ and $\operatorname{PNext}(p)$ is enabled, but process $1-p$ can then take a step that disables action $\operatorname{PNext}(p)$.

To obtain a machine-closed condition, we have to weaken (4.8) so it rules out fewer behaviors. The obvious way to do that is by requiring a $\operatorname{PNext}(p)$ step to occur not if $\operatorname{PNext}(p)$ just becomes enabled, but only if it remains enabled until a $\operatorname{PNext}(p)$ step occurs. Let $F \mathcal{U} G$ be the temporal formula asserting that F is true until G is true. (We'll discuss later exactly what \mathcal{U} means.) As our choice of fairness property, we will replace property (4.8) by:

$$
\begin{equation*}
\left(\mathbb{E}\langle P \operatorname{Next}(p)\rangle_{v} \mathcal{U}\langle P N \operatorname{ext}(p)\rangle_{v}\right) \leadsto\langle P N e x t(p)\rangle_{v} \tag{4.9}
\end{equation*}
$$

However, rather surprisingly, (4.9) is equivalent to:

```
\square \mathbb { E } \langle P N e x t ~ ( p ) \rangle _ { v } \leadsto \langle P N e x t ~ ( p ) \rangle _ { v }
```

To prove this, we first have to examine the definition of \mathcal{U}. When we say that E is true until P is true, we usually mean that P is eventually true and E is true until P becomes true. But if $E \mathcal{U} P$ implies that $\diamond P$ is true, then (4.9) would be trivially true and thus useless, since it would assert that $\langle P N e x t(p)\rangle_{v}$ conjoined with some other condition leads to $\langle P N e x t(p)\rangle_{v}$. So we have to interpret $E \mathcal{U} P$ to mean that either P is eventually true and E is true until it is, or P is not eventually true and E is true forever. Thus, whatever the precise meaning of \mathcal{U} is, we have:

$$
\begin{equation*}
\vDash(E \mathcal{U} P) \equiv(\diamond P \wedge E \mathcal{U} P) \vee(\neg \diamond P \wedge \square E) \tag{4.11}
\end{equation*}
$$

The equivalence of (4.9) and (4.10) follows from this RTLA theorem, which is proved in the Appendix.

Theorem 4.6 (4.11) implies $\vDash((E \mathcal{U} P) \leadsto P) \equiv(\square E \leadsto P)$ for any formulas E and P.

A liveness property commonly assumed of multiprocess algorithms, called weak fairness, is that (4.10) is true for every process p. We generalize this concept to define weak fairness of an arbitrary action A to be the formula $\mathrm{WF}_{v}(A)$ defined by:
(4.12) $\mathrm{WF}_{v}(A) \triangleq \square \mathbb{E}\langle A\rangle_{v} \leadsto\langle A\rangle_{v}$

Another form of fairness called strong fairness that is sometimes assumed is discussed later. We will see how weak and strong fairness are used to write machine-closed descriptions of abstract programs. A special case of the general result is that if S is the formula Init $\wedge \square[N e x t]_{v}$ and Next equals $\exists p \in \operatorname{Procs}: \operatorname{PNext}(p)$, then $\left\langle S, \forall p \in \operatorname{Procs}: \mathrm{WF}_{v}(\operatorname{PNext}(p)\rangle\right.$ is machine closed. But before we get to all that, let's examine weak fairness.

The first thing we observe is that for a multiprocess program described with pseudocode, weak fairness of a process's next-state action is equivalent to the conjunction of weak fairness of all the actions described by the process's statements. That is, if $\operatorname{PNext}(p)$ equals $\exists i \in I: A_{i}(p)$ for a set I, action $A_{i}(p)$ describes the statement with label i, and v is the tuple of program variables, then:

$$
\begin{equation*}
\models \mathrm{WF}_{v}(\operatorname{PNext}(p)) \equiv \forall i \in I: \mathrm{WF}_{v}\left(A_{i}(p)\right) \tag{4.13}
\end{equation*}
$$

This is because $\langle\operatorname{PNext}(p)\rangle_{v}$ is enabled iff $\left\langle A_{p c(p)}(p)\right\rangle_{v}$ is enabled, in which case $p c(p)$ can be changed only by an $\left\langle A_{p c(p)}(p)\right\rangle_{v}$ step. Thus, in any state of a behavior with $p c(p)=i$, the formula $\mathbb{E}\langle P N e x t(p)\rangle_{v} \Rightarrow \diamond\langle P N e x t(p)\rangle_{v}$ is equivalent to $\mathbb{E}\left\langle A_{i}(p)\right\rangle_{v} \Rightarrow \diamond\left\langle A_{i}(p)\right\rangle_{v}$. A rigorous justification of (4.13) is that it is a special case of Theorem 4.8 in Section 4.2 .7 below.

The following tautology is useful for deducing properties from weak fairness assumptions:

$$
\begin{equation*}
\vDash \mathrm{WF}_{v}(A) \equiv\left(\diamond \square \mathbb{E}\langle A\rangle_{v} \Rightarrow \square \diamond\langle A\rangle_{v}\right) \tag{4.14}
\end{equation*}
$$

It makes weak fairness look stronger than the definition because $\square \diamond\langle A\rangle_{v}$ is a stronger property than $\diamond\langle A\rangle_{v}$. Here's an informal proof of (4.14). The definition of $\mathrm{WF}_{v}(A)$ implies the right-hand side of the equivalence because $\diamond \square \mathbb{E}\langle A\rangle_{v}$ implies that eventually $\langle A\rangle_{v}$ is always enabled, whereupon $\mathrm{WF}_{v}(A)$ keeps forever implying that an $\langle A\rangle_{v}$ step occurs, so there must be infinitely many $\langle A\rangle_{v}$ steps, making $\square \diamond\langle A\rangle_{v}$ true. The opposite implication is true because $\square \mathbb{E}\langle A\rangle_{v}$ implies $\diamond \square \mathbb{E}\langle A\rangle_{v}$, so the right-hand side of
the equivalence implies that $\square \diamond\langle A\rangle_{v}$ is true and hence $\diamond\langle A\rangle_{v}$ is true. A rigorous proof of (4.14) is by the following RTLA ${ }^{4}$ reasoning, substituting $\mathbb{E}\langle A\rangle_{v}$ for F and $\langle A\rangle_{v}$ for G :

$$
\begin{aligned}
\square F \leadsto G & \equiv \square(\square F \Rightarrow \diamond G) & & \text { by definition of } \leadsto \\
& \equiv \square(\neg \square F \vee \diamond G) & & \text { by propositional logic } \\
& \equiv \square(\diamond \neg F \vee \diamond G) & & \text { by } \neg \square F=\diamond \neg F(3.25) \\
& \equiv \square \diamond(\neg F \vee G) & & \text { by }(3.23) \\
& \equiv \square \diamond \neg F \vee \square \diamond G & & \text { by }(3.27) \\
& \equiv \neg \square \diamond \neg F \Rightarrow \square \diamond G & & \text { by propositional logic } \\
& \equiv \diamond \square F \Rightarrow \square \diamond G & & \neg \square \diamond \neg F \equiv \diamond \neg \diamond \neg F \equiv \diamond \square \neg \neg F \text { by }(3.25)
\end{aligned}
$$

The following tautology is useful for proving a weak-fairness formula, because it has an additional hypothesis in the implication:

$$
\begin{equation*}
\vDash \mathrm{WF}_{v}(A) \equiv\left(\square \mathbb{E}\langle A\rangle_{v} \wedge \square[\neg A]_{v} \leadsto\langle A\rangle_{v}\right) \tag{4.15}
\end{equation*}
$$

It is proved by expanding the definition of \leadsto and applying the propositional logic tautology $\models(F \Rightarrow G) \equiv(F \wedge \neg G \Rightarrow G)$ and the TLA tautology $\models \neg \diamond\langle A\rangle_{v} \equiv \square[\neg A]_{v}$. Using (4.15) to prove $\mathrm{WF}_{v}(A)$ is essentially a proof by contradiction.

Proving these kinds of temporal logic tautologies is a good exercise. However, there are temporal logic theorem provers that can do it for you.

4.2.4 Temporal Logic Reasoning

Thus far, the only properties we've verified that programs satisfy have been invariance properties. Proving invariance requires no temporal logic reasoning. To prove \models Init $\wedge \square[N e x t]_{v} \Rightarrow \square I n v$ we prove the LA formulas $\vDash I n i t \Rightarrow I n v$ and $\vDash I n v \wedge[N e x t]_{v} \Rightarrow I n v^{\prime}$ and then apply a single temporal logic proof rule.

Nontrivial temporal logic reasoning is required for proving that programs satisfy liveness properties. We often prove liveness properties of the form $P \leadsto Q$. This property asserts that something is true at all "times" in a behavior-namely, whenever P is true, Q is eventually true. The description Init $\wedge \square[N e x t]_{v}$ of a program cannot be used directly to prove $P \leadsto Q$ because it asserts only that something is true initially. For that reason, the first thing we do when proving $P \leadsto Q$ is to prove that some formula Inv is an invariant of the program, so the program implies $\square I n v \wedge \square[N e x t]_{v}$. We then use $\square I n v \wedge \square[N e x t]_{v}$ to prove $P \leadsto Q$.

[^18]A formula F that asserts something is true at all times is called a formula. The formula $\square I n v \wedge \square[N e x t]_{v}$ is a \square formula because it's equivalent to the RTLA formula $\square\left(\operatorname{Inv} \wedge[N e x t]_{v}\right)$. Because of the tautology $\vDash \square \square F \equiv \square F$, we can define F to be a \square formula iff it's equivalent to $\square F$. By (3.17), the conjunction of \square formulas is a \square formula. In general, (3.18) implies $\forall i \in S: F_{i}$ is a \square formula if each F_{i} is a \square formula.

In a proof, we almost always want every temporal logic formula asserted by a statement to be a \square formula. A theorem with statement F asserts $\models F$. The proof rule (3.16) tells us that $\models F$ implies $\models \square F$. This means that whenever we prove F, we have proved $\square F$. However, that does not mean that when we have proved a step in a proof that asserts F, we have proved $\square F$. When we prove a step
4.2.7. $G \leadsto H$
we have not proved $\models G \leadsto H$. We have proved $\models A s p \Rightarrow(G \leadsto H)$, where $A s p$ is the conjunction of all the assumptions in effect at statement 4.2.7. By the proof rule $(3.21), \models A s p \Rightarrow(G \leadsto H)$ implies $\models \square A s p \Rightarrow \square(G \leadsto H)$. If $A s p$ is a \square formula, so it's equivalent to $\square A s p$, then proving 4.2.7 proves $\vDash A s p \Rightarrow \square(G \leadsto H)$. Therefore proving 4.2.7 is equivalent to proving
4.2.7. $\square(G \leadsto H)$
if $A s p$ is a \square formula. Since the conjunction of \square formulas is a \square formula, Asp is a \square formula if all the assumptions in effect at statement 4.2.7 are \square formulas.

We assure that every statement that asserts a temporal formula F asserts $\square F$ by making every temporal formula in an ASSUME clause be a \square formula. Any temporal formula F asserted by a statement can then be considered to assert $\square F$. The following are \square formulas for all temporal formulas F and G, state expressions v, and actions $A: \square \diamond F$ (obviously), $\diamond \square F$ by (3.29), $F \leadsto G$ by definition of \leadsto, and $\mathrm{WF}_{v}(A)$ by the definition (4.12) of WF.

4.2.5 Reasoning With Weak Fairness

We now see how to show that an abstract program with weak fairness conditions satisfies a liveness property. We will do this with a modification of algorithm $U M$ called the One-Bit algorithm that is an acceptable mutual exclusion algorithm. But first, we examine what liveness condition the algorithm should satisfy.

4.2.5.1 Liveness for Mutual Exclusion

The liveness condition Dijkstra required of the mutual exclusion algorithm outlined in Figure 4.1 was that if some process is at statement wait, then eventually some process enters its critical section - expressed by:

$$
\begin{equation*}
(\exists p \in \operatorname{Procs}: p c(p)=w a i t) \leadsto(\exists p \in \operatorname{Procs}: p c(p)=c s) \tag{4.16}
\end{equation*}
$$

This condition is usually called deadlock freedom. That's a misuse of the term, because deadlock freedom is actually the safety property asserting that the program never reaches a deadlocked state - one in which no process can take a step. Property (4.16) also rules out what is called livelock, in which no process enters its critical section although some processes keep executing statements in their waiting sections. However, when discussing mutual exclusion, we will use deadlock freedom to mean property (4.16). This condition allows one or more processes to be starved - that is, to remain forever in their waiting section-while other processes enter and leave the critical section.

Dijkstra also required that processes be allowed to remain forever in their noncritical sections. Just because a process might send output to the printer, we don't want to insist that it does. This requirement rules out simple algorithms in which processes take turns entering the critical section. A process that does not want to enter its critical section cannot be required to do anything to allow other processes to enter their critical sections.

4.2.5.2 The One-Bit Algorithm

The basic idea of the One-Bit algorithm is to modify algorithm $U M$ to prevent deadlock by having process 1 wait when both processes are concurrently trying to enter the critical section. This is done by modifying process 1 so that if it sees that $x[0]$ equals true in statement $w 2$, then it sets $x[1]$ to false and waits until $x[0]$ equals false (so process 0 has exited its critical section) before going back to statement wait and trying again. The pseudocode for the algorithm, which we call $O B$ is in Figure 4.3. ${ }^{5}$

Algorithm $O B$ satisfies mutual exclusion because processes use the same protocol to enter the critical section as algorithm $U M$: Each process p sets $x[p]$ to TRUE and can then enter the critical section only if $x[1-p]$ equals false. In fact, that $O B$ satisfies mutual exclusion can be proved with the same inductive invariant (4.6) as UM except that the type invariant TypeOK

[^19]```
variables \(x=(p \in\{0,1\} \mapsto\) FALSE \()\);
process \(p \in\{0,1\}\)
 variables \(p c=n c s\);
 while TRUE do
 ncs: skip ;
 wait: \(x[p]:=\) TRUE ;
 \(w 2\) : if \(p=0\) then await \(\neg x[1]\)
 else if \(x[0]\) then \(w 3: x[1]:=\) FALSE ;
 \(w 4\) : await \(\neg x[0]\);
 goto wait
 end if
 end if ;
 cs: skip ;
 exit: \(x[p]:=\) FALSE
 end while
end process
```

Figure 4.3: Algorithm $O B$.
must be modified because $p c(1)$ can now also equal $w 3$ or $w 4$. For algorithm $O B$, we define: ${ }^{6}$

$$
\begin{align*}
\text { TypeOK } \triangleq & \wedge x \in(\{0,1\} \rightarrow\{\text { TRUE, FALSE }\})  \tag{4.17}\\
& \wedge p c \in(\{0,1\} \rightarrow\{n c s, \text { wait, } w 2, w 3, w 4, c s, \text { exit }\}) \\
& \wedge p c(0) \notin\{w 3, w 4\}
\end{align*}
$$

However, the resulting inductive invariant isn't strong enough for proving liveness. We now consider liveness.

Let OBSafe, the safety property of $O B$ described by the pseudocode, be the formula Init $\wedge \square[N e x t]_{v}$, where $v$ equals $\langle x, p c\rangle$ and

$$
\text { Next } \triangleq \exists p \in\{0,1\}: \operatorname{PNext}(p)
$$

The fairness condition we want $O B$ to satisfy is weak fairness of each process's next-state action except when the process is in its noncritical section. A process $p$ remaining forever in its noncritical section is represented in our abstract program by no $\operatorname{PNext}(p)$ step occurring when $p c(p)$ equals ncs. The fairness condition we assume of program $O B$ is therefore:

$$
\text { OBFair } \triangleq \forall p \in\{0,1\}: \operatorname{WF}_{v}((p c(p) \neq n c s) \wedge P N e x t(p))
$$

[^20]$\square I n v \wedge \square[\text { Next }]_{v} \wedge$ OBFair


Figure 4.4: Leads-to lattice for the proof of (4.18).

The formula OBSafe $\wedge$ OBFair, which we call $O B$, satisfies the liveness property that if process 0 is in its waiting section, then it will eventually enter its critical section. That is, $O B$ implies:

$$
\begin{equation*}
(p c(0) \in\{\text { wait }, w 2\}) \leadsto(p c(0)=c s) \tag{4.18}
\end{equation*}
$$

This implies deadlock freedom, because if process 0 stops entering and leaving its critical section, then it eventually stays forever in its noncritical section. If process 1 is then in its waiting section, it will read $x[0]$ equal to false and enter its critical section.

The inductive invariant obtained from the inductive invariant of $U M$ isn't strong enough because it doesn't assert that $x[p]=$ FALSE when process $p$ is in its noncritical, which is at the heart of why $O B$ is deadlock free. For that we need this stronger invariant, where TypeOK is defined by (4.17):
(4.19) $\wedge$ TypeOK

$$
\begin{aligned}
& \wedge x[0] \equiv(p c[0] \in\{\text { "w2", "cs", "exit" }\}) \\
& \wedge x[1] \equiv(p c[1] \in\{\text { "w2", "w3", "cs", "exit" }\}) \\
& \wedge \forall p \in\{0,1\}:(p c[p]=" c s ") \Rightarrow(p c[1-p] \neq \text { "cs" })
\end{aligned}
$$

### 4.2.5.3 Proving Liveness

We will now see how to reason more rigorously about liveness. Even if you never write rigorous correctness proofs, learning how to reason about liveness will help you better understand liveness properties.

There are two kinds of liveness properties that we prove: that a program implies leads-to properties such as (4.16), and that a program implies the fairness properties of a more abstract program. Here we consider leads-to properties. Proving fairness properties is discussed in Section 5.4.

The proof of a leads-to formula is usually decomposed into proving simpler leads-to formulas. Figure 4.4 shows how we decompose the proof of formula (4.18) using what we call a leads-to lattice.

First, let's pretend that the box and the formula labeling it aren't there. We then have just a directed graph whose nodes are formulas. A formula $F$ and its outgoing edges represent the assertion that $F$ leads to the disjunction of the formulas those edges point to. (The edges are numbered so we can refer to them.) Thus, the two edges numbered 1 assert the formula:

$$
(p c(0) \in\{\text { wait }, w 2\}) \leadsto((p c(0)=\text { wait }) \vee(p c(0)=w 2))
$$

By the meaning of leads to, the property asserted by each formula $F$ in the graph means that if the program is ever in a state for which $F$ is true, then it will eventually be in a state satisfying a formula pointed to by one of the outgoing edges from $F$. The graph has a single sink node (one having no outgoing edge). Every path in the graph, if continued far enough, leads to the sink node. By transitivity of the $\leadsto$ relation, this means that if all the properties asserted by the diagram are true of a behavior, then the behavior satisfies the property $F \leadsto H$, where $H$ is the sink-node formula and $F$ is any formula in the lattice. In particular, the properties asserted by the diagram imply formula (4.18). By (3.31), that every formula in the graph leads to the sink-node formula means that the disjunction of all the formulas in the graph leads to the sink-node formula.

Now to explain the box. Let $\Lambda$ equal $\square I n v \wedge \square[\text { Next }]_{v} \wedge$ OBFair, the formula that labels the box. Formula $\Lambda$ is implicitly conjoined to each of the formulas in the graph. It is a $\square$ formula, since the conjunction of $\square$ formulas is a $\square$ formula, and OBFair is the conjunction of WF formulas, which are $\square$ formulas.

Since $\Lambda$ is conjoined to every formula in it, the leads-to lattice makes assertions of the form

$$
\Lambda \wedge G \leadsto\left(\Lambda \wedge H_{1}\right) \vee \ldots \vee\left(\Lambda \wedge H_{j}\right)
$$

Since $\Lambda$ equals $\square \Lambda$, and once $\square \Lambda$ is true it is true forever, this formula is equivalent to $\Lambda \wedge G \leadsto H_{1} \vee \ldots \vee H_{j}$. (This follows from (3.32c) and propositional logic.)

If $H$ is the unique sink node of the lattice, then proving the assertions made by the lattice proves $\models \Lambda \wedge G \leadsto H$ for every node $G$ of the lattice. Since $\Lambda$ equals $\square \Lambda$, it's easy to see that a behavior that satisfies $\Lambda \wedge G \leadsto H$ must satisfy $\Lambda \Rightarrow(G \leadsto H)$, so proving $\models \Lambda \wedge G \leadsto H$ proves $\models \Lambda \Rightarrow(G \leadsto H)$. All this is true only because the formula $\Lambda$ is a $\square$ formula. In general, we label a box in a leads-to lattice only with a formula.

Remember what the proof lattice of Figure 4.4 is for. We want to prove that $O B$ implies (4.18). By proving the assertions made by the proof lattice,
we show that the formula $\Lambda$ labeling the box implies (4.18). By definition of $O B$ and because $O B$ implies $\square I n v$, formula $\Lambda$ is implied by $O B$. Therefore, by proving the leads-to properties asserted by the proof lattice, we prove that $O B$ implies (4.18). Note how we had to use the $\square$ formula $\square I n v \wedge \square[N e x t]_{v}$ instead of OBSafe, which is true only initially.

To complete the proof that $O B$ implies (4.18), we now prove the leadsto properties asserted by Figure 4.4. The leads-to property asserted by the edges numbered 1 is:

$$
\Lambda \wedge(p c(0) \in\{\text { wait }, w 2\}) \leadsto((p c(0)=w a i t) \vee(p c(0)=w 2))
$$

It is trivially true, since $p c(0) \in\{$ wait, $w 2\}$ implies that $p c(0)$ equals wait or $w 2$, and $\square(F \Rightarrow G)$ implies $F \leadsto G$.

The formula $\Lambda \wedge(p c(0)=w a i t) \leadsto(p c(0)=w 2)$ asserted by edge number 2 is true because $\Lambda$ implies $\square I n v \wedge \square[N e x t]_{v}$ and the weak fairness assumption of process 0 , which imply $(p c(0)=w a i t) \leadsto(p c(0)=w 2)$.

The formula

$$
\begin{equation*}
\Lambda \wedge(p c(0)=w 2) \leadsto(p c(0)=c s) \tag{4.20}
\end{equation*}
$$

asserted by edge number 3 is the interesting one. Its proof is decomposed with the proof lattice of Figure 4.5.

The property asserted by the edges numbered 1 in this leads-to lattice has the form $\Lambda \wedge F \leadsto(G \vee(F \wedge \square \neg G))$. This formula is a tautology. Intuitively, it's true because if $F$ is true now, then either $G$ is true eventually or $F$ is true now and $\neg G$ is true from now on. It's proved by:

$$
\begin{aligned}
\Lambda \wedge F & \Rightarrow F \wedge(\diamond G \vee \square \neg G) & & \diamond G \vee \square \neg G \text { equals TRUE } \\
& \Rightarrow \diamond G \vee(F \wedge \square \neg G) & & \text { by propositional logic } \\
& \Rightarrow \diamond G \vee \diamond(F \wedge \square \neg G) & & \text { by }(3.23) \\
& \equiv \diamond(G \vee(F \wedge \square \neg G)) & & \text { by }(3.23)
\end{aligned}
$$

which shows $\vDash(\Lambda \wedge F \Rightarrow \diamond(G \vee(F \wedge \square \neg G))$, from which we can deduce $\vDash \Lambda \wedge F \leadsto(G \vee(F \wedge \square \neg G))$ by (3.20) and the definition of $\leadsto$.

The leads-to formula asserted by edge 2 is an implication. It's true because $\square I n v \wedge \square[N e x t]_{v}$ implies that, if $p c(0)=w 2$ and $\square(p c(0) \neq c s)$ are ever true, then $p c(0)=w 2$ must remain true forever, which by $\square I n v$ implies $x(0)$ must equal TRUE forever. It is proved by proving that $(p c(0)=w 2) \wedge x(0)$ is an invariant of an abstract program. The initial predicate of this program is Inv $\wedge(p c(0)=w 2)$. Its next-state relation is:

$$
\text { Next } 2 \triangleq \operatorname{Inv} \wedge \operatorname{Next} \wedge(p c(0) \neq c s)^{\prime}
$$

$\square I n v \wedge \square[\text { Next }]_{v} \wedge$ OBFair


Figure 4.5: Leads-to lattice for the proof of (4.20).

The formula $\square[\text { Next } 2]_{v}$ is implied by $\square I n v$ and $\square[N e x t]_{v}$ and the conjunct $\square(p c(0) \neq c s)$ of the formula at the tail of the edge 2 arrow. (Note that the prime in this formula is valid because $p c(0) \neq c s$ always true implies that it's always true in the next state.) We are using an invariance property of one program to prove a liveness property of another program. This would seem strange if we were thinking in terms of code. But we're thinking mathematically, and a mathematical proof contains lots of formulas. It's not surprising if one of those formulas looks like the formula that describes a program.

The edges numbered 3 enter a box whose label is the same formula from which those edges come. In general, an edge can enter a box with a label $\square F$ if it comes from a formula that implies $\square F$. This is because a box labeled $\square F$ is equivalent to conjoining $\square F$ to all the formulas in the box, and $\square F \leadsto\left(G_{1} \vee \ldots \vee G_{n}\right)$ implies $\square F \leadsto\left(\left(\square F \wedge G_{1}\right) \vee \ldots \vee\left(\square F \wedge G_{n}\right)\right)$. An arrow can always leave a box, since removing the formula it points to from the box just weakens that formula.

Proofs of the assertions represented by the rest of the lattice's edges are sketched below.
edges 3 The formula represented by these edges is true because the disjunction of the formulas they point to asserts that $p c(1)$ is in the set $\{n c s$, wait, $w 2, w 3, w 4, c s, e x i t\}$, which is implied by $\square I n v$.
edges 4 If $p c(1)$ equals $c s$ or exit, then $\square I n v \wedge \square[N e x t]_{v}$ and the fairness condition for process 1 imply that it will eventually be at ncs. Either $p c(1)$ equals $n c s$ forever or eventually it will not equal $n c s$. In the latter case, $\square[N e x t]_{v}$ implies that the step that makes $p c(1)=n c s$ false must make $p c(1)=$ wait true.
edge 5 This is an implication since $\square I n v$ implies that if process 1 is forever at $n c s$, then $x(1)$ is forever false.
edge 6 If process 1 is at wait, $w 2$, or $w 3$, then its weak fairness condition implies it is eventually at $w 4$. When process 1 is at $w 4$, formulas $\square[N e x t]_{v}$ and $\square x(0)$ (from the label of the inner box) imply that it must remain forever at $w 4$.
edge 7 This is an implication, because Inv and $p c(1)=w 4$ imply $\neg x(1)$.
edge $8 \square \neg x(1), \square(p c(0)=w 2$ ) (implied by the inner box's label), and OBFair imply that a process 0 step that makes $p c(0)$ equal to $c s$ must eventually occur. (Equivalently, these three formulas are contradictory, so they imply FALSE which implies anything.)

The proof sketches of the properties asserted by edges 4 and edge 6 skim over more details than the proofs of the other the properties asserted by the lattice. A more detailed proof would be described by a lattice in which each of the formulas pointed to by the edges numbered 3 were split into multiple formulas - for example, the formula $p c(1) \in\{c s$, exit, ncs $\}$ would be split into the formulas $p c(1)=c s, p c(1)=e x i t$, and $p c(1)=n c s$. A good check of your understanding is to draw the more detailed lattice and write proof sketches for its new edges.

### 4.2.6 Strong Fairness

### 4.2.6.1 Starvation Free Mutual Exclusion

Mutual exclusion was not motivated by sharing a printer. It's needed when multiple processes perform operations on the same data. As we saw from

```
variables sem =1;
process p\in Procs
 while TRUE do
 ncs: skip ;
 wait: P(sem);
 cs: skip ;
 exit: V(sem)
 end while
end process
```

Figure 4.6: Program $L M$ : mutual exclusion with a semaphore.
the Increment example of Section 3.3, even sharing a simple counter without synchronization can result in increment operations being lost. An easy way to synchronize data sharing is to put every operation to the shared data in a critical section.

The One-Bit Algorithm $O B$ implements mutual exclusion with processes that communicate using only simple reads and writes of shared variables. Synchronizing processes in this way is inefficient. Dijkstra proposed the communication mechanism called a binary semaphore or lock. A lock is a variable that can have two values, traditionally taken to be 0 and 1 . Let's call that variable sem. Initially sem equals 1 . A process can execute two atomic operations, $P($ sem $)$ and $V($ sem $)$, to the lock. These operations can be described in pseudocode as:

```
\(\frac{P(\mathrm{sem})}{\text { await }}\) sem \(=1 ; \quad \frac{V(\mathrm{sem})}{\text { sem }:=1}\)
sem :=0
```

Locks were originally implemented with operating system calls. Modern multiprocessor computers provide machine instructions to implement them. Using a lock, mutual exclusion for any set Procs of processes can be implemented with the trivial algorithm $L M$ of Figure 4.6.

Let $\operatorname{PNext}(p)$ now be the next-state action of process $p$ of program $L M$. With weak fairness of $(p c(p) \neq n c s) \wedge \operatorname{PNext}(p)$ for each process $p$ as its fairness property, algorithm $L M$ satisfies the deadlock freedom condition (4.16). However, deadlock freedom allows individual processes to be starved, remaining forever in the waiting section.

Let $\operatorname{Wait}(p), \operatorname{Cs}(p)$, and $\operatorname{Exit}(p)$ be the actions described by the statements in process $p$ with the corresponding labels wait, cs, and exit. Weak
fairness of $(p c(p) \neq n c s) \wedge \operatorname{PNext}(p)$ is equivalent to the conjunction of weak fairness of the actions $\operatorname{Wait}(p), \operatorname{Cs}(p)$, and $\operatorname{Exit}(p)$. Program $L M$ allows starvation of individual processes because weak fairness of the actions of each process ensures that if multiple processes are waiting to execute that action, then some process will execute it. But if processes continually reach the wait statement, some individual processes $p$ may never get to execute Wait (p).

It's reasonable to require the stronger condition of starvation freedom, which asserts that no process starves. This is the property
(4.21) $\forall p \in$ Procs : $(p c(p)=$ wait $) \leadsto(p c(p)=c s)$
which asserts that any process reaching wait must eventually enter its critical section. For $L M$ to satisfy this property, it needs a stronger fairness property than weak fairness of the $\operatorname{Wait}(p)$ actions.

### 4.2.6.2 The Definition of Strong Fairness

By the usual meaning of fair, the fairest lock would be one in which processes execute their $\operatorname{Wait}(p)$ actions in the order in which they set $p c(p)$ to wait. Some implementations of locks ensure this property. However, we don't consider it to be a fairness property because it produces a description of program $L M$ that is not machine closed. It rules out finite behaviors in which processes execute their $\operatorname{Wait}(p)$ actions in the wrong order-executions in which a process $p$ reaches the wait statement after process $q$, but $p$ enters the critical section before $q$ does. Machine closure means that the liveness condition does not forbid any finite behaviors allowed by the program's safety property described by the pseudocode.

There is a standard way to strengthen weak fairness that produces machine closed program descriptions. Weak fairness of an action $A$ asserts that if ever $A$ is always enabled, then an $A$ action must eventually occur. To strengthen this condition, we replace the requirement that $A$ be always enabled by the weaker requirement that it be infinitely often enabled. We therefore define strong fairness of $A$ by:
(4.22) $\mathrm{SF}_{v}(A) \triangleq \square \diamond \mathbb{E}\langle A\rangle_{v} \leadsto\langle A\rangle_{v}$

Analogous to formulas (4.14) and (4.15) for weak fairness are:

$$
\begin{align*}
& \models \operatorname{SF}_{v}(A) \equiv\left(\square \diamond \mathbb{E}\langle A\rangle_{v} \Rightarrow \square \diamond\langle A\rangle_{v}\right)  \tag{4.23}\\
& \vDash \operatorname{SF}_{v}(A) \equiv\left(\square \diamond \mathbb{E}\langle A\rangle_{v} \wedge \square[\neg A]_{v} \leadsto\langle A\rangle_{v}\right) \tag{4.24}
\end{align*}
$$

The informal justification and the proof of (4.23) are similar to the ones for (4.14). The proof of (4.24) is essentially the same as that of (4.15).

### 4.2.6.3 Using a Strongly Fair Semaphore

To make program $L M$ starvation free, meaning that it satisfies (4.21), we conjoin to the safety property LMSafe defined by the pseudocode the fairness property LMFair equal to $\forall p \in \operatorname{Procs}: \operatorname{LMPFair}(p)$, where $\operatorname{LMPFair}(p)$ is the fairness requirement for process $p$. If we let $\operatorname{LMPFair}(p)$ be the conjunction of strong fairness of $\operatorname{Wait}(p)$ and weak fairness of $\operatorname{Cs}(p)$ and $\operatorname{Exit}(p)$, then the following argument shows LMSafe $\wedge$ LMFair implies starvation freedom. Starvation means that a process $p$ waits forever with $p c(p)=$ wait. That is possible only if other processes keep entering and leaving their critical sections. But whenever a process executes the Exit action, it sets sem to 1 , which makes $\mathbb{E}\langle\operatorname{Wait}(p)\rangle_{v}$ true. Thus $\mathbb{E}\langle\operatorname{Wait}(p)\rangle_{v}$ must be true infinitely often, which by strong fairness of $\operatorname{Wait}(p)$ implies that $\operatorname{Wait}(p)$ is eventually executed, so $p$ must enter its critical section.

There are several ways of writing formula $\operatorname{LMPFair}(p)$. First, we observe that weak and strong fairness are equivalent for the actions $C s(p)$ and $\operatorname{Exit}(p)$. This is because the action is enabled iff $p c(p)$ has the appropriate value, so it remains enabled until a step of that action occurs to change $p c(p)$. Thus, when the action is enabled, it is continuously enabled until it is executed. We can therefore write LMFair as the conjunction of strong fairness of the three actions $\operatorname{Wait}(p), \operatorname{Cs}(p)$, and $\operatorname{Exit}(p)$.

The same sort of reasoning that led to (4.13) of Section 4.2.3, as well as Theorem 4.8 of Section 4.2.7, imply that the conjunction of strong fairness of these three actions is equivalent to strong fairness of their disjunction. Therefore, we can write LMFair as strong fairness of their disjunction, which equals $(p c(p) \neq n c s) \wedge P N e x t(p)$.

While $\mathrm{SF}_{v}((p c(p) \neq n c s) \wedge \operatorname{PNext}(p))$ is compact, I prefer not to define $\operatorname{LMPFair}(p)$ this way because it suggests to a reader of the formula that strong fairness of $C s(p)$ and $\operatorname{Exit}(p)$ is required, although only weak fairness is. Usually, the process's next-state action will be the disjunction of many actions, and strong fairness is required of only a few of them. I would define LMFair to equal

$$
\operatorname{WF}_{v}((p c(p) \neq n c s) \wedge P \operatorname{Next}(p)) \wedge \mathrm{SF}_{v}(\operatorname{Wait}(p))
$$

This is redundant because the first conjunct implies weak fairness of $\operatorname{Wait}(p)$ and the second conjunct asserts strong fairness of it. But a little redundancy doesn't hurt, and its redundancy should be obvious because strong fairness implies weak fairness.

### 4.2.7 Properties of WF and SF

Several assertions were made above about weak and strong fairness. We now assert the general theorems from which those assertions follow. The first is that taking weak and strong fairness conditions as the liveness property produces a machine-closed description of a program. This is true if we take not just a single weak or strong fairness property or the conjunction of a finite number of them. It is true for a conjunction of a countable set of weak and/or strong fairness conditions, if each of those conditions asserts fairness of a subaction of the program's next-state action.

An action $A$ is defined to be a subaction of an action Next iff $\models A \Rightarrow$ Next is true. The subactions of the next-state action Next for which fairness is asserted are usually disjuncts in the definition of Next-for example, $\operatorname{Wait}(p)$ is a subaction of the next-state action Next of algorithm $O B$. Often, we assert fairness of an action $P \wedge A$ where $A$ is a disjunct in the definition of Next and $P$ is a state predicate - for example, the action $(p c(p) \neq n c s) \wedge P N e x t(p)$ of $O B .^{7}$

We now state the theorem asserting that the conjunction of fairness properties produces a machine-closed specification. Its proof is in the Appendix.

Theorem 4.7 Let Init be a state predicate, Next an action, and $v$ a tuple of all variables occurring in Init and Next. If $A_{i}$ is a subaction of Next for all $i$ in a countable set $I$, then the pair

$$
\left\langle\text { Init } \wedge \square[N e x t]_{v}, \forall i \in I: \mathrm{XF}_{v}^{i}\left(A_{i}\right)\right\rangle
$$

is machine closed, where each $\mathrm{XF}_{v}^{i}$ may be either $\mathrm{WF}_{v}$ or $\mathrm{SF}_{v}$.
Writing an infinite conjunction of fairness properties may not seem to be something we would do in practice. However, the next-state action of an abstract program sometimes does contain an infinite disjunction - that is, existential quantification over an infinite set of subactions - and we might want a fairness condition for each of those subactions. For example, a program that dynamically creates processes may be described as having an infinite number of processes, only a finite number of which have their nextstate action enabled at any time. We might want a fairness condition for each of those processes.

[^21]It was stated above that, for program $L M$, weak or strong fairness of $(p c(p) \neq n c s) \wedge \operatorname{PNext}(p)$ is equivalent to weak or strong fairness of its three subactions $\operatorname{Wait}(p), \operatorname{Cs}(p)$, and $\operatorname{Exit}(p)$. That's true because when any one of these subactions is enabled, a step of neither of the other two subactions can occur until a step of that subaction occurs. Let $Q$ equal $(p c(p) \neq n c s) \wedge P N e x t(p)$ and let's call its three subactions $A_{1}, A_{2}$, and $A_{3}$. This condition can then be asserted as:

$$
\begin{equation*}
\forall i \in 1 . .3: \mathbb{E}\left\langle A_{i}\right\rangle_{v} \Rightarrow\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle\right) \mathcal{U}\left\langle A_{i}\right\rangle_{v} \tag{4.25}
\end{equation*}
$$

where $\mathcal{U}$ is the until operator with which we first defined weak fairness of $\operatorname{PNext}(p)$ as (4.8). Similarly to what we did for weak fairness, we can remove the $\mathcal{U}$ by observing that $F \mathcal{U} G$ implies that if $G$ is never true, then $F$ must remain true forever. That $\left\langle A_{i}\right\rangle_{v}$ is never true is asserted by $\neg \diamond\left\langle A_{i}\right\rangle_{v}$, which is equivalent to $\square\left[\neg A_{i}\right]_{v}$. Therefore (4.25) implies

$$
\begin{equation*}
\forall i \in 1 . .3: \mathbb{E}\left\langle A_{i}\right\rangle_{v} \wedge \square\left[\neg A_{i}\right]_{v} \Rightarrow \square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle\right) \tag{4.26}
\end{equation*}
$$

While (4.25) implies (4.26), the formulas are not equivalent. Formula (4.26) is strictly weaker than (4.25). However, it's strong enough to imply that strong or weak fairness of all the $A_{i}$ is equivalent to strong or weak fairness of $Q$-assuming that $Q$ is the disjunction of the $A_{i}$. Here is the precise theorem; its proof is in the Appendix.

Theorem 4.8 Let $A_{i}$ be an action for each $i \in I$, let $Q \triangleq \exists i \in I: A_{i}$, and let XF be either WF or SF. Then

$$
\begin{aligned}
& \models\left(\forall i \in I: \square\left(\mathbb{E}\left\langle A_{i}\right\rangle_{v} \wedge \square\left[\neg A_{i}\right]_{v} \Rightarrow\right.\right. \\
& \left.\square[\neg Q]_{v} \wedge \square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)\right) \\
& \quad \Rightarrow \quad\left(\mathrm{XF}_{v}(Q) \equiv \forall i \in I: \mathrm{XF}_{v}\left(A_{i}\right)\right)
\end{aligned}
$$

It is perhaps interesting, but of no practical significance, that the theorem is valid even if the set of actions $A_{i}$ is uncountably infinite.

The completeness result for safety properties in Theorem 4.2 can be extended as follows to arbitrary properties. A proof is sketched in the Appendix.
Theorem 4.9 Let $\mathbf{x}$ be the list $x_{1}, \ldots, x_{n}$ of variables and let $F$ be a property such that $F(\sigma)$ depends only on the values of the variables $\mathbf{x}$ in $\sigma$, for any behavior $\sigma$. There exists a formula $S$ equal to Init $\wedge \square[N e x t]_{\langle\mathbf{x}, y\rangle} \wedge$ $\mathrm{WF}_{\langle\mathbf{x}, y\rangle}(N e x t)$, where Init and Next are defined in terms of $F, y$ is a variable not among the variables $\mathbf{x}$, and the variables of $S$ are $\mathbf{x}$ and $y$, such that $\vDash F \Rightarrow \llbracket G \rrbracket$ iff $\models S \Rightarrow G$, for any property $G$. If $F$ is a safety property, then the conjunct $\mathrm{WF}_{\langle\mathbf{x}, y\rangle}($ Next $)$ is not needed.

Like Theorem 4.2, this result is of theoretical interest only.

### 4.2.8 What is Fairness?

Before TLA, concurrent abstract programs were generally written in something like a coding language. Fairness meant that each process had to execute its next atomic statement when it could. Viewed in terms of TLA, each atomic statement was described by an action, and fairness meant fairness of those actions. Usually that meant weak fairness of the action, but when the statement was a synchronization primitive, it sometimes meant strong fairness. For rigorous reasoning, those fairness requirements were expressed as requirements on when control in the process had to move from one control point to another [45].

With TLA, fairness was generalized to weak and strong fairness of arbitrary actions. We have considered a fairness property for a safety property $S$ to be a formula $L$ that is the conjunction of weak and strong fairness conditions on actions such that $\langle S, L\rangle$ is machine closed. However, weak and strong fairness of an action are defined in terms of how the action is written, not in terms of its semantics. While we have given semantic definitions of safety, liveness, and machine closure; we have not done it for fairness.

I only recently learned that a semantic definition of fairness was published in 2012 by Völzer and Varacca [49]. Their definition of what it means for a property $L$ to be a fairness property for a safety property $S$ can be stated in terms of the following infinite two-player game. Starting with seq equal to the empty sequence, the two players forever alternately take steps that append a finite number of states to seq. The only requirement on the steps is that after each one, seq must satisfy $S$. The second player wins the game if she makes seq an infinite sequence that satisfies $L$. (Since $S$ is a safety property, seq must satisfy $S$.) They defined $L$ to be a fairness property for $S$ iff the second player can always win, regardless of what the first player does (as long as he follows the rules).

It is mathematically meaningless to say that a definition is correct. However, this seems to be the only reasonable definition that includes weak and strong fairness such that fairness implies machine closure and the conjunction of countably many fairness properties is a fairness property. This definition also encompasses other fairness properties that have been proposed, including one called hyperfairness [33].

I believe that weak and strong fairness of actions are the only fairness properties that are relevant to abstract programs. However, this general definition is interesting because it provides another way to think about fair-
ness. More importantly, it's interesting because concepts we are led to by mathematics often turn out to be useful.

### 4.3 Possibility and Accuracy

### 4.3.1 Possibility Conditions

Informally, a safety property states what an abstract program is allowed to do and a liveness property states what it must do. If a behavior violates a safety property, then it does so at a particular step in the behavior. Therefore, we can also view a safety property as stating what a program must not do-that is, it must not take a step that violates the property. So, liveness says what must happen and safety says what must not happen. That a program eventually sets $x$ to 0 is a liveness property, that it never sets $x$ to 0 is a safety property.

Possibility says what might happen. That a program might set $x$ to 0 is a possibility condition. It is not a property, because it is not a predicate on behaviors. It is satisfied by an abstract program iff there is some behavior of the program in which $x$ is set to 0 . We can tell that the program satisfies it if we see such a behavior. But seeing one behavior that doesn't satisfy it doesn't tell us whether or not some other behavior might satisfy it. However, we will see that possibility conditions can be expressed as properties that explicitly mention the program's actions.

Knowing that something might be true of a system, but knowing nothing about the probability of its being true, is of almost ${ }^{8}$ no practical use. The only way I know of calculating such probabilities is to view the abstract program as a state-transition system, attach probabilities to the various transitions, and mathematically analyze that system-for example, using Markov analysis. Usually, the state-transition system would be a more abstract program implemented by the program of interest.

While possibility conditions of systems are of little interest, we don't reason about systems; we reason about abstract programs that describe systems. Verifying that a program satisfies a possibility condition can be a way of checking what we will call here the accuracy of an abstract program - that it accurately describes the system it is supposed to describe. For example, if the system doesn't control when users send it input, a program that accurately describes the system and its users should satisfy the condition that

[^22]it's always possible for users to enter input.

### 4.3.2 Expressing Possibility in TLA

There exist logics for expressing possibility properties and tools for checking them. Such tools could be built to check those properties for abstract TLA programs, and it might be worthwhile to do so. But we will see how that can be avoided.

Even though a possibility condition is not a property, that an abstract program satisfies a possibility condition can be expressed by a TLA formula that depends on the program and the possibility condition. For example, suppose $S$ is a TLA description of an abstract program and the action Input is a subaction of its next-state action that describes users entering input. That it is always possible for users to enter input could be considered to mean that the Input action is enabled in every reachable state of the program, which is asserted by

$$
\models S \Rightarrow \square \mathbb{E}(\text { Input })
$$

However, "always possible" might instead mean that from any reachable state, there is a sequence of possible steps that reach a state with $\mathbb{E}$ (Input) true - a condition we will call "always eventually possible". To express this and other possibility conditions in TLA, we can use the action composition operator defined in Section 3.4.1.4. Recall that for any action $A$, the action $A^{+}$is true of a step $s \rightarrow t$ iff $t$ is reachable from $s$ by a sequence of one or more $A$ steps.

Now consider an abstract program Init $\wedge \square[N e x t]_{v}$ where Init is a state predicate, Next is an action, and $v$ is the tuple of all variables that appear in Init or Next. Let's abbreviate $\left([N e x t]_{v}\right)^{+}$as $[N e x t]_{v}^{+}$. If $s$ is a reachable state of the program, then $s \rightarrow t$ is a [Next $]_{v}^{+}$step iff it is possible for an execution of the program to go from state $s$ to state $t$. (Since [Next] ${ }_{v}$ allows stuttering steps, $t$ can equal $s$. In fact, $[N e x t]_{v}^{+}$is equivalent to $\left[N_{e x t}{ }^{+}\right]_{v}$.) A state $t$ is a reachable state of the program iff there is a state $s$ satisfying Init such that $s \rightarrow t$ is a $[N e x t]_{v}^{+}$step. In other words, $t$ is a reachable state of the program iff there is a state $s$ such that $s \rightarrow t$ is an Init $\wedge[N e x t]_{v}^{+}$ step.

We can now express the condition that it is always eventually possible for the user to enter input, meaning that from any reachable state, it is possible to reach a state in which $\mathbb{E}$ (Input) is true. We generalize this condition by replacing $\mathbb{E}$ (Input) with an arbitrary state predicate $P$. For the abstract
program Init $\wedge \square[N e x t]_{v}$, that $P$ is always eventually possible is expressed as:

$$
\begin{equation*}
\models \text { Init } \wedge \square[N e x t]_{v} \Rightarrow \square \mathbb{E}\left([N e x t]_{v}^{+} \wedge P^{\prime}\right) \tag{4.27}
\end{equation*}
$$

This example indicates that it should be possible to express possibility conditions in TLA using $\mathrm{Next}^{+}$and the $\mathbb{E}$ operator. However, like (4.27), the resulting TLA formulas are quite different from the ones that arise in checking that an abstract program satisfies a property. Different tools would be needed to verify that a program satisfies a possibility condition expressed in this way. It would be nice to be able to verify possibility conditions by verifying the same kind of properties that arise in verifying that an abstract program satisfies a liveness property. Here is how it can be done for the condition that it is always possible to reach a state satisfying $P$.

This condition obviously holds if the program satisfies the property that in any reachable state, a state satisfying $P$ must eventually occur-that is, if the program satisfies the property $\square \diamond P$. Let $S$ equal Init $\wedge \square[N e x t]_{v}$. The safety property $S$ will not imply the liveness property $\square \diamond P$ unless $P$ is true in all reachable states of $F$-that is, unless $S$ implies $\square P$. However, if $F$ is a fairness property for $S$, so $\langle S, F\rangle$ is machine closed, then $S \wedge F$ has the same set of reachable states as $S$. So, any state satisfying $P$ can be reached from a reachable state of $S$ iff it can be reached from a state satisfying $S \wedge F$. Therefore, it suffices to verify that a state satisfying $P$ can be reached from every reachable state of $S \wedge F$, which is true if $S \wedge F$ implies $\square \diamond P$. Therefore, we can verify that $P$ is always eventually possible by verifying

$$
\models \text { Init } \wedge \square[\text { Next }]_{v} \wedge F \Rightarrow \square \diamond P
$$

for a fairness property $F$ of Init $\wedge \square[N e x t]_{v}$. By Theorem 4.7, we can ensure that $F$ is a fairness property for $S$ by writing it as the conjunction of strong fairness properties. (Since strong fairness implies weak fairness, there is no need to use weak fairness properties.) There is a completeness result that essentially says that such a fairness property always exists for any state predicate $P$ if $S$ has the standard form Init $\wedge \square[N e x t]_{v}[32]$.

I suspect that TLA can in a similar way express possibility for a more general class of possibility conditions than the two possible interpretations of "always possible". However, the only other possibility condition I have found to be useful for checking the accuracy of an abstract program is a very simple one, discussed in the following section.

### 4.3.3 Checking Accuracy

Using TLA to check that a state predicate $P$ is always eventually possible may not be easy, since it requires finding a fairness condition that implies $P$ is true infinitely often. There's a simpler condition that is easier to check: it's possible for $P$ to be true (at least once). It would be more useful to check the stronger condition of always eventually possible. However, I have found that most people, including me, don't spend enough time checking the accuracy of their abstract programs. The weaker check is likely to be more helpful in practice because it's more likely to be done than one that requires more effort.

It's possible for $P$ to be true means that it is true in some reachable state. This is equivalent to the assertion that $\neg P$ is not true in all reachable states - in other words, that $\neg P$ is not an invariant of the program. We can check this by asking a tool for checking invariance to check if $\neg P$ is an invariant. If the tool reports that it isn't, then it's possible for $P$ to be true. For example, if a model checker reports that your mutual exclusion algorithm satisfies mutual exclusion, you should check that it's possible for a process to enter its critical section. This is especially true if you did not have to make many corrections to reach that point. Remember that a program that takes no non-stuttering steps satisfies most safety properties.

Tools can provide other ways of checking the accuracy of a program. For example, if Input is a subaction of the program's next-state action, a TLA ${ }^{+}$ model checker called TLC reports how many different steps satisfying Input occur in behaviors of the program. If it finds no such steps, then it is not always possible for an Input step to occur with either definition of "always possible". Finding too few such steps can also be an indication that the program is not accurate.

Accuracy of an abstract program cannot be formally defined. It means that a program really is correct if it implements the abstract program. In other words, an abstract program is accurate iff it means what we want it to mean, and our desires can't be formally defined. That accuracy can't be formally defined does not mean it's unimportant. There are quite a few important aspects of programs that lie outside the scope of our science of correctness.

### 4.4 Real-Time Programs

Real-time abstract programs are ones in which timing constraints ensure that safety properties hold. Real time is most often used in concrete pro-
grams to ensure not safety but liveness. It appears in timeouts that guarantee something eventually happens. For example, to guarantee that a message is eventually delivered despite possible message loss, a timeout occurs if an acknowledgement of the message is not received soon enough after it is sent, and the message is then resent. A program that uses timeouts only in this way is not a real-time program. The actual time at which a timeout occurs affects only performance, not correctness. Therefore, timeout can be modeled in an abstract program as an event that must eventually occur but can occur at any time. The program can use liveness to abstract away time. We need to write a real-time abstract program only if timing constraints are used to ensure safety properties.

Scientists have been dealing mathematically with real-time systems for centuries by simply representing time as the value of a variable. It has been known for decades that this works for real-time programs too [6]. I will illustrate how it is done with a mutual exclusion algorithm of Michael Fischer. ${ }^{9}$

I believe that most work on the correctness of real-time programs has considered only safety properties. Instead of requiring that something eventually happens, it requires the stronger property that it happens within some fixed amount of time, which is a safety property. Fischer's Algorithm is more general because in addition to using real-time to ensure mutual exclusion, a safety property, it uses fairness to ensure deadlock freedom, a liveness property.

In the past 40 years, I have had essentially no contact with engineers who build real-time systems. I know of only one case in which TLA was used to check that a commercial system satisfied a real-time property [5]. ${ }^{10}$ From the point of view of our science, there is nothing special about real-time programs. However, how well tools work can depend on the application domain. The TLA ${ }^{+}$tools were not developed with real-time programs in mind, and it's unclear how useful they are in that domain.

## Math VI

Definitions Within an Expression The scope of an ordinary definition includes everything that comes logically after it in the current discussion,

[^23]which in this book might end at the end of the current section. It's sometimes convenient to make a definition whose scope is limited to a single expression exp. The usual reason is "common subexpression elimination", where exp contains multiple occurrences of the same subexpression subexp, and we want to give that subexpression a name $n m$ and rewrite exp as the expression nmexp in which each occurrence of subexp has been replaced by $n m$. We do that by rewriting exp as:
$$
\text { LET } n m \triangleq \text { subexp IN nmexp }
$$

Note that if exp occurs in the scope of bound variables and we wanted to do this with an ordinary definition, we would have to define $n m$ as an operator with one argument for each of those bound variables. The general form of the LET/IN construct is

```
LET defs IN exp
```

where exp is an expression and defs consists of one or more definitions. The scope of those definitions is the expression exp, and the definitions can include definitions of mappings that take arguments.

The Mapping Set Constructor ZF contains a set constructor that I call the mapping constructor. Its general form is $\{\exp : v \in S\}$, where $v$ is a bound variable whose scope is the expression exp. It equals the set of all values obtained by substituting an element of the set $S$ for $v$ in exp. For example, $\{2 * n: n \in \mathbb{N}\}$ is the set of all even natural numbers. As another example, if $S$ is a set of $n$-tuples, then it is a subset of $S_{1} \times \ldots \times S_{n}$, where $S_{i}$ is the set $\{v(i): i \in S\}$.

Don't confuse the mapping constructor with the subsetting constructor, whose form is $\{v \in S: \exp \}$. The set of all even natural numbers can be written with the subsetting constructor as $\{n \in \mathbb{N}: n \% 2=0\} .{ }^{11}$

### 4.4.1 Fischer's Algorithm

The algorithm without its timing constraints is described by the pseudocode in Figure 4.7. The constant Procs is the set of processes, and none is some constant that is not in Procs. The global variable $x$ is read and written by all the processes and, as usual, the value of $p c(p)$ is the label of the next

[^24]```
variables \(x=\) none ;
process \(p \in\) Procs
    variables \(p c=n c s\);
    while TRUE do
            ncs: skip ; noncritical section
            wait: await \(x=\) none ;
            \(w 1: \quad x:=p\);
            \(w 2\) : if \(x \neq p\) then goto wait end if
            cs: skip ; critical section
            exit: \(x:=\) none
    end while
end process
```

Figure 4.7: Fischer's Algorithm.
statement to be executed by process p. As explained in Section 4.2.2.1, the statement await P is a synchronization primitive that allows the program to continue only when the state predicate P is true. Thus, the wait statement of process p is described by the action:

$$
\begin{aligned}
& \wedge p c(p)=\text { wait } \\
& \wedge x=\text { none } \\
& \wedge p c^{\prime}=(p c \text { EXCEPT } p \mapsto w 1) \\
& \wedge x^{\prime}=x
\end{aligned}
$$

With no time constraints, mutual exclusion is easily violated. Two processes can execute the wait statement when x equals none, then statements $w 1$ and $w 2$ can both be executed by the first process and then by the second one, putting both processes in the critical section. Mutual exclusion is ensured by timing constraints.

We assume that each step is executed instantaneously at a certain time, and that each process executes $w 1$ at most δ seconds after it executes wait and executes $w 2$ at least ϵ seconds after it executes $w 1$, for constants δ and ϵ with $\delta<\epsilon$. (The algorithm doesn't specify what the time units are; we will call them seconds for convenience.) It's a nice exercise to show that this ensures mutual exclusion by assuming that two processes are in their critical sections and showing that the necessary reads and writes of x that allowed them both to enter the critical section must have occurred in an order that violates the timing constraints if $\delta<\epsilon$. While it may be good enough for such a simple algorithm, this kind of behavioral reasoning is unreliable for more complicated programs.

To verify mutual exclusion more rigorously, we describe Fischer's Algorithm with its timing constraints as an abstract program. This requires adding a variable whose value represents the current time. Scientists usually call that variable t, but I like to call it now. We also add a variable $r t$, where the value of $r t(p)$ records the time at which certain actions of process p were executed. The program also contains an additional process called Time that advances time.

The algorithm is written in pseudocode in Figure 4.8. The initial value of now can be any number in the set \mathbb{R} of real numbers, and the initial value of $r t$ can be any function from the set of processes to \mathbb{R}. Let's now examine the code of process p. Two assignments to $r t(p)$ have been added. Each sets $r t(p)$ to the time at which the action in which it appears is executed, the actions being the ones performed when the program is at control points wait and $w 1$. Also added is an await statement at $w 2$ that allows the action to be performed only when now $-r t(p) \geq \epsilon$. This await enforces the requirement that the $w 2$ action must not be executed until at least ϵ seconds after execution of the $w 1$ action.

Let's now examine the Time process. It repeatedly performs a single atomic action, so it has just one control point that needs no label. That action increases the value of now. The $: \in$ operation is like the assignment operation $:=$ except with $=$ replaced by \in. That is, a step of the Time process's action assigns to now an arbitrary element of the set on the righthand side of the $: \in$. The action can assign to now any value t greater than its current value subject to the condition that $t \leq r t(p)+\delta$ for every process p at control point $w 1$. It is this condition that enforces the requirement that a process must execute statement $w 1$ within δ seconds of when it executes the wait statement.

Fischer's Algorithm illustrates the basic method of representing realtime constraints in an abstract program. Lower bounds on how long it must take to do something are described by enabling conditions on the algorithm's actions. Upper bounds are described by enabling conditions on the action that advances time. There are a number of ways of enforcing these bounds. The use of the variable $r t$ in Fischer's algorithm shows one way. Another is to use variables whose values are the number of seconds remaining before an action must be executed (lower bounds) or can be executed (upper bounds)-variables whose values are decremented by the time-advancing action.

The idea of an abstract program constraining the advance of time is mind-boggling to most people, since they view a program as a set of instructions. They see it as the program stopping time. You should by now

```
variables \(x=\) none, now \(\in \mathbb{R}, r t \in(\) Procs \(\rightarrow \mathbb{R})\);
process \(p \in\) Procs
        variables \(p c=n c s\);
        while TRUE do
            ncs: skip ; noncritical section
            wait: await \(x=\) none ;
            \(r t(p):=\) now ;
            \(w 1: \quad x:=p\);
                    \(r t(p):=n o w ;\)
            \(w 2: \quad\) await \(n o w-r t(p) \geq \epsilon\);
                    if \(x \neq p\) then goto wait end if ;
            \(c s\) : skip ; critical section
            exit: \(x:=\) none
    end while
end process
process Time
    while TRUE do
            now \(: \in\{t \in \mathbb{R}:\)
                                    \(\wedge t>\) now
                            \(\wedge \forall p \in \operatorname{Procs}:(p c(p)=w 1) \Rightarrow(t \leq r t(p)+\delta)\}\)
    end while
end process
```

Figure 4.8: Fischer's Algorithm with explicit time.
realize that an abstract program is a description, not a set of instructions. It describes a universe in which the algorithm is behaving correctly. That description may constrain the algorithm's environment, which is the part of the universe that the algorithm doesn't control-for example, its users. Time is an important part of that environment if the amount of time it takes to perform the algorithm's actions is relevant to its correctness.

4.4.2 Correctness of Fischer's Algorithm

Having written Fischer's algorithm as an abstract program, we know how to verify its correctness. Mutual exclusion is an invariance property, and to understand why the algorithm satisfies it we need to find the inductive invariant that explains why the algorithm satisfies that property. As usual, the inductive invariant asserts type-correctness of all the variables. The
interesting part of the invariant makes the following assertions about each process p :

- If control is at $w 1$, then the current time is at most δ seconds after the time at which p just executed the wait statement.
- If control is at cs or exit, then $x=p$ and in no process is control at $w 1$. (This condition implies mutual exclusion.)
- If p is at $w 2$ and $x=p$, then any process with control at $w 1$ must execute statement $w 1$ before p can execute statement $w 2$.

These assertions about every process p are expressed mathematically as:

```
\(\forall p \in\) Procs :
    \(\wedge(p c(p)=w 1) \Rightarrow(r t(p) \leq n o w \leq(r t(p)+\delta))\)
    \(\wedge(p c(p) \in\{c s, e x i t\}) \Rightarrow(x=p) \wedge(\forall q \in\) Procs : pc \((q) \neq w 1)\)
    \(\wedge(p c(p)=w 2) \wedge(x=p) \Rightarrow\)
        \(\forall j \in\) Procs : \((p c(q)=w 1) \Rightarrow((r t(q)+\delta)<(r t(p)+\epsilon))\)
```

You should understand why the three conjuncts in this formula are the three assertions expressed informally above. Adding the type-correctness part and proving that it is an inductive invariant is a good exercise if you want to learn how to write proofs.

Under suitable fairness assumptions, Fischer's Algorithm is deadlock free. Recall that deadlock freedom for a mutual exclusion algorithm means it's always true that if some process is trying to enter the critical section, then some process (not necessarily the same process) will eventually do so. Deadlock freedom of Fischer's Algorithm follows from the algorithm having this additional invariant:

$$
\begin{equation*}
(x \neq \text { none }) \Rightarrow(p c(x) \in\{w 2, c s, \text { exit }\}) \tag{4.28}
\end{equation*}
$$

Here's a sketch of a proof by contradiction that the algorithm is deadlock free. Suppose some process is at wait and no process is ever in its critical section. Eventually, some set of processes will be forever in their noncritical sections, and one or more processes will forever have control at wait, w1, or $w 2$. Eventually the latter processes will all wind up waiting at the wait statement with $x \neq$ none. But that contradicts the invariant (4.28), which implies that process x cannot be at wait.

4.4.3 Fairness and Zeno Behaviors

What fairness requirements of the abstract program of Figure 4.8 are assumed in the informal argument that the program is deadlock free? If $\operatorname{procStep}(p)$ is the next-state action of a process p in Procs, then we naturally assume weak fairness of the action $\operatorname{procStep}(p) \wedge(p c \neq n c s)$. What about fairness of the Time process? Let's call that process's action timeStep. The obvious choice is to let it be strong fairness of timeStep. However, that allows the following behavior: While all other processes in Procs remain in their noncritical sections, a process p executes the wait statement and then, at time t, executes statement $w 1$ that sets $r t(p)$ to t. Repeated executions of action timeStep then set now to $t+\epsilon / 2$, then $t+2 * \epsilon / 3$, then $t+3 * \epsilon / 4$, and so on. Process p must wait forever at $w 2$ because now is always less than $t+\epsilon$ and the $w 2$ action is enabled only when now $\geq t+\epsilon$. Such a behavior, in which time remains bounded, is called a Zeno behavior.

The most natural way to avoid the problem of Zeno behaviors is to make the abstract program describing Fischer's Algorithm disallow them. The obvious way to do that is to conjoin this liveness property:

$$
\begin{equation*}
\forall t \in \mathbb{R}: \diamond(\text { now }>t) \tag{4.29}
\end{equation*}
$$

which asserts that the value of time is unbounded. However, this isn't necessarily a fairness property. It's easy to write an abstract program that allows only Zeno behaviors, so conjoining the liveness property (4.29) produces a program that allows no behaviors. For example, we can add timing constraints to the program of Figure 4.7 that require a process both to execute statement $w 1$ within δ seconds after executing statement wait and to wait at least ϵ seconds after executing wait before executing $w 1$, with $\delta<\epsilon$. If a process executes wait at time t, then now $\leq t+\delta$ must remain true forever. If we added fairness properties that required processes eventually to reach the wait statement and execute it if it's enabled, then the program would allow only Zeno behaviors.

We can ensure that Fischer's Algorithm satisfies (4.29) by having it require an appropriate fairness condition on the advancing of time. The condition we need is strong fairness of the action timeStep $\wedge\left(\right.$ now $\left.^{\prime}=\exp \right)$, where exp is the largest value of now' permitted by the values of $r t(p)$ for processes p with control at $w 1$, or now +1 if there is no such process. More precisely:

$$
\begin{aligned}
& \text { exp } \triangleq \operatorname{LET} T \triangleq\{r t(p)+\delta: p \in\{q \in \text { Procs }: p c(q)=w 1\}\} \\
& \text { IN IF } T=\{ \} \text { THEN now }+1 \operatorname{ELSE} \operatorname{Min}(T)
\end{aligned}
$$

where $\operatorname{Min}(T)$ is the minimum of the nonempty set T of real numbers. With this fairness condition on advancing time and the conjunction of the
fairness conditions for the processes in Procs, Fischer's Algorithm satisfies (4.29) and the proof sketch that the algorithm is deadlock free can be made rigorous.

If we are interested only in safety properties, there is no need for an abstract program to rule out Zeno behaviors. A program satisfies a safety property iff all finite behaviors allowed by the program satisfy it, and a Zeno behavior is an infinite behavior. In many real-time programs, liveness properties are of no interest. Correctness means not that something eventually happens but that it happens within a certain length of time, which is a safety property. Zeno behaviors then make no difference, and there is no reason to disallow them.

Even if Zeno behaviors don't matter, the absence of non-Zeno behaviors can be a problem. Since real time really does increase without a bound, an abstract program in which it is not always possible for time to become arbitrarily large is unlikely to be accurate. Therefore, we almost always want to ensure that a real-time program satisfies the condition that for any $t \in \mathbb{R}$, it is always possible for now $>t$ to be true. This is true iff, for any $t \in \mathbb{R}$, from any reachable state of the program it is always possible for now $>t$ to be true. This is the kind of possibility condition considered in Section 4.3. We saw there that if the program Safe is a safety property that satisfies this condition, then we can verify that it does so by finding a conjunction F of fairness properties for Safe and verifying:

$$
\begin{equation*}
\vDash \text { Safe } \wedge F \Rightarrow \square \diamond(\text { now }>t) \tag{4.30}
\end{equation*}
$$

for all $t \in \mathbb{R}$. (Since a real-time program never allows now to decrease, it suffices to verify that Safe $\wedge F$ implies (4.29).)

4.4.4 Discrete Time

Verifying properties of real-time programs is easier if we assume time is discrete and now always equals a multiple of some time unit. It may seem obvious that, since concrete programs run on real computers reading the current time from a clock that advances in discrete steps, we can always assume discrete time. However, different processes can be executed on different computers whose clocks can run at slightly different rates. Still, it seems likely that an abstract program will be sufficiently accurate if it assumes time changes only in one yoctosecond (10^{-24} second) increments. So, in practice we should be able to assume that the values of now and any time constants are integers, leaving unspecified how long one time unit is.

When writing proofs, there doesn't seem to be much reason to use discrete time. The main advantage of discrete time is that tools for automatically verifying properties of ordinary abstract programs can, in principle, handle discrete real-time programs. For example, I didn't prove that what I claimed in Section 4.4.2 to be an inductive invariant of Fischer's Algorithm actually is one. Instead, I used a model checker to check that it is, which gave me enough confidence to make the claim.

Many model checkers are based on enumerating reachable states, usually on a small instance of the program - for example, with a small number of processes. This is impossible with continuous time, in which a single state can have possible next states with uncountably many values of now. There are still infinitely many reachable states with discrete time because the values of now are unbounded, but counterexamples to incorrect safety properties and to (4.29) for a particular time t can be found by examining all reachable states with now less than some value.

The number of reachable states that must be examined can be reduced for real-time programs that satisfy a condition called symmetry under time translation. This condition asserts that for every $d \in \mathbb{R}$ there is a timetranslation mapping T_{d} from states to states such that: For every state s, the value of now in state $T_{d}(s)$ equals d plus its value in s, and any step $s \rightarrow t$ satisfies the program's next-state action iff $T_{d}(s) \rightarrow T_{d}(t)$ does. For example, Fischer's Algorithm is symmetric under the time translations T_{d} defined by letting the values of now and $r t(p)$ in $T_{d}(s)$ equal d plus their values in s, and letting the values of x and $p c$ be the same in s and $T_{d}(s)$.

Suppose S is a program symmetric under the time-translation functions T_{d}, and for simplicity assume that the program's initial predicate asserts now $=0$. Let's call states s and t translation equivalent iff $t=T_{d}(s)$ for some d. If P is a safety property containing only variables whose values are left unchanged by the functions T_{d}, then to verify that P is satisfied by S we can verify that it is satisfied by the program \widehat{S} obtained from S by considering two translation equivalent states to be the same state. Often, there will be some time λ such that every reachable state of S is translation equivalent to a state in which now $\leq \lambda$, in which case now $\leq \lambda$ in every state of \widehat{S}. This implies we can verify that S satisfies (4.29) by checking that it satisfies $\diamond($ now $\geq \lambda+1)$, which requires examining only reachable states with now $\leq \lambda+1$. The details can be found elsewhere [35].

Being able to reduce verification of a discrete-time program to examining reachable states with now less than some value would still leave an enormous number of states to consider if now advanced in yoctosecond steps. Henzinger, Manna, and Pnueli [17] proved that for a class of programs called
timed transition systems, certain properties can be verified with discrete time in which now advances only in reasonably sized steps. Timed transition systems are essentially programs in which, like Fischer's Algorithm, time is used only to require minimum and maximum delays between when a program action becomes enabled and when it either must be executed (maximum delay) or may be executed (minimum delay). If those delays are constants that are all multiples of some time unit Δ, then a certain class of properties can be verified by letting time always be a multiple of Δ. That class of properties are ones in which replacing each state in a behavior by time-translating it by d with $-\Delta<d \leq 0$ does not change whether the behavior satisfies the property. It includes properties that depend only on variables whose values are unchanged by time translation. It also includes the property (4.29).

One reason that has been given for preferring continuous time is that it is necessary for composing programs. It would be difficult to compose a program in which a clock tick represents a nanosecond with one in which a clock tick represents a millisecond. However, we can easily describe a program in terms of a clock that ticks at an unspecified rate and an unspecified constant that equals the number of clock ticks in a second.

Program composition is discussed in Section 7.2, where it is shown how the composition of two abstract programs can be represented as the conjunction of the TLA formulas that describe them. Moreover, a real-time abstract program can be written as the conjunction of two formulas, one describing an ordinary, untimed program, the other specifying the required timing constraints [1]. However, this kind of abstract program composition is not yet usable in practice.

4.4.5 Hybrid Systems

A hybrid computer system is one that controls physical processes-for example, one that flies an airplane or runs a chemical plant. An abstract program that describes such a system is a real-time program that describes not only the passage of time but also other physical quantities like altitude or pressure. There is no fundamental difference between programs that describe hybrid systems and other real-time programs. The current altitude or pressure is represented by a variable like any other variable. Abstract programs describing hybrid systems differ from other real-time abstract programs only in the math used to describe them. If the variable prs describes the current pressure, then the time-advancing subaction of the next-state action might
contain a subformula like:
(4.31) prs $^{\prime}=p r s+\int_{\text {now }}^{\text {now }}{ }^{\prime}$ exp $d t$
for some expression \exp containing the bound variable t and other variables [30].

It may seem that a representation of the behavior of a continuous process by a sequence of discrete states would not be sufficiently accurate. For example, if it is required that the pressure not be too high, violation of that requirement would not be found if it occurred during the time between two successive states of the behavior. This is not a problem because correctness means that a property is true of all possible behaviors, and the possibility of the pressure being too high at some time is revealed by a behavior containing a state in which now equals that time.

Other than the differences implied by the use of continuous math, such as the calculus in (4.31), rather than discrete math, proving properties of hybrid programs is the same as proving properties of other real-time abstract programs. Automatic tools like model checkers for ordinary abstract programs seem to be unsuitable for checking abstract programs in which variables represent continuously varying quantities. Methods have been developed for checking such programs [11].

Chapter 5

Refinement

We have discussed one abstract program implementing another. We now consider more carefully what that means. We write abstract programs with TLA formulas, and it is rather weird to talk about one formula implementing another. Computer scientists who view programs mathematically generally use the term refinement rather than implementation. Henceforth, we will use the two terms interchangeably. There are two aspects to refinement:

Step Refinement The refining program has a finer grain of atomicity. This means that a non-stuttering step of the high-level program can correspond to multiple steps of the refining program, all but one of them implementing stuttering steps of the high-level program. In the example of Section 3.5.1, the hour-minute-second clock $H M S$ refines the hour-minute clock $H M$. Every non-stuttering step of $H M$, which advances the minute, corresponds to 60 steps of $H M S$, each changing the second and one of them changing the minute.

Data Refinement A program refining another program can also refine the representation of data used by the higher-level program. This will be illustrated by refining a higher-level program that uses numbers with a program that implements a number by a sequence of digits.

Refinement usually involves both step and data refinement, with step refinement manifest as operations on the lower-level data requiring more nonstuttering steps than the corresponding operations on the higher-level program's data. As we saw with the example of the hour-minute and hour-minute-second clocks in Section 3.5.2, without data refinement, a program S is refined by a program T means that T implies S. We will see that
with data refinement, T refines S means that T implies the formula obtained from S by substituting expressions containing the variables of T for the variables of S. To describe this precisely, we need some notation for substitution.

Mathematicians have no standard way of describing substitution, and the notation I've seen used by computer scientists is impractical for the formulas that arise in describing programs. The notation used in this book, illustrated with substitution for three variables, is that

$$
E \text { WITH } v_{1} \leftarrow \exp _{1}, v_{2} \leftarrow \exp _{2}, v_{3} \leftarrow \exp _{3}
$$

is the expression obtained from the expression E by simultaneously substituting exp p_{1} for $v_{1}, \exp _{2}$ for v_{2}, and $\exp _{3}$ for v_{3}; where v_{1}, v_{2}, and v_{3} are distinct variables and $\exp _{1}, \exp _{2}$, and $\exp _{3}$ are expressions. For example:

$$
(p *(q+r) \text { WITH } q \leftarrow r, r \leftarrow q+s)=p *(r+(q+s))
$$

As in this example, the with expression is usually enclosed in parentheses when it appears as a subexpression in a larger expression, otherwise parsing would be difficult.

When a program S is refined by a program T, the variables in formula T are usually different from the variables in formula S, and the two sets of variables have non-overlapping scopes. Showing that T refines S involves reasoning in the scope of T about formulas containing the variables of S. To do this, we import an expression E containing variables of S into the scope of the variables of T as the expression

$$
E \text { with } v_{1} \leftarrow \exp _{1}, \ldots, v_{m} \leftarrow \exp _{m}
$$

where the v_{i} are the variables of S and the $\exp _{i}$ are expressions containing the variables of T. The same thing applies to the constants of T and S, so the v_{i} are both the variables and constants of S, and if v_{i} is a constant then $\exp _{i}$ is a constant expression. We adopt the convention that if the expression $\exp _{i}$ is a constant or variable of T with the same name as the constant or variable v_{i} of S, then we omit the substitution $v_{i} \leftarrow v_{i}$. (This is convenient because it can be unclear whether the two variables or constants are the same in both programs or just have the same name.)

5.1 A Sequential Algorithm

In step refinement, the additional steps taken by the lower-level program correspond to stuttering steps in the higher-level one. We consider an extreme example of this: a program that terminates after taking a single
non-stuttering step that is refined by a traditional sequential program that computes a value and stops.

This example is used because it's simple and nicely illustrates data refinement. Its use does not imply that this way of looking at refinement is the best one to use for traditional programs. There are other methods for reasoning about refinement of traditional programs that are probably better than our science of more general programs [20]. We consider only safety in this example; liveness is straightforward.

The high-level abstract program $A d d$ begins with variables x and y equal to arbitrary natural numbers, sets the variable z to their sum, and terminates. Termination is indicated by changing the value of a Boolean-valued variable end to true. Here is the definition:

$$
\begin{aligned}
& \text { Init } A \triangleq(\text { end }=\text { FALSE }) \wedge(x \in \mathbb{N}) \wedge(y \in \mathbb{N}) \\
& \text { Next } A \triangleq \neg \text { end } \wedge\left(z^{\prime}=x+y\right) \wedge\left(\text { end }{ }^{\prime}=\mathrm{TRUE}\right) \\
& v A \triangleq\langle x, y, z, \text { end }\rangle \\
& \text { Add } \triangleq \text { InitA } \wedge \square[\text { NextA }]_{v A}
\end{aligned}
$$

Note that Init does not specify the value of z. Its initial value doesn't matter. Note also that action NextA does not specify the values of x^{\prime} or y^{\prime}. You should realize by now that this doesn't mean those values are unchanged; it means that their new values are unspecified. We are assuming that the final values of x and y don't matter; we care only about the final value of z.

Math VII

Sequence Operators We now define some operators for sequences. They are defined for both ordinal and cardinal sequences. For any sequences σ and τ such that σ is finite, we define $\sigma \circ \tau$ to be the sequence obtained by concatenating σ and τ. For example, $\langle 4,5\rangle \circ\langle 1,2\rangle$ equals $\langle 4,5,1,2\rangle$, and $(4 \rightarrow 5) \circ(1 \rightarrow 2)$ equals $4 \rightarrow 5 \rightarrow 1 \rightarrow 2$.

For any (finite or infinite) nonempty sequence σ, we define $\operatorname{Head}(\sigma)$ to be the first item of σ and $\operatorname{Tail}(\sigma)$ to be the sequence obtained by removing the first element of σ. For example, $\operatorname{Head}(\langle 1,2,3\rangle)$ and $\operatorname{Head}(1 \rightarrow 2 \rightarrow 3)$ both equal 1; $\operatorname{Tail}(\langle 1,2,3\rangle)$ equals $\langle 2,3\rangle$; and $\operatorname{Tail}(1 \rightarrow 2 \rightarrow 3)$ equals $2 \rightarrow 3$. If σ is a nonempty ordinal sequence, then it equals $\langle\operatorname{Head}(\sigma)\rangle \circ \operatorname{Tail}(\sigma)$.

For any finite sequence σ, we define $\operatorname{Len}(\sigma)$ to be the number of items in σ. Thus, $\operatorname{domain}(\sigma)$ equals $1 \ldots \operatorname{Len}(\sigma)$ if σ is a finite ordinal sequence; and it equals $0 \ldots(\operatorname{Len}(\sigma)-1)$ if σ is a finite cardinal sequence.

We need the following two operators only for ordinal sequences, so we don't define them for cardinal sequences. For any ordinal sequence σ and
value v, we define $\operatorname{Append}(\sigma, v)$ to equal $\sigma \circ\langle v\rangle$, the sequence obtained by appending the item v to the end of σ. We define $\operatorname{Seq}(S)$ to be the set of all finite ordinal sequences whose items are in S. Thus, if $\sigma \in \operatorname{Seq}(S)$ then $\sigma \in(1 . . \operatorname{Len}(\sigma) \rightarrow S)$.

Set Difference The set difference operator \backslash is defined by

$$
S \backslash T \triangleq\{v \in S: \neg(v \in T)\}
$$

In other words, $S \backslash T$ is the set of elements of S that are not elements of T.

5.1.1 A One-Step Program

We refine $A d d$ by a program $A d d S$ in which a natural number is represented by a finite ordinal sequence of decimal digits - that is, by an element of the set $S e q(0 . .9)$. For convenience, we number the digits from right to left, so the sequence $\langle 1,2,3\rangle$ represents the number 321 . Thus a sequence seq of digits represents the number $\operatorname{Val}(s e q)$ defined as follows, where the empty sequence is defined to represent 0 .

$$
\begin{aligned}
& \operatorname{Val}(s e q) \triangleq \mathrm{IF} s e q=\langle \rangle \text { THEN } 0 \\
& \operatorname{ELSE} \operatorname{seq}(1)+10 * \operatorname{Val}(\operatorname{Tail}(\operatorname{seq}))
\end{aligned}
$$

Let \oplus represent addition of numbers represented in this way as sequences of digits. In other words, \oplus satisfies

$$
\operatorname{Val}(s \oplus t)=\operatorname{Val}(s)+\operatorname{Val}(t)
$$

for all sequences s and t of digits. We would expect $A d d$ to be refined by the program $A d d S$ obtained by replacing + by \oplus and \mathbb{N} by $\operatorname{Seq}(0 \ldots 9)$ in the definition of $A d d$. To avoid confusing the variables of the two programs, we'll also replace x, y, z, and end by u, v, w, and $f i n$, so $A d d S$ is defined by:

$$
\begin{array}{ll}
\text { InitS } & \triangleq(\text { fin }=\text { FALSE }) \wedge(u \in \operatorname{Seq}(0 \ldots 9)) \wedge(v \in \operatorname{Seq}(0 \ldots 9)) \\
N e x t S & \triangleq \neg \text { fin } \wedge\left(w^{\prime}=u \oplus v\right) \wedge\left(\text { in }^{\prime}=\mathrm{TRUE}\right) \\
v S & \triangleq\langle u, v, w, \text { fin }\rangle \\
\text { AddS } & \triangleq \text { InitS } \wedge \square[\text { NextS }]_{v S}
\end{array}
$$

Exactly what does it mean for $A d d S$ to refine $A d d$? I believe the natural definition is: If we look at any behavior of $A d d S$ and interpret the numbers represented by the sequences u, v, and w of digits to be the values of x, y, and z and we interpret the value of fin to be the value of end, then we
get a behavior of $A d d$. More precisely, let " \leftarrow " mean "is represented by". That $A d d S$ refines $A d d$ means that a behavior satisfying $A d d S$ represents a behavior satisfying $A d d$ with this representation of the variables of $A d d$ in terms of the variables of $A d d S$:

$$
\begin{equation*}
x \leftarrow \operatorname{Val}(u) \quad y \leftarrow \operatorname{Val}(v) \quad z \leftarrow \operatorname{Val}(w) \quad \text { end } \leftarrow \text { fin } \tag{5.1}
\end{equation*}
$$

Here's an example to illustrate this, where the first two-state sequence is a finite behavior satisfying $A d d S$ and the second two-state sequence is the finite behavior it represents. Remember that $A d d S$ leaves unspecified the value of w in an initial state and the values of u and v in a halting state. A "?" in the second behavior means the value is unspecified because, as explained in Section 2.6, $\operatorname{Val}(s e q)$ is a meaningless expression if seq isn't a sequence of numbers.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
u & :: & \langle 1,2,3\rangle \\
v & : & \langle 3,2\rangle \\
w & :: & \sqrt{2} \\
\text { fin } & : & \text { FALSE }
\end{array}\right]_{0}}
\end{aligned} \rightarrow\left[\begin{array}{ccc}
u & :: & \langle 5\rangle \\
v & :: & -27 \\
w & :: & \langle 4,4,3\rangle \\
\text { fin } & :: & \text { TRUE }
\end{array}\right]_{1}
$$

As you can see, the second finite behavior satisfies $A d d$, since $321+23$ equals 344 and end has the values the abstract program Add says it should.

Let's look closely at this example. What it shows is that when we perform the substitutions (5.1) for the variables of $A d d$ in a behavior satisfying formula $A d d S$, we get a behavior that satisfies formula $A d d$. In other words, in any behavior: if the behavior satisfies $A d d S$, then it satisfies the formula $A d d$ when we perform the substitutions (5.1). This means that the following formula is true:

$$
\begin{align*}
& \models=\operatorname{AddS} \Rightarrow \tag{5.2}\\
& \quad(\operatorname{Add} \text { WiTh } x \leftarrow \operatorname{Val}(u), y \leftarrow \operatorname{Val}(v), z \leftarrow \operatorname{Val}(w), \text { end } \leftarrow \text { fin })
\end{align*}
$$

This is what it means for $A d d S$ to refine $A d d$ under the representation defined by (5.1). That representation is called a refinement mapping. Formula (5.2) asserts that $A d d S$ implements $A d d$ under this refinement mapping.

I find (5.2) beautiful. We've already seen that, viewed in terms of TLA, step refinement is implication. Now we see that data refinement is
substitution-the ordinary mathematical operation of substituting expressions for variables in a formula. How beautifully simple! In science, beauty is not an end in itself. It's a sign that we're doing something right.

5.1.2 Two Views of Refinement Mappings

There are two ways to view the refinement mapping (5.1) that appears in (5.2). To understand them, let's simplify things by ignoring irrelevant variables and letting state mean program state - an assignment of values to the program's variables. Let an S-state be a state of $A d d S$, which is an assignment of values to the variables u, v, w, and fin of $A d d S$; and let an A-state be an assignment of values to the variables x, y, z, and end of $A d d$. Let an S-behavior or A-behavior be a sequence of S-states or A-states, respectively.

The first way to view the refinement mapping is as a mapping f that maps S-states to A-states. We can define the mapping \widehat{f} from S-behaviors to A-behaviors in terms of f by $\widehat{f}(\sigma)(i) \triangleq f(\sigma(i))$ for any S-behavior σ. That $A d d S$ implements $A d d$ under the refinement mapping f means $\llbracket A d d S \rrbracket \rrbracket(\sigma) \Rightarrow$ $\llbracket A d d \rrbracket(\widehat{f}(\sigma))$ for every S-behavior σ.

The second way to view refinement is expressed in (5.2), which states that $A d d S$ implements $A d d$ under the refinement mapping means $\llbracket A d d S \rrbracket(\sigma) \Rightarrow$ $\llbracket A d d$ with $\ldots \rrbracket(\sigma)$ for every S-behavior σ.

In the first view, the refinement mapping maps low-level behaviors to high-level behaviors - that is, behaviors of AddS to behaviors of $A d d$. In the second view, it maps the high-level formula $A d d$ to the low-level formula (Add with ...). It may not be obvious, but these two views are equivalent. They're equivalent because

$$
\begin{equation*}
\llbracket A d d \text { wITH } \ldots \rrbracket(\sigma) \equiv \llbracket A d d \rrbracket(\widehat{f}(\sigma)) \tag{5.3}
\end{equation*}
$$

is true for every S-behavior σ. To understand why (5.3) is true, remember that the meaning $\llbracket F \rrbracket$ of a formula F is defined in terms of the meanings of its subformulas. Consider the subformula $z^{\prime}=x+y$ of $A d d$, which appears in its next-state action NextA. You should understand why (5.3) is true if you understand why this is true:

$$
\begin{equation*}
\llbracket\left(z^{\prime}=x+y\right) \text { with } \ldots \rrbracket(\sigma) \equiv \llbracket z^{\prime}=x+y \rrbracket(\widehat{f}(\sigma)) \tag{5.4}
\end{equation*}
$$

A proof of (5.4) is given in the Appendix. However, I recommend that you try figuring out by yourself why it's true.

The bidirectional nature of refinement mappings-from low-level behaviors to high-level behaviors and from high-level formulas to low-level
formulas - is an example of a general mathematical principle. To explain it, we need the concept of function composition. For any functions g and h, their composition $g \bullet h$ is defined to be the function whose domain is the domain of h such that $(g \bullet h)(d) \triangleq g(h(d))$ for any value d in the domain of $h .^{1}$ (For any d in the domain of h, the expression $g \bullet h(d)$ is meaningful only if $h(d)$ is in the domain of g.)

Let's suppose that the collections of S-behaviors and A-behaviors are sets. For example, we can let them be behaviors that satisfy suitable type invariants. Formula (5.3) can then be written:

$$
\begin{equation*}
\llbracket A d d \text { wITH } \ldots \rrbracket \equiv \llbracket A d d \rrbracket \bullet \widehat{f} \tag{5.5}
\end{equation*}
$$

In general, suppose L and H are sets and $\psi \in(L \rightarrow H)$, so the function ψ maps elements of L to elements of H. For any set V, the function ψ determines a function $\overleftarrow{\psi}$ in $(H \rightarrow V) \rightarrow(L \rightarrow V)$, so $\overleftarrow{\psi}$ maps functions from H to V to functions from L to V. The function $\overleftarrow{\psi}$ is defined by $\overleftarrow{\psi}(g) \triangleq g \bullet \psi$. Pictorially, we have:

$$
\begin{array}{ccc}
L & \stackrel{\psi}{\longleftrightarrow} & H \\
(L \rightarrow V) & \stackrel{\overleftarrow{\psi}}{\leftrightarrows} & (H \rightarrow V)
\end{array}
$$

Refinement mappings are the special case in which L is the set of S-behaviors, H is the set of A-behaviors, V is the set \{True, false\} of Booleans, and ψ is \widehat{f}.

5.1.3 A Step and Data Refinement

Section 3.5.1 illustrated step refinement by showing that an hour-minutesecond clock refines an hour-minute clock. We have just illustrated data refinement by showing that $A d d S$ implements $A d d$ under a refinement mapping. We now show an example that involves both step and data refinement.

The example involves an algorithm $A d d S e q$ that adds numbers the way you probably learned to add them as a child. However, we represent those numbers as sequences of digits in the reverse order, as they are in program $A d d S$, with the low-order digit being the first one in the sequence. It sets sum equal to $u \oplus v$, where u and v are numbers represented by strings of digits. The algorithm computes sum digit by digit, keeping it equal to the right-most digits of the sum computed so far. Each step removes the first

[^25]```
variables \(u \in\) DigitSeq, \(v \in\) DigitSeq, sum \(=\langle \rangle\), carry \(=0, p c=a\);
while \(a:(u \neq\langle \rangle) \vee(v \neq\langle \rangle) \vee(\operatorname{carry} \neq 0)\) do
 define digit \(\triangleq \operatorname{Fix}(u)(1)+\operatorname{Fix}(v)(1)+\) carry;
 sum \(:=\) Append(sum, digit \% 10) ;
 carry \(:=\lfloor\) digit \(/ 10\rfloor\)
 end define ;
 \(u:=\operatorname{Tail}(\operatorname{Fix}(u))\);
 \(v:=\operatorname{Tail}(\operatorname{Fix}(v))\)
end while ;
carry \(:=0\)
```

Figure 5.1: Algorithm $A d d S e q$.
(right-most) digit from $u$ and $v$ and appends the next (left-most) digit to sum, setting carry equal to the value 0 or 1 "carried over" from that sum.

A pseudocode description of the algorithm is in Figure 5.1, but it uses some notation that requires explanation. Recall that $\operatorname{Append}($ seq, val $)$ is defined in Section 2.8.3 to equal seq $\circ\langle v a l\rangle$, the sequence obtained by appending the value val to the end of the sequence seq of values. The code assumes that DigitSeq is the set $\operatorname{Seq}(1 . .9) \backslash\{\rangle\}$ of nonempty finite sequences of the digits 0 through If $u$ and $v$ are of unequal length, then the number of steps taken by the algorithm you learned in school is usually equal to or one greater than the length of the longer number. For simplicity, the number of steps taken by $A d d S e q$ always equals one plus the length of the longer number. To simplify the description of what happens when the algorithm runs out of digits in one of the numbers, it uses the operator Fix defined as follows to replace the empty sequence by $\langle 0\rangle$ :

$$
\operatorname{Fix}(\text { seq }) \triangleq \mathrm{IF} \text { seq }=\langle \rangle \text { THEN }\langle 0\rangle \text { ELSE seq }
$$

The algorithm's define statement defines digit to equal the indicated expression within that statement. The value of $\lfloor n / 10\rfloor$ is the greatest integer less than or equal to $n / 10$. To simplify the invariant, AddSeq specifies the initial value of carry to equal 0 and ensures that it equals 0 at the end. Since the low-order digit of a two-digit number $n$ is $n \% 10$ and its high-order digit is $\lfloor n / 10\rfloor$, it should be clear that AddSeq describes an algorithm for adding two decimal numbers. (If it's not, execute it by hand on an example.)

The usual way to express correctness of a program that computes a value sum and stops is with an invariant asserting that if the program has stopped
then sum has the correct value. We can't do that with AddSeq because the correct value of sum is the initial value of $u \oplus v$, and those initial values have disappeared by the time the program stops. To express correctness, we can add a constant ans that equals the initial value of $u \oplus v$. Since stopping means pc equals done for our pseudocode, correctness means:

$$
\begin{equation*}
\vDash \text { AddSeq } \Rightarrow \square((p c=\text { done }) \Rightarrow(\text { ans }=\text { sum })) \tag{5.6}
\end{equation*}
$$

The key part of an inductive invariant to prove (5.6) is the assertion that ans equals the final value of sum. A first approximation to the final value of sum is:

$$
\operatorname{sum} \circ(\langle\operatorname{carry}\rangle \oplus(u \oplus v))
$$

We haven't said what $s \oplus t$ means if $s$ or $t$ is the empty sequence, but it's clear that we should define the empty sequence to represent 0 . However, a close examination of the algorithm indicates that if $u$ and $v$ both equal $\rangle$ and carry $=0$, then this expression equals a sequence with an extra 0 at the end. The correct assertion that is the key to the inductive invariant is

$$
\begin{align*}
\text { ans }= & \mathrm{IF}(u \circ v=\langle \rangle) \wedge(\text { carry }=0)  \tag{5.7}\\
& \mathrm{THEN} \text { sum ELSE sum } \circ(\langle\text { carry }\rangle \oplus(u \oplus v))
\end{align*}
$$

The remainder of the inductive invariant asserts type correctness and that $p c=$ done implies that $u$, $v$, and carry have their correct final values.

However, the point of this example is not that AddSeq implements a particular procedure for adding sequences of digits; it's that it refines the abstract program $A d d$ that adds two integers in a single step. This is a dramatic example of step refinement, in which a program that can take arbitrarily many non-stuttering steps to finish refines one that always finishes in one non-stuttering step. And we don't have to add the constant ans to do it.

Under the refinement mapping, one step in an execution of $\operatorname{AddSeq}$ must refine a $N e x t A$ step of $A d d$; all the other steps must refine stuttering steps of $A d d$. The initial values of the variables $x$ and $y$ of $A d d$ should equal the initial values of $\operatorname{Val}(u)$ and $\operatorname{Val}(v)$. The initial values of $u$ and $v$ are no longer deducible from the state after $A d d S e q$ takes it first step. This tells us that the NextA step of $A d d$ must be refined by the first non-stuttering step of $A d d S e q$.

An $A d d$ step changes the value of its variable done from false to true. So, the refinement mapping must assign to done an expression whose value is changed from false to TRUE by the first non-stuttering step of AddSeq.

Since further steps of $A d d S e q$ refine stuttering steps of $A d d$, the expression assigned to done must remain true for the rest of the execution of $A d d$. A suitable expression is sum $\neq\langle \rangle$, so we let the refinement mapping include done $\leftarrow \operatorname{sum} \neq\langle \rangle$.

In the initial state of $A d d S e q$, the refinement mapping should assign to $x$ and $y$ the values of $u$ and $v$. Since $A d d$ allows $x$ and $y$ to have any values in its final state, it doesn't matter what values the refinement mapping assigns to $x$ and $y$ after the first step of AddSeq. However, since later steps must refine stuttering steps of $A d d$, the values of $x$ and $y$ must not change. Zero seems like a nice value to let $x$ and $y$ equal when their value no longer matters, so we let the refinement mapping include:

$$
\begin{aligned}
& x \leftarrow \mathrm{IF} \text { sum } \neq\langle \rangle \text { THEN } 0 \text { ELSE } \operatorname{Val}(u), \\
& y \leftarrow \mathrm{IF} \operatorname{sum} \neq\langle \rangle \text { THEN } 0 \operatorname{ELSE} \operatorname{Val}(v)
\end{aligned}
$$

Finally, we must decide what value the refinement mapping assigns to $z$. If we add to $A d d S e q$ the constant ans that always equals the result the algorithm finally computes, then we can substitute $\operatorname{Val}(a n s)$ for $z$. But we don't have to add it because the invariant (5.7) tells us what expression containing only the variables of $A d d S e q$ always equals ans. We could therefore substitute for $z$ the expression obtained by applying Val to the right-hand side of equation (5.7). However, there's a simpler expression that we can use. Convince yourself that the following substitution works:

$$
z \leftarrow \operatorname{Val}(\operatorname{sum})+10^{\operatorname{Len}(s u m)} *(\operatorname{carr} y+\operatorname{Val}(u)+\operatorname{Val}(v))
$$

This completes the refinement mapping. That AddSeq implements Add under the refinement mapping means that this theorem is true:

$$
\begin{aligned}
\models \operatorname{AddSeq} \Rightarrow & (\text { Add } \text { wiTh } \\
& \text { done } \leftarrow \operatorname{sum} \neq\langle \rangle, \\
& x \leftarrow \mathrm{IF} \operatorname{sum} \neq\langle \rangle \text { THEN } 0 \operatorname{ELSE} \operatorname{Val}(u), \\
& y \leftarrow \mathrm{IF} \operatorname{sum} \neq\langle \rangle \text { THEN } 0 \operatorname{ELSE} \operatorname{Val}(v), \\
& \left.z \leftarrow \operatorname{Val}(\operatorname{sum})+10^{\operatorname{Len}(\operatorname{sum})} *(\operatorname{carry}+\operatorname{Val}(u)+\operatorname{Val}(v))\right)
\end{aligned}
$$

### 5.2 Invariance Under Refinement

If an abstract program $T$ implements an abstract program $S$ under a refinement mapping, and $I n v$ is an invariant of $S$, then the refinement mapping maps Inv to an invariant of $T$. The precise statement of this is the following theorem, where "..." is any refinement mapping.

Theorem $5.1 \models T \Rightarrow$ ( $S$ with...) and $\models S \Rightarrow \square$ Inv imply $\vDash T \Rightarrow \square$ (Inv with...).

The proof is simple:

1. $\models S \Rightarrow \square$ Inv implies $\models(S \Rightarrow \square$ Inv $)$ with ....

Proof: Substitution in a true formula produces a true formula
2. $\models(S \Rightarrow \square I n v)$ with $\ldots$ equals $\models(S$ with $\ldots) \Rightarrow \square$ (Inv with ... $)$.

Proof: By definition of what substitution means.
3. Q.E.D.

Proof: The theorem follows from steps 1 and 2 by propositional logic.
Recall the trick used in Section 3.2.3 to obtain an invariant of FGSqrs from an invariant of the coarser-grained algorithm Sqrs. We replaced the variable $y$ by the expression $y y$ in the invariant of Sqrs. That trick was an application of the theorem, because FGSqrs implements Sqrs under the refinement mapping $x \leftarrow x, y \leftarrow y y$.

### 5.3 An Example: The Paxos Algorithm

We've seen step and data refinement for a sequential abstract program. Concurrency adds nothing new. Refinement works exactly the same for concurrent programs. This is illustrated with the Paxos consensus algorithm, an example chosen for the following reasons:

- It's a distributed algorithm. Quite a few researchers used to believe that different techniques are needed to reason about correctness of distributed programs; perhaps some still do. Paxos illustrates that there is no mathematical difference between distributed and non-distributed concurrent programs. In fact, Paxos is obtained as a refinement of a non-distributed algorithm.
- It's a widely used algorithm. If you perform any commercial transaction on the Web, there is a good chance that Paxos or an algorithm inspired by it is being executed by a program running on the computers that perform the transaction.
- It illustrates the importance of abstraction. Thinking scientifically means thinking abstractly. The abstract programs in this example are more abstract than ones most computer scientists and engineers would
think of. Learning to think more abstractly is the key to building better complex computer systems.
- The complete TLA ${ }^{+}$specifications of the abstract programs, as well as videos of a pair of lectures that explain them, are available on the Web [26]. Therefore, the abstract programs are only sketched here.

The Paxos algorithm was invented (at least) twice, first by Barbara Liskov and Brian Oki [42] and then by me.

### 5.3.1 The Consensus Problem

One reason for building distributed systems is fault tolerance. Systems implemented by multiple computers are often required to operate normally even if one or more of the computers fail. What a system should do can be described as a single-process abstract program that executes a sequence of commands it receives as inputs. Correct execution of the system by multiple computers requires that all the computers agree on what that sequence of inputs is. This is achieved by having all the computers agree on what the $i^{\text {th }}$ input is for every $i$. Ensuring that all the computers agree on a single input is called consensus. A fault-tolerant system repeatedly executes a consensus algorithm to choose a sequence of inputs.

I was inspired to invent the Paxos algorithm because colleagues were building a distributed fault-tolerant system. I realized that the system had to implement consensus, so it should implement a consensus algorithm. However, my colleagues were writing code; they didn't have an algorithm. I never found out how their program implemented consensus. But based on the state of the art of programming at the time, here is what their program might have done.

A process called the leader, running on a single computer, receives all input requests and decides what input should be chosen next. A new leader will have to be selected if the initial leader fails, but we'll worry about that later. (Failure of a process usually means failure of the computer executing the process.) For the system to keep running despite the failure of individual computers, a set of processes called acceptors, each running on a different computer, have to know what value was chosen. Moreover, only a subset of the acceptors should have to be working (that is, not failed) for an input to be chosen. If an input $v$ is chosen by a leader and a set of acceptors, and the leader and those acceptors fail, then a different leader and a different set of acceptors must not choose an input different from $v$. The obvious way to ensure that is to require a majority of the acceptors to agree upon the
input $v$ in order for that input to be chosen. Any two majorities have at least one acceptor in common, and that acceptor will know that it agreed to the choice of $v$.

This reasoning leads to the following algorithm: The leader decides what input $v$ should be chosen. It sends a message to the acceptors saying that they should agree to the choice of $v$. Any working acceptor that receives the message replies to the leader with a message saying " $v$ is OK". When the leader receives such an OK message from a majority of acceptors, it sends a message to all the acceptors telling them that $v$ has been chosen.

This algorithm works fine, and the system keeps choosing a sequence of inputs, until the leader fails. At that point, a new leader is selected. The new leader sends a message to all the acceptors asking them what they've done. In particular, the new leader finds out from the acceptors if inputs were chosen that it was unaware of. It also finds out if the previous leader had begun trying to choose an input but failed before the input was chosen. If it had, then the new leader completes the choice of that input. When the new leader has received this information from a majority of acceptors, it can complete any uncompleted choices of an input and begin choosing new inputs. Let's call this algorithm the naive consensus algorithm.

There's one problem with the naive algorithm: How is the new leader chosen? Choosing a single leader is just as hard as choosing a single input. The naive consensus algorithm thus assumes the existence of a consensus algorithm. However, because leader failures should be rare, choosing a leader does not have to be done efficiently. So, programmers would probably have approached the problem of choosing a leader the way they approached most programming problems. They would have found a plausible solution and then debugged it. Debugging usually means thinking of all the things that could go wrong and adding code to handle them.

Let's pause and look at the science of consensus. Before Paxos, there were consensus algorithms that worked no matter what a failed process could do [46]. However, they were synchronous algorithms, meaning that they assumed known bounds on the time required for messages sent by one process to be received and acted upon by another process. They were not practical for the loosely coupled computers that had become the norm by the 1980s. Although asynchronous algorithms were required, they had to solve a simpler problem because sufficiently reliable systems could be based on the assumption that a process failed by stopping and could not perform incorrect actions. However, the FLP theorem, named after Michael Fischer, Nancy Lynch, and Michael Paterson who discovered and proved it, states that no asynchronous algorithm can implement consensus if even a single process can
fail in this benign way [13]. More precisely, any algorithm that ensures the safety property that two processes never choose different values must allow behaviors that violate the liveness property that requires a value eventually to be chosen if enough processes are working and can communicate with one another. Asynchronous algorithms that ensure liveness must allow behaviors in which processes disagree about what input is chosen.

The leader-selection code programmers would have written therefore had to allow either behaviors in which two processes thought they were the leader, probably with serious consequences, or else behaviors in which no leader is selected, causing the system to stop choosing values. With a properly designed algorithm, the probability of never choosing the leader is zero, and a leader will be chosen fairly quickly if enough of the system is working properly. The system my colleagues built ran for several years with about 60 single-user computers, and I don't think their consensus code caused any system error or noticeable stalling. There is no way to know if it had errors that would have appeared in today's systems with thousands of computers and many thousands of users.

### 5.3.2 The Paxos Consensus Algorithm

We develop the Paxos consensus algorithm as a series of three abstract programs: a trivial specification of the problem the algorithm solves, which is refined by a non-distributed multiprocess algorithm, which is refined by the Paxos algorithm. I believe that this description - in particular, its view of Paxos as a refinement of the non-distributed algorithm - mirrors how I actually found the algorithm.

Only the safety properties of these abstract programs are described. In most applications, violation of safety in a consensus algorithm can be quite serious - for example, causing money deposited to a client's bank account to disappear. We will see later how the algorithm can be implemented to almost always achieve liveness while never violating safety. As mentioned above, the abstract programs are just sketched; complete descriptions are available on the Web [26].

### 5.3.2.1 The Specification of Consensus

Instead of talking about inputs, we define consensus as choosing an element of some set Value of values. Most correctness proofs of consensus algorithms prove only that they satisfy the invariance property that two processes never choose different values. A consensus algorithm must also not allow a value
to be unchosen and a different value then chosen. Proving the invariance property is usually sufficient because it's obvious that the algorithm doesn't allow a value to be unchosen. But to illustrate refinement, we write a highlevel abstract program that rules out such a possibility.

There are a number of reasonable ways to describe consensus as an abstract program, and it makes little difference which one is used. Perhaps the most obvious way is with a multiprocess abstract program in which each process independently learns what value is chosen. The next-state action would allow a process $p$ that has not learned a value to learn one, with the constraint that if any process has learned that the value $v$ was chosen, then $p$ must also learn that $v$ was chosen.

We take a different approach and let the abstract program describe only the choosing of a value, without mentioning processes that learn the chosen value. This abstract program has a single variable chosen that represents the set of values that have been chosen. (In any behavior allowed by the program, that set always has at most one value.) The initial predicate is chosen $=\{ \}$, and the next-state action is:

$$
(\text { chosen }=\{ \}) \wedge\left(\exists v \in \text { Value }: \text { chosen }^{\prime}=\{v\}\right)
$$

As explained above, there is no fairness condition.

### 5.3.2.2 The Voting Algorithm

In the naive algorithm, leader and acceptor processes communicate by sending messages. It's natural to think about a consensus algorithm in terms of messages being sent. However, remember that we reason about an abstract program in terms of its state, so we should be thinking about states, not about sending messages. And the important part of the state is the state of the acceptors. So, we refine the Consensus program with an abstract program called the Voting algorithm whose state is just the state of the acceptors. This is not just a nice way to describe the Paxos algorithm. Viewing Paxos as a refinement of the non-distributed voting algorithm is what enabled me to discover Paxos.

In good programming, we begin by abstracting away lower-level details and getting the high-level design right. There's a kind of bad programming that sounds similar: We begin writing something that handles the normal behavior, and we then modify it to handle non-normal situations. That's the way the naive consensus algorithm was described, and it's a recipe for creating incorrect programs - both abstract and concrete ones. We should start thinking about the general case, not the normal case.

The general state of acceptors in the naive algorithm is one that is reached after a number of leaders have begun trying to get a value chosen, and some of them may have succeeded. When a leader tries to get a particular value chosen, we say that the leader has begun a ballot. When an acceptor has sent an OK message for a value $v$ in that ballot, we say that the acceptor has voted for $v$ in that ballot. The algorithm will assign a unique natural number to each ballot. ${ }^{2}$ The state of the Voting algorithm records all the votes that each acceptor has cast. This is described by a variable votes whose value is a function that assigns to each acceptor $a$ a set $\operatorname{votes}(a)$ of pairs $\langle b, v\rangle$ where $b \in \mathbb{N}$ and $v \in$ Value. The pair $\langle b, v\rangle$ in $\operatorname{votes}(a)$ means that $a$ has voted for $v$ in ballot number $b$.

Choosing a leader is the weak point in the naive algorithm. The Voting algorithm abstracts away the leaders. A leader serves two functions. The first is to ensure that in any ballot, acceptors can cast votes only for the value proposed by the leader. The Voting algorithm's next-state action takes care of that by not letting an acceptor cast a vote for a value $v$ in ballot $b$ if a vote has already been cast in ballot $b$ for a different value. The second function of the leader is to learn that a value has been chosen, which it does when it has received enough OK messages. The Voting algorithm does away with that function by declaring that the value has been chosen when the requisite number of OK messages have been sent- that is, when there are enough votes cast for the value in the ballot. More precisely, we define ChosenAt $(b, v)$ to be true iff a majority of acceptors has voted for $v$ in ballot $b$. The Voting algorithm implements the Consensus abstract program under the refinement mapping

$$
\begin{equation*}
\text { chosen } \leftarrow\{v \in \text { Value }: \exists b \in \mathbb{N}: \operatorname{Chosen}(b, v)\} \tag{5.8}
\end{equation*}
$$

In addition to votes, the algorithm has one other variable maxBal whose value is a function that assigns to each acceptor $a$ a number maxBal $(a)$. The significance of this number is that $a$ will never in the future cast a vote in any ballot numbered less than $\operatorname{maxBal}(a)$. The value of $\operatorname{maxBal}(a)$ is initially 0 and is never decreased. The algorithm can increase $\operatorname{maxBal}(a)$ at any time.

It may seem strange that the state does not contain any information about what processes have failed. We are assuming that a failed process does nothing. Since we are describing only safety, a process is never required to

[^26]do anything, so there is no need to tell it to do nothing. A failed process that has been repaired can differ from a process that hasn't failed because it may have forgotten its prior state when it resumes running. A useful property of a consensus algorithm is that, even if all processes fail, the algorithm can resume its normal operation when enough processes are repaired. To achieve this, we require that a process maintains its state in stable storage, so it is restored when a failed process restarts. A process failing and restarting is then no different from a process simply pausing.

The heart of the Voting algorithm is a state expression $\operatorname{SafeAt}(b, v)$ that is true iff ChosenAt $(c, w)$ is false and will remain false forever for any $c<b$ and $w \neq v$. That it will remain false forever can be deduced from the current state, because the next-state action implies both that a process $a$ will not cast a vote in ballot $c$ when $c<\operatorname{maxBal}(a)$ and that $\operatorname{maxBal}(a)$ can never decrease. The key invariant maintained by the algorithm is

$$
\begin{align*}
& \forall a \in \text { Acceptor, } b \in \mathbb{N}, v \in \text { Value : }  \tag{5.9}\\
& \quad(\langle b, v\rangle \in \operatorname{votes}(a)) \Rightarrow \operatorname{SafeAt}(b, v)
\end{align*}
$$

where Acceptor is the set of acceptors. The next-state action allows a process $a$ to perform either of two actions:

- Increase maxBal(a). This action is always enabled.
- Vote for a value $v$ in a ballot numbered $b$. As already explained, this action is enabled only if no process has voted for a value other than $v$ in ballot $b$ and $b \geq \operatorname{maxBal}(a)$. An additional enabling condition is required to maintain the invariance of (5.9).

I have given you all the information you need to figure out the definition of $\operatorname{Safe} A t(b, v)$ and the enabling condition on acceptors needed to maintain the invariance of (5.9). Can you do it? Few people can. I was able to only because I had simplified the problem to finding an abstract program whose only processes are the acceptors and whose state consists only of the set of votes cast and the value of maxBal. I had abstracted away leaders, messages, and failures.

The Voting algorithm requires an acceptor to know the current state of other acceptors to decide what vote it can cast. How can this lead to a distributed consensus algorithm? I abstracted away leaders and messages; I didn't ignore them. I knew that an acceptor didn't have to directly observe the state of other acceptors to know that they hadn't voted for some value other than $v$ in a ballot. The acceptor could know that because of a message it received from a leader. I also knew that it could deduce that the other
enabling conditions were satisfied from messages it received. Abstracting away leaders and messages enabled me to concentrate on the core problem of achieving consensus. The solution to that problem told me what the leaders should do and what messages needed to be sent.

### 5.3.2.3 The Paxos Abstract Program

The Voting algorithm told me what messages needed to be sent. But I had to decide how to represent message passing in an abstract program. Languages expressly designed for describing distributed algorithms usually don't require us to make that decision because they provide built-in message-passing primitives. However, different distributed algorithms and distributed systems have different requirements for message passing. They may or may not tolerate lost messages; they may or may not require messages to be delivered in the order they are sent; they may or may not require that the same message not be received twice; and so on. Our abstract programs require that we choose how to represent message passing, but they make it easy to represent any form of message passing we want.

I have found that most computer scientists and engineers are constrained by thinking in terms of how messages are transmitted in actual systems. They think of messages being sent on communication channels between processes. Few of them would come up with the simple representation of message passing I used in the Paxos abstract program - a representation that is obvious if one thinks mathematically.

Paxos doesn't require that messages be delivered in the order in which they are sent, so there is no need for message channels. The receiver of a message can be inferred from the message, so we can just have a set of messages. Paxos tolerates the same message being received multiple times by a process, so there is no need to remove a message when it is received. This means that if the same message is sent to multiple recipients, there is no need for multiple copies of the message. There is also no need for a separate action of receiving a message. An action that should be taken upon receipt of a message simply has the existence of that message in the set of sent messages as an enabling condition. Paxos tolerates message loss. But since we are describing safety, there's no difference between a lost message and a message that is sent but never received. So, there is no need ever to remove messages that have been sent.

We can therefore represent message passing with a variable msgs whose value is the set of all messages that have been sent. A message is sent by adding it to the set msgs. The presence of a message in msgs enables an
action that should be triggered by the receipt of the message. The algorithm has a variable maxBal that implements the variable of the same name in the Voting algorithm. It also has two other variables MaxVBal and MaxVal whose values are functions with domain the set of acceptors. They are explained below.

The Paxos consensus algorithm can be viewed as a multiprocess algorithm containing two sets of processes: the acceptors that implement the acceptors of the Voting algorithm, and an infinite set of processes, one for each natural number, where process number $b$ is the leader of ballot number $b$. More precisely, the ballot $b$ leader orchestrates the voting by the acceptors in ballot $b$ of the Voting algorithm.

The next-state action of the algorithm could be (but isn't literally) written in the form $\exists b \in \mathbb{N}: B A(b)$ where $B A(b)$ describes how ballot $b$ is performed. The ballot consists of two phases. In phase 1, the ballot $b$ leader sends a message to the acceptors containing only the ballot number $b$. An acceptor $a$ ignores the message unless $b>\operatorname{maxBal}(a)$, in which case it sets $\operatorname{maxBal}(a)$ to $b$ and replies with a message containing $a, b, \operatorname{MaxVBal}(a)$, and $\operatorname{MaxBal}(a)$. When the ballot $b$ leader receives those messages from a majority of the acceptors, it can pick a value $v$ to be chosen, where $v$ is either a value picked by the leader of a lower-numbered ballot or an arbitrary value. The complete algorithm describes how it picks $v$. Phase 2 begins with the leader sending a message to the acceptors asking them to vote for $v$ in ballot $b$. An acceptor $a$ ignores the message unless $b \geq \operatorname{maxBal}(a)$, in which case $a$ sets $\operatorname{maxBal}(a)$ to $b$ and replies with a message saying that it has voted for $v$ in ballot $b$.

The Paxos algorithm implements the Voting algorithm under a refinement mapping in which the variable votes of Voting is implemented by the expression defined in the obvious way from the set of votes reported by acceptors' phase 2 messages in msgs, and in which the variable maxBal of Voting is implemented by the variable of the same name in the Paxos abstract program.

The values of maxVBal and maxVal can be described as functions of the value of votes. For any acceptor $a$, the pair $\langle\operatorname{maxVBal}(a), \max \operatorname{Val}(a)\rangle$ equals the pair $\langle b, v\rangle$ in the set $\operatorname{votes}(a)$ with the largest value of $b$. (Initially, when $\operatorname{votes}(a)$ is the empty set, it equals $\langle-1$, None $\rangle$ for some special value None.) Making maxVBal and maxVal variables rather than state expressions makes it clear that they are the only information about what messages have been sent that needs to be part of the acceptors' states.

### 5.3.3 Implementing Paxos

An implementation of the Paxos consensus algorithm would add a third phase to each ballot in which the leader sends a message announcing that a value $v$ had been chosen after it receives phase 2 messages telling it that a majority of acceptors had voted for $v$ in the ballot. With that addition, a ballot of the Paxos algorithm looks like what the naive algorithm does when a new leader has been selected. Phase 1 of a Paxos ballot corresponds to the new leader finding out if it needs to complete the choosing of a value proposed by the failed leader. Phase 2 corresponds to the leader completing the choosing of a previously proposed value or choosing a new value.

In Paxos, a leader performs phase 1 in every instance of the consensus algorithm, while in the naive algorithm it performs the corresponding actions only once when it is selected. This makes Paxos seem much less efficient, since leaders are infrequently replaced. However, the value to be chosen isn't selected until phase 2. This means that phase 1 can be executed simultaneously for a ballot numbered $b$ in all instances of the consensus algorithm the first time ballot $b$ is executed for any instance. A single message can serve as the leader's phase 1 message for all instances. A single message can also contain the phase 1 responses of a particular acceptor for all the instances, since there is only information to be transmitted for consensus instances that have begun but not yet chosen a value. Thus Paxos uses the same number of messages to choose a value as the naive algorithm.

The Paxos consensus algorithm is an efficient algorithm that has been proved to satisfy the safety requirement of consensus. We still have to see how to get it to satisfy the liveness requirement of actually choosing a value. To solve a problem, we need to understand it, and it's easy to understand what prevents Paxos from choosing a value. An acceptor $a$ participating in ballot number $b$ sets $\operatorname{maxBal}(a)$ to $b$, preventing it from responding to any message from the leader of any ballot numbered less than $b$. Even in the absence of failures or message loss, no value will ever be chosen if higher and higher numbered ballots are begun before any ballot chooses a value.

Conversely, if ballot number $b$ is started and no higher-numbered ballot is begun, and if the ballot $b$ leader and a majority of acceptors are working, then liveness assumptions that require working processes eventually to perform enabled actions (which implicitly assume that messages sent are eventually delivered) imply that a value is eventually chosen. This observation can be stated mathematically as a temporal logic formula and proved. However, it is so obviously true that, to my knowledge, no one has ever bothered doing it.

How do we assure that a ballot numbered $b$ is started and no highernumbered ballots are? Paxos uses an infinite number of leader processesone for each ballot number. Those infinitely many processes are executed by a finite number of computers, with each ballot number pre-assigned to a single computer that executes the leader of the corresponding ballot. A single computer, called the coordinator, is selected to be the only one that executes leader processes, and it is easy to add messages that allow it to find a ballot number higher than the values of $\operatorname{mbal}(a)$ for a majority of acceptors $a$.

Like the naive algorithm, Paxos depends on selecting a single coordinator. However, the naive algorithm can fail to maintain its safety requirement if two different computers believe they are the coordinator. If that happens with Paxos, safety is preserved; the algorithm just fails to make progress. An algorithm for choosing a coordinator in Paxos needs to work only most of the time, a much easier problem to solve. One solution uses a synchronous algorithm that implements consensus assuming known bounds on the times needed to transmit and process messages. That algorithm chooses the coordinator assuming values for those bounds that will be satisfied most of the time.

### 5.4 Proving Refinement

This section sketches how to prove that one abstract program refines another. We use as an example the proof that the One-Bit mutual exclusion algorithm $O B$ of Section 4.2.5.2 refines program $L M$ of Figure 4.6, assuming a weakly fair semaphore.

The proof uses identifiers from the definition of $O B$ and ones from the definition of $L M$. To avoid confusion, we indicate to which program an identifier belongs with a subscript. We defined $O B$ to equal:

$$
\begin{aligned}
& \text { Init } \wedge \square[\text { Next }]_{v} \wedge \text { Fair } \\
& \text { where } \\
& \text { Next } \triangleq \exists p \in\{0,1\}: \operatorname{PNext}(p) \\
& \quad \text { Fair } \triangleq \forall p \in\{0,1\}: \operatorname{WF}_{v}(\operatorname{PNext}(p))
\end{aligned}
$$

We now add subscripts to that definition, so $O B$ equals:

$$
\text { Init }_{O B} \wedge \square\left[\text { Next }_{O B}\right]_{v_{O B}} \wedge \text { Fair }_{O B}
$$

We assume $L M$ has the same definition, except with the subscripts $L M$. We sometimes use subscripts even when they aren't necessary - for example writing $x_{\text {OB }}$ even though $L M$ has no variable named $x$.

We define OBSafe and OBFair as before, so OB equals OBSafe $\wedge$ OBFair. We define LMSafe and LMFair similarly. As expected, safety and liveness are proved separately. We first show that OBSafe refines LMSafe. (By machine closure of $\langle$ OBSafe, OBFair $\rangle$ and Theorems 4.3 and 4.5, OBFair isn't needed to prove that $O B$ refines LMSafe.) We then show that $O B$ implies LMFair. However, first we must define the refinement mapping under which $O B$ implements $L M$.

## Math VIII

Hierarchical Proofs Thus far, our structured proofs have consisted of a single list of steps. That doesn't work for the long proofs needed to prove complex results, such as correctness of the abstract programs that engineers write. The method of handling complexity that's obvious to an engineer is hierarchical structuring. With structured proofs, a proof consists of either a paragraph proof or a sequence of steps, each step having a proof. The last step in a proof consisting of a sequence of steps is a Q.E.D. step.

The steps of a top-level proof are numbered 1,2 , etc. The steps of a proof of step number 2 are numbered 2.1, 2.2, $\ldots$. The steps of a proof of step number 3.4 are $3.4 .1,3.4 .2, \ldots$ and so on. The lowest-level proofs are paragraph proofs. A step can be used only in the proof of later steps of the same proof. For example, the assertion proved as step 3.4.2 can be used in the proofs of steps 3.4.4 and 3.4.5.1, but not in the proof of step 3.5. This ensures that a step is used only where the assumptions under which the step was proved still hold.

This numbering scheme works for three or four levels. For deeper proofs, we can abbreviate step number 2.7.4 as $\langle 3\rangle 4$ because it's step number 4 of a depth- 3 proof. Although many step numbers can have the same abbreviation, at most one of those steps can be used at any point in the proof [37].

For reliable proofs, the paragraph proofs should be short enough so they're easy to understand and obviously correct. If a paragraph proof isn't obviously correct, it should be decomposed into a sequence of steps. Some steps need deeper proofs than others. The proofs of Q.E.D. steps should usually be paragraphs. My rule of thumb is to decompose a proof until I'm sure that every paragraph proof is correct, then decompose the paragraph proofs one level further. The proofs in this book haven't been carried down to that level. This was to keep the book from being too long, and because no program will crash if there's a small mistake in one of the book's theorems.

For machine-checked proofs, paragraph proofs are replaced by instructions to the prover. The proof must be decomposed into steps that are simple
enough for the prover to check, which may sometimes be infuriatingly simple. This should eventually change as machine learning is applied to proof checking. Some proof checkers don't support hierarchical structuring. They require you to do the structuring by hand. If you don't structure the proof, you will wind up with an unmanageable unstructured mass of lemmas when trying to prove the correctness of a complex abstract program.

Suffices Proof Steps A mathematical proof of a formula $G$ often begins by showing that, to prove $G$, it suffices to prove $F$. That step in a proof is represented in our structured proof style by a Suffices step.

At any step in a proof, there is a current goal. The current goal at the first step is the assertion to be proved. The statement Suffices: $F$ changes the current goal to $F$. If $G$ is the current goal at this Suffices statement, then the statement's proof must prove Assume: $F$ Prove: $G$. That is, the proof must prove $G$ assuming that $F$ is true.

The Suffices statement can be used with an Assume/Prove to assert that to prove the current goal, it suffices to assume $E$ is true and prove $F$ is true. The statement

Suffices: Assume: $E$ Prove: $F$
changes the current goal to $F$, and it adds $E$ to the set of formulas that can be assumed true by the following steps of the current proof. The proof of this statement is the same as the proof of Suffices: $E \Rightarrow F$.

### 5.4.1 The Refinement Mapping

To define the refinement mapping, it's helpful to think of a single behavior in which the variables $x_{O B}$ and $p c_{O B}$ describe a behavior of program $O B$ and the variables $s e m_{L M}$ and $p c_{L M}$ describe the corresponding behavior of $L M$ that is implemented by $O B$ under the refinement mapping. To determine what the refinement mapping should be, for each possible step in such a behavior that changes the values of the variables of $L M$, we decide how that step should change the values of $O B$.

For example, if a step of the behavior describes the execution of statement $c s$ by a process $p$ of $L M$, then it should describe the execution of $c s$ by process $p$ of $O B$. Thus, when the value of $p c_{L M}(p)$ changes from $c s$ to exit, the value of $p c_{O B}(p)$ should also change from $c s$ to exit. Reasoning in this way, we see that the values of $p c_{L M}(p)$ and $p c_{O B}(p)$ should be equal except that when $p c_{L M}(p)$ equals wait, the value of $p c_{O B}(p)$ can be wait, $w 2, w 3$,
or $w 4$. This tells us that the refinement mapping must substitute for $p c_{L M}$ the value $p c B a r_{O B}$ defined by:

$$
\begin{aligned}
p c B a r_{O B} \triangleq p \in\{0,1\} \mapsto \operatorname{IF} p c_{O B}(p) \in\{w 2, w 3, w 4\} & \text { THEN wait } \\
& \begin{aligned}
\text { ELSE } p c_{O B}(p)
\end{aligned}
\end{aligned}
$$

In a behavior satisfying $L M$, the value of $s e m_{L M}$ can be deduced from the value of $p c_{L M}$. In particular, $\operatorname{sem}_{L M}$ equals 0 iff $p c_{L M}(p)$ equals $c s$ or exit for one of the processes $p$. From the definition of $p c B a r_{O B}$, this means that the refinement mapping must substitute for $\operatorname{sem}_{L M}$ the value $s e m B a r_{O B}$ defined by:

$$
\operatorname{semBar}_{O B} \triangleq \operatorname{IF}\left(\exists p \in\{0,1\}: p c_{O B}(p) \in\{c s, e x i t\}\right) \text { THEN } 0 \text { ELSE } 1
$$

That $O B$ refines $L M$ under this refinement mapping means:

$$
\begin{equation*}
\vDash O B \Rightarrow\left(L M \text { with } p c_{L M} \leftarrow \operatorname{pcBar}_{O B}, \text { sem }_{L M} \leftarrow \operatorname{semBar} r_{O B}\right) \tag{5.10}
\end{equation*}
$$

We'll be using a lot of formulas that are obtained from formulas $F_{L M}$ by making the substitutions defined by the refinement mapping for the variables of $L M$. To keep from having lots of withs, we use this abbreviation, for any formula $F_{L M}$ :

$$
\overline{F_{L M}} \triangleq\left(F_{L M} \text { wITH } p c_{L M} \leftarrow p c \text { Bar }_{O B}, \operatorname{sem}_{L M} \leftarrow \operatorname{semBar} r_{O B}\right)
$$

Thus, (5.10) can be written $\models O B \Rightarrow \overline{L M}$. Also, $\overline{p c_{L M}}$ equals $p c B a r_{O B}$ and $\overline{s e m_{L M}}$ equals semBar ${ }_{O B}$ (which explains the suffix Bar in the names pcBar and semBar).

### 5.4.2 Refinement of Safety

We now sketch the proof that OBSafe refines LMSafe, which means the proof of

$$
\begin{equation*}
\vDash \text { OBSafe } \Rightarrow \overline{\text { LMSafe }} \tag{5.11}
\end{equation*}
$$

By the definitions of these formulas, this requires proving:

$$
\begin{align*}
& \text { (a) } \models \text { Init }_{O B}  \tag{5.12}\\
& \text { (b) } \models \overline{\text { Init }_{L M}} \\
& \\
& \text { (nit } t_{O B} \\
& \wedge \square\left[\text { Next }_{O B}\right]_{v_{O B}} \Rightarrow \square \overline{\left[\text { Next }_{L M}\right]_{v_{L M}}}
\end{align*}
$$

The proof of (a) is simple. To prove (b), we use the invariant $I n v_{O B}$ of $O B$, which is defined by (4.19), where TypeOK is defined by (4.17). That is, we assume:

$$
\begin{equation*}
\models \text { OBSafe } \Rightarrow \square I n v_{O B} \tag{5.13}
\end{equation*}
$$

To prove (5.12b), it suffices to prove

$$
\begin{equation*}
\vDash I n v_{O B} \wedge\left[\text { Next }_{O B}\right]_{v_{O B}} \Rightarrow \overline{\left[\text { Next }_{L M}\right]_{v_{L M}}} \tag{5.14}
\end{equation*}
$$

By definition of $[\ldots]_{v}$, we can prove (5.14) by proving:

$$
\begin{align*}
& \text { (a) } \vDash \operatorname{Inv}_{O B} \wedge \operatorname{Next}_{O B} \Rightarrow \overline{\operatorname{Next}_{L M}} \vee\left({\overline{v_{L M}}}^{\prime}=\overline{v_{L M}}\right)  \tag{5.15}\\
& \text { (b) } \vDash\left(v_{O B}^{\prime}=v_{O B}\right) \Rightarrow\left(\overline{v_{L M}}{ }^{\prime}=\overline{v_{L M}}\right)
\end{align*}
$$

Part (b) is trivial, since $\overline{v_{L M}}$ is defined in terms of the variables of $v_{O B}$. For part (a), propositional logic tells us that we prove $F \wedge\left(G_{1} \vee \ldots \vee G_{n}\right) \Rightarrow H$ by proving $F \wedge G_{i} \Rightarrow H$ for each $i$. So, we decompose the proof of part (a) by writing Next ${ }_{O B}$ as the disjunction of subactions.

We use the notation introduced in Section 4.2.6 of naming the action described by a labeled statement with the capitalized label. For example, $C s_{O B}(p)$ is the action described by statement cs of process $p$ of program $O B$. We decompose the proof of (5.15a) into proving:

$$
\begin{equation*}
\vDash \operatorname{Inv} v_{O B} \wedge L b l_{O B}(p) \Rightarrow \overline{\operatorname{Next}_{L M}} \vee\left({\overline{v_{L M}}}^{\prime}=\overline{v_{L M}}\right) \tag{5.16}
\end{equation*}
$$

for each label $l b l$ in Figure 4.3 and $p$ in $\{0,1\}$.
Condition (5.16) asserts that a step of $O B$ described by the statement labeled $l b l$ implements a step of $L M$ under the refinement mapping. We defined the refinement mapping to make that true, so we should be able to prove this assertion. We prove it by showing that each action $L b l_{O B}(p)$ implements some particular subaction of $N e x t_{L M}$. In particular, we prove the following seven assertions R1-R7. Three of them assert that actions of $O B$ imply actions of the form $\overline{\left\langle A_{L M}\right\rangle_{v_{L M}}}$. For proving that $O B$ implies $\overline{L M S a f e}$, we need only the weaker assertions obtained by replacing such an action by $\overline{A_{L M}}$. However, we will need the stronger assertions later for proving that OB implies $\overline{\text { LMLive }}$.

R1. $\vDash \operatorname{Inv}_{O B} \wedge N c s_{O B}(p) \Rightarrow \overline{N c s_{L M}(p)}$
R2. $\vDash I n v_{O B} \wedge \operatorname{Wait}_{O B}(p) \Rightarrow\left({\overline{v_{L M}}}^{\prime}=\overline{v_{L M}}\right)$
R3. $\vDash I n v_{O B} \wedge W 2_{\text {OB }}(p) \Rightarrow$

$$
\begin{aligned}
& \text { IF } p=0 \text { THEN } \overline{\left\langle\text { Wait }_{L M}(0)\right\rangle_{v_{L M}}} \\
& \text { ELSE IF } x_{O B}(0) \text { THEN } \\
& \text { ELSE } \overline{v_{L M}}=\overline{\text { Wait } \left._{L M}(1)\right\rangle_{v_{L M}}}
\end{aligned}
$$

R4. $\vDash I n v_{O B} \wedge W 3_{O B}(p) \Rightarrow\left({\overline{v_{L M}}}^{\prime}=\overline{v_{L M}}\right)$
R5. $\vDash \operatorname{Inv} v_{O B} \wedge W 4_{O B}(p) \Rightarrow\left({\overline{v_{L M}}}^{\prime}=\overline{v_{L M}}\right)$
R6. $\vDash I n v_{O B} \wedge C s_{O B}(p) \Rightarrow \overline{\left\langle C s_{L M}(p)\right\rangle_{v_{L M}}}$
R7. $\vDash \operatorname{Inv}_{O B} \wedge \operatorname{Exit}_{O B}(p) \Rightarrow \overline{\left\langle\operatorname{Exit}_{L M}(p)\right\rangle_{v_{L M}}}$

$$
\begin{aligned}
& W 2_{O B}(0) \equiv \quad \text { Wait }_{L M}(0) \equiv \\
& \wedge p c_{O B}(0)=w 2 \quad \wedge p c_{L M}(0)=\text { wait } \\
& \wedge \neg x_{O B}(1) \quad \wedge \operatorname{sem}_{L M}=1 \\
& \wedge p c_{O B}{ }^{\prime}=\left(p c_{O B} \operatorname{EXCEPT} 0 \mapsto c s\right) \quad \wedge p c_{L M}{ }^{\prime}=\left(p c_{L M} \operatorname{EXCEPT} 0 \mapsto c s\right) \\
& \wedge x_{O B}{ }^{\prime}=x_{O B} \quad \wedge \operatorname{sem}_{L M}{ }^{\prime}=0 \\
& I n v_{O B} \triangleq \wedge \text { TypeOK } K_{O B} \\
& \wedge \forall p \in\{0,1\}: \wedge\left(p c_{O B}(p) \in\{w 2, c s\}\right) \Rightarrow x_{O B}(p) \\
& \wedge\left(p c_{O B}(p)=c s\right) \Rightarrow\left(p c_{O B}(1-p) \neq c s\right) \\
& \text { Type } O K_{O B} \triangleq \wedge x_{O B} \in(\{0,1\} \rightarrow\{\text { TRUE, FALSE }\}) \\
& \wedge p c_{\text {OB }} \in(\{0,1\} \rightarrow\{n c s, \text { wait, } w 2, w 3, w 4, c s, e x i t\}) \\
& \wedge p c_{O B}(0) \notin\{w 3, w 4\} \\
& p c B a r_{O B} \triangleq p \in\{0,1\} \mapsto \operatorname{IF} p c_{O B}(p) \in\{w 2, w 3, w 4\} \text { THEN wait } \\
& \text { ELSE } p c_{O B}(p) \\
& \operatorname{semBar}_{O B} \triangleq \mathrm{IF} \exists p \in\{0,1\}: p c_{O B}(p) \in\{c s, \text { exit }\} \text { THEN } 0 \text { ELSE } 1 \\
& \overline{p c_{L M}}=\operatorname{pcBar}_{O B} \quad \overline{\operatorname{sem}_{L M}}=\operatorname{semBar}_{O B}
\end{aligned}
$$

Figure 5.2: Definitions used in the proofs.

Assertion R3 is equivalent to these three assertions:
R3a. $\vDash \operatorname{Inv}_{O B} \wedge W 2_{O B}(0) \Rightarrow \overline{\left\langle\text { Wait }_{L M}(0)\right\rangle_{v_{L M}}}$
R3b. $\vDash I n v_{O B} \wedge W 2_{O B}(1) \wedge x_{O B}(0) \Rightarrow\left({\overline{v_{L M}}}^{\prime}=\overline{v_{L M}}\right)$
R3c. $\vDash I n v_{O B} \wedge W 2_{O B}(1) \wedge \neg x_{O B}(0) \Rightarrow \overline{\left\langle\text { Wait }_{L M}(1)\right\rangle_{v_{L M}}}$
All these assertions are proved by expanding the definitions of the actions and of the refinement mapping. To see how this works, we consider R3a. We haven't written the definitions of the actions corresponding to the pseudocode statements of algorithms $O B$ and $L M$. The definitions of $W 2_{O B}(0)$ and $\operatorname{Wait}_{L M}(0)$ as well as the other relevant definitions are in Figure 5.2. Here is the proof of R3a.

1. Suffices: Assume: $\operatorname{Inv}_{O B} \wedge W 2_{O B}(0)$

Prove: $\overline{\left\langle\text { Wait }_{L M}(0)\right\rangle_{v_{L M}}}$

## Proof: Obvious.

2. $\left(\overline{p c_{L M}}(0)=\right.$ wait $) \wedge\left({\overline{p c_{L M}}}^{\prime}=\left(\overline{p c_{L M}} \operatorname{EXCEPT} 0 \mapsto c s\right)\right)$

Proof: By the step 1 assumption and the definitions of $W 2_{\text {OB }}(0)$ and $p_{c B a r}^{O B}(0)$, since $\overline{p c_{L M}}$ equals $p c B a r_{O B}$.
3. $\left(\overline{\operatorname{sem}_{L M}}=1\right) \wedge\left({\overline{\operatorname{sem}_{L M}}}^{\prime}=0\right)$

Proof: $W 2_{\text {OB }}(0)$ implies $\left(p c_{O B}(0)=w 2\right) \wedge \neg x_{O B}(1)$, and $I n v_{O B}$ and $\neg x_{O B}(1)$ imply $p c_{O B}(1) \notin\{c s$, exit $\}$. Hence, semBar ${ }_{O B}=1$, so $\overline{\operatorname{sem}_{L M}}=1$. The definition of $W 2_{O B}(0)$ and $I n v_{O B}$ (which implies $p c_{O B}$ is a function with domain $\{0,1\}$ ) imply $p c_{O B}{ }^{\prime}(0)=c s$. Hence $s e m B a r_{O B}{ }^{\prime}=0$, so $\overline{s e m_{L M}}{ }^{\prime}=0$.
4. Q.E.D.

Proof: Steps 2 and 3 and the definition of Wait $_{L M}(0)$ imply $\overline{\operatorname{Wait}_{L M}}(0)$. Step 3 implies $\overline{s e m_{L M}}{ }^{\prime} \neq \overline{s e m_{L M}}$ which implies $\overline{v_{L M}^{\prime}} \neq \overline{v_{L M}}$, proving the goal $\left\langle\operatorname{Wait}_{L M}(0)\right\rangle_{v_{L M}}$ introduced by step 1 .

How we decomposed the proof that OBSafe refines OBLive into proving R1-R7 was determined by the structure of Next $_{O B}$ as a disjunction of seven subactions and knowing which disjuncts of $\overline{N_{e x t_{L M}}}$ each of those subactions implements, which followed directly from the definition of the refinement mapping. The decomposition of R3 into R3a-R3c followed from the structure of R3. As illustrated by the proof of R3a, the proof of each of the resulting nine formulas is reduced to ordinary mathematical reasoning by expanding the appropriate definitions. The only place where not understanding the algorithms could result in an error is in the definition of the invariant $I n v_{O B}$ or of the refinement mapping. Catching such an error requires only careful reasoning about simple set theory and a tiny bit of arithmetic, using elementary logic. Someday, computers should be very good at such reasoning.

### 5.4.3 Refinement of Fairness

This section shows how to prove that a program refines the fairness property of another program by sketching the proof of one example: $O B$ implies LMFair. Define

$$
O B B \triangleq \square\left(\text { Inv }_{O B} \wedge \overline{I_{n} v_{L M}}\right) \wedge \square\left[\text { Next }_{O B}\right]_{v_{O B}} \wedge \text { OBFair }
$$

where $I n v_{O B}$ is the invariant satisfied by OB defined by (4.19) and (4.17), and $I n v_{L M}$ is an invariant of $L M$. For our example, we just require that $I n v_{L M}$ implies type correctness of $L M$. Formula $O B B$ is a $\square$ formula that is implied by $O B$. (We have proved that $O B$ implies $\overline{L M S a f e}$, which implies that $\overline{I n v_{L M}}$ is an invariant of $O B$.) We prove $\models O B B \Rightarrow \overline{\text { LMFair }}$.

| $A_{L M}$ | $Q_{\text {OB }}$ | $B_{\text {OB }}$ | $P_{O B}$ |
| :---: | :---: | :---: | :---: |
| $W_{\text {ait }}^{\text {LM }}$ ( 0 ) | $\begin{aligned} & \wedge p c_{O B}(0) \in\{\text { wait }, w 2\} \\ & \wedge p c_{O B}(1) \notin\{c s, e x i t\} \end{aligned}$ | $W 2_{\text {OB }}(0)$ | $\left\lvert\, \begin{aligned} & \wedge p c_{O B}(0)=w 2 \\ & \wedge \neg x(1) \end{aligned}\right.$ |
| Wait $_{\text {LM }}(1)$ | $\begin{aligned} & \wedge p c_{O B}(1) \in \\ & \quad\{w a i t, w 2, w 3, w 4\} \\ & \wedge p c_{O B}(0) \notin\{c s, e x i t\} \end{aligned}$ | $W 2_{\text {OB }}(1)$ | $\begin{aligned} & \wedge p c_{O B}(1)=w 2 \\ & \wedge \neg x(0) \end{aligned}$ |
| $C S_{L M}(p)$ | $p c_{\text {OB }}(p)=c s$ | $C S_{\text {OB }}(\mathrm{p})$ | $p c_{\text {OB }}(p)=c s$ |
| $\operatorname{Exit}_{L M}(p)$ | $p c_{O B}(p)=$ exit | Exit $_{\text {OB }}(p)$ | $p c_{O B}(p)=$ exit |

Figure 5.3: Formulas $B_{O B}, P_{O B}$, and $Q_{O B}$ for the actions $A_{L M}$, with $p \in\{0,1\}$.

We use Theorem 4.8 to write LMFair as the conjunction of weak fairness of $\operatorname{Wait}_{L M}(p), C S_{L M}(p)$, and $\operatorname{Exit}_{L M}(p)$, for $p \in\{0,1\}$. So, we have to prove $\vDash O B B \Rightarrow \overline{\mathrm{WF}_{v_{L M}}\left(A_{L M}\right)}$ for $A_{L M}$ equal to each of those six actions. By (4.12), we can do this by proving:

$$
\begin{equation*}
\models O B B \Rightarrow\left(\square \overline{\mathrm{E}\left\langle A_{L M}\right\rangle_{v_{L M}}} \leadsto\left\langle\overline{A_{L M}}\right\rangle_{\overline{v_{L M}}}\right) \tag{5.17}
\end{equation*}
$$

We prove (5.17) by finding an action $B_{O B}$ and state predicates $P_{O B}$ and $Q_{O B}$ satisfying the following conditions:

A1. 1. $\vDash I n v_{O B} \wedge \overline{I n v_{L M}} \wedge \overline{\mathbb{E}\left\langle A_{L M}\right\rangle_{v_{L M}}} \Rightarrow Q_{O B}$
2. $\vDash O B B \Rightarrow\left(\square Q_{O B} \leadsto \square P_{O B}\right)$

A2. 1. $\models I n v_{O B} \wedge \overline{I n v_{L M}} \wedge P_{O B} \Rightarrow \mathbb{E}\left\langle B_{O B}\right\rangle_{v_{O B}}$
2. $\models O B B \Rightarrow \mathrm{WF}_{v_{O B}}\left(B_{O B}\right)$

A3. $\vDash \operatorname{Inv} v_{O B} \wedge \overline{I n v_{L M}} \wedge P_{O B} \wedge\left\langle B_{O B}\right\rangle_{v_{O B}} \Rightarrow\left\langle\overline{A_{L M}}\right\rangle_{\overline{v_{L M}}}$
To show that these conditions imply (5.17), we have to show that they imply that in any behavior $\sigma$ satisfying $O B B$, if $\square \overline{\mathbb{E}\left\langle A_{L M}\right\rangle_{v_{L M}}}$ is true of $\sigma^{+m}$, then $\sigma(n) \rightarrow \sigma(n+1)$ is an $\left\langle\overline{A_{L M}}\right\rangle_{\overline{v_{L M}}}$ step for some $n \geq m$. Condition A1.1 implies $\square Q_{O B}$ is true of $\sigma^{+m}$, which by A1.2 implies $\square P_{O B}$ is true of $\sigma^{+q}$ for some $q \geq m$. By the definition of WF, conditions A2 imply $\sigma(n) \rightarrow \sigma(n+1)$ is a $\left\langle B_{O B}\right\rangle_{v_{O B}}$ step for some $n \geq q$, and A3 implies that $\left\langle B_{O B}\right\rangle_{v_{O B}}$ step is an $\left\langle\overline{A_{L M}}\right\rangle_{\overline{v_{L M}}}$ step.

The formulas $B_{O B}, P_{O B}$, and $Q_{O B}$ used for the six actions $A_{L M}$ are shown in Figure 5.3. Condition A2.1 for the actions $A_{L M}$ follows easily from the
definitions of $B_{O B}$ and $P_{O B}$. To show that A2.2 is satisfied, we apply Theorem 4.8 to write OBFair as the conjunction of weak fairness of the actions described by each process's statements other than its ncs statement. That A3 is satisfied for the four actions $A_{L M}$ in Figure 5.3 follows from conditions R3a, R3c, R6, and R7 of Section 5.4.2.

This leaves condition A1 for the actions. A1.1 is proved by using the type correctness invariant implied by $I n v_{L M}$ to show that $\mathbb{E}\left\langle A_{L M}\right\rangle_{v_{L M}}$ equals $\mathbb{E}\left(A_{L M}\right)$, and then substituting pcBar $_{O B}$ for $p c_{L M}$ and semBar ${ }_{O B}$ for $\operatorname{sem}_{L M}$ in $\mathbb{E}\left(A_{L M}\right)$. For our example, this actually shows that $\overline{I n v_{L M}}$ implies $\overline{\mathbb{E}\left\langle A_{L M}\right\rangle_{v_{L M}}} \equiv Q_{O B}$ for all the actions $A_{L M}$. A1.2 is trivially satisfied for $C S_{L M}(p)$ and $\operatorname{Exit}_{L M}(p)$, since $Q_{O B}$ and $P_{O B}$ are equal. The interesting conditions are A1.2 for $\operatorname{Wait}_{L M}(0)$ and Wait $_{L M}(1)$. They are the kind of leads-to property we saw how to prove in Section 4.2.5. In fact, we now obtain a proof of A1.2 for Wait $_{L M}(0)$ by a simple modification of the proof in Section 4.2.5.3 that $O B$ implies:

$$
\begin{equation*}
(p c(0) \in\{\text { wait }, w 2\}) \leadsto(p c(0)=c s) \tag{5.18}
\end{equation*}
$$

Let's drop the subscript $O B$, so the variables in any formula whose name has no subscript are the variables of $O B$. The proof of (5.18) is described by the proof lattice of Figures 4.4 and 4.5 . A $\square$ formula in a label on a box in a proof lattice means that the formula is conjoined to each formula inside the box. Since $F \leadsto G$ implies $(\square H \wedge F) \leadsto(\square H \wedge G)$ for any $F$, $G$, and $H$, we obtain a valid proof lattice (one whose leads-to assertions are all true) by conjoining $\square \overline{\overline{I n v}} \overline{L M} \wedge$ OBFair $\wedge \square Q$ to the labels of the outer boxes in the lattices of Figures 4.4 and 4.5 . This makes those labels equal to $O B B \wedge \square Q$. Since $Q$ implies $p c(0) \in\{$ wait, $w 2\}$, we obtain a valid proof lattice by replacing the source node of the lattice in Figure 4.4 by $\square Q$. Moreover, since the new label's conjunct $\square Q$ implies $\square(p c(0) \neq c s)$, so it's impossible for $p c(0)$ ever to equal $c s$, we can remove the sink node $p c(0)=c s$ and the edges to and from it from the lattice of Figure $4.5 .^{3}$ Since the label on the inner box containing $\square \neg x(1)$, which is the new sink node, implies $\square(p c(0)=w 2)$, we now have a valid proof lattice that shows:

$$
\models O B B \Rightarrow(\square Q \leadsto \square((p c(0)=w 2) \wedge \neg x(1)))
$$

This proves A1.2 for the action Wait $_{L M}(0)$.
To prove A1.2 for action Wait $_{L M}(1)$, it suffices to assume $O B B$ and prove $\square Q \leadsto \square P$ for the formulas $P$ and $Q$ given in Figure 5.3 for the action. Here

[^27]is the proof sketch, which uses without mention some simple temporal logic, including transitivity of $\leadsto$.

1. $\square Q \Rightarrow \square \neg x(0)$
1.1. $\square Q \Rightarrow \square(p c(0) \notin\{$ wait, $w 2\})$

Proof: We proved in Section 4.2.5.3 that $p c(0) \in\{$ wait, $w 2\}$ leads to $p c(0)=c s$, and $\square Q$ implies $\square(p c(0) \neq c s)$.
1.2. $\square Q \wedge \square(p c(0) \notin\{$ wait, $w 2\}) \Rightarrow \square(p c(0)=n c s)$

Proof: $Q$ implies $p c(0) \notin\{c s$, exit $\}$, which by Inv and $p c(0) \notin\{$ wait, $w 2\}$ implies $p c(0)=n c s$.
1.3. Q.E.D.

Proof: By steps 1.1 and 1.2 , since $\operatorname{Inv} \wedge Q$ imply $p c(0)=n c s$, and $I n v$ and $p c(0)=n c s$ imply $\neg x(0)$.
2. $\square Q \wedge \square \neg x(0) \leadsto \square P$
2.1. $\square Q \wedge \square \neg x(0) \leadsto(p c(1)=w 2)$

Proof: $Q$ implies $p c(1) \in\{$ wait, $w 2, w 3, w 4\}$, and a straightforward proof using fairness of $\operatorname{PNext}(1)$ and $\square \neg x(0)$ shows

$$
(p c(1) \in\{w a i t, w 2, w 3, w 4\}) \leadsto(p c(1)=w 2)
$$

2.2. $\square Q \wedge \square \neg x(0) \wedge(p c(1)=w 2) \Rightarrow \square(p c(1)=w 2)$

Proof: $\square Q$ implies $\square(p c(1) \neq c s)$, and $(p c(1)=w 2) \wedge \square[N e x t]_{v} \wedge$ $\square(p c(1) \neq c s)$ implies $\square(p c(1)=w 2)$.
2.3. Q.E.D.

Proof: Steps 2.1 and 2.2 imply $\square Q \wedge \square \neg x(0) \leadsto \square(p c(1)=w 2)$, and $\square P$ equals $\square(p c(1)=w 2) \wedge \square \neg x(0)$.
3. Q.E.D.

Proof: By steps 1 and 2,

### 5.4.4 A Closer Look at $\mathbb{E}$

### 5.4.4.1 A Syntactic View

Section 4.2.1 explained $\mathbb{E}$ semantically, defining $\mathbb{E}(A)$ to be true of a state $s$ iff there exists a state $t$ such that action $A$ is true of the step $s \rightarrow t$. We now translate this semantic definition into a syntactic definition of $\mathbb{E}(A)$. A state is an assignment of values to variables, so we can restate that definition as:

E1. $\mathbb{E}(A)$ is true for an assignment of values to the unprimed variables iff there exists an assignment of values to the primed variables that makes $A$ true.

A state predicate is true of a state iff it is true when its variables have the values assigned to them by the state. We can restate E1 as:

E2. $\mathbb{E}(A)$ is true (of a state) iff there exist values of the primed variables for which $A$ is true.

We will now translate E2 into a precise syntactic definition of $\mathbb{E}$.
To do this, for any variable $x$, we now regard $x$ and $x^{\prime}$ as two unrelated symbols. For an expression exp, we take exp ${ }^{\prime}$ to be the expression obtained by priming all the variables in $\exp$. If $\exp$ contains a defined symbol whose definition contains variables, then all the variables in that definition are primed in $e x p^{\prime}$.

We now define awith to be substitution like with, except regarding $x^{\prime}$ as being a different variable from $x$. For example, if $x, y$, and $z$ are variables, then:

$$
\begin{array}{lll}
\left(x^{\prime}=x+1\right) \text { WITH } x \leftarrow y-z \text { equals } & (y-z)^{\prime}=(y-z)+1 \\
\left(x^{\prime}=x+1\right) \text { AWITH } x \leftarrow y-z \text { equals } & x^{\prime}=(y-z)+1 \\
\left(x^{\prime}=x+1\right) \text { AWITH } x^{\prime} \leftarrow y-z \text { equals } & (y-z)=x+1
\end{array}
$$

If $s y m$ is a defined symbol, then

$$
\left(x^{\prime}=x+\text { sym }\right) \text { AWITH } x^{\prime} \leftarrow y-z
$$

equals

$$
(y-z)=x+\left(\text { sym AWITH } x^{\prime} \leftarrow y-z\right)
$$

If $\operatorname{sym} \triangleq \sqrt{2 * x^{\prime}}$, then this equals

$$
(y-z)=x+\sqrt{2 *(y-z)}
$$

Now let $A$ be an action and let $x_{1}, \ldots, x_{n}$ be all the variables that appear in $A$. We can then write E2 as:

$$
\begin{equation*}
\mathbb{E}(A) \triangleq \exists c_{1}, \ldots, c_{n}:\left(A \text { AWITH } x^{\prime}{ }_{1} \leftarrow c_{1}, \ldots, x^{\prime}{ }_{n} \leftarrow c_{n}\right) \tag{5.19}
\end{equation*}
$$

Thus, we obtain $\mathbb{E}(A)$ from $A$ by replacing the primed variables by bound constants that are existentially quantified. We informally describe this definition by saying that $\mathbb{E}(A)$ is obtained from $A$ by existentially quantifying its primed variables.

### 5.4.4.2 Computing $\mathbb{E}$

The syntactic definition (5.19) of $\mathbb{E}$ immediately provides rules for writing $\mathbb{E}(A)$ in terms of formulas $\mathbb{E}\left(B_{i}\right)$, for $B_{i}$ subactions of $A$. From the rule

$$
\models(\exists c: A \vee B) \equiv(\exists c: A) \vee(\exists c: B)
$$

we have

$$
\text { E1. } \models \mathbb{E}(A \vee B) \equiv \mathbb{E}(A) \vee \mathbb{E}(B)
$$

For example, in program $L M$ defined in Section 4.2.6.1, the next-state action $\operatorname{PNext}(p)$ is the disjunction of actions $\operatorname{Ncs}(p), \operatorname{Wait}(p), \operatorname{Cs}(p)$, and $\operatorname{Exit}(p)$. Therefore, rule E1 implies

$$
\mathbb{E}(P N e x t(p)) \equiv \mathbb{E}(N c s(p)) \vee \mathbb{E}(\operatorname{Wait}(p)) \vee \mathbb{E}(C s(p)) \vee \mathbb{E}(\operatorname{Exit}(p))
$$

The generalization of $\mathbb{E} 1$ is:
$\mathbb{E} 2 . \vDash \mathbb{E}\left(\exists i \in S: A_{i}\right) \equiv \exists i \in S: \mathbb{E}\left(A_{i}\right)$
where $S$ is a constant or state expression.
Another rule of existential quantification is that if the constant $c$ does not occur in $A$, then $\exists c:(A \wedge B)$ is equivalent to $A \wedge(\exists c: B)$. From this we deduce:
$\mathbb{E} 3$. If no variable appears primed in both $A$ and $B$, then $\models \mathbb{E}(A \wedge B) \equiv$ $\mathbb{E}(A) \wedge \mathbb{E}(B)$.

For example, in program $L M$ we have:

$$
\begin{aligned}
\operatorname{Wait}(p) \triangleq & \wedge(s e m=1) \wedge(p c(p)=\text { wait }) \\
& \wedge s e m^{\prime}=0 \\
& \wedge p c^{\prime}=(p c \operatorname{EXCEPT} p \mapsto c s)
\end{aligned}
$$

Therefore, rule $\mathbb{E} 3$ implies

$$
\begin{align*}
\mathbb{E}(\text { Wait }(p)) \equiv & \wedge \mathbb{E}((s e m=1) \wedge(p c(p)=\text { wait }))  \tag{5.20}\\
& \wedge \mathbb{E}\left(s e m^{\prime}=0\right) \\
& \wedge \mathbb{E}\left(p c^{\prime}=(p c \operatorname{EXCEPT} p \mapsto c s)\right)
\end{align*}
$$

The following two rules also follow easily from (5.19) and properties of existential quantification:

E4. If $P$ is a state predicate, then $\models \mathbb{E}(P) \equiv P$.

E5. If $x$ is a variable and $\exp$ is a state expression, then $\models \mathbb{E}\left(x^{\prime}=\exp \right) \equiv$ TRUE.

From (5.20), $\mathbb{E} 4$, and $\mathbb{E} 5$, we deduce that $\mathbb{E}(\operatorname{Wait}(p))$ equals $($ sem $=1) \wedge$ $(p c(p)=w a i t)$. Here is another obvious rule, which can be considered a generalization of $\mathbb{E} 5$, since $c=\exp$ is equivalent to $c \in\{\exp \}$ :

E6 If $x$ is a variable and $\exp$ is a state expression, then $\models \mathbb{E}\left(x^{\prime} \in \exp \right) \equiv$ ( $\exp \neq\{ \}$ ).

Rules $\mathbb{E} 1-\mathbb{E} 6$ are sufficient for computing $\mathbb{E}(A)$ for almost all subactions $A$ that, like $P N \operatorname{ext}(p)$, appear in the definition of a program's next-state action. However, the definition of fairness does not contain such formulas $\mathbb{E}(A)$. Instead, it contains formulas of the form $\mathbb{E}\langle A\rangle_{v}$, which equals $\mathbb{E}\left(A \wedge\left(v^{\prime} \neq v\right)\right)$. None of those rules apply to such a formula. In particular, $\mathbb{E} 3$ does not apply because $v$ is the tuple of all the program's variables.

Most of the time, a subaction $A$ in the definition of a program's nextstate action does not allow stuttering steps. Therefore, $\langle A\rangle_{v}$ equals $A$, so $\mathbb{E}\langle A\rangle_{v}$ equals $\mathbb{E}(A)$ and we can apply the rules. For example, $\mathbb{E}\langle P N e x t(p)\rangle_{v}$ equals $\mathbb{E}(\operatorname{PNext}(p))$ because a $\operatorname{PNext}(p)$ step changes the value of $p c(p)$, so it can't be a stuttering step. We are using the substitutivity rule (3.34) of ordinary math to deduce

$$
\models(A \equiv B) \Rightarrow(\mathbb{E}(A) \equiv \mathbb{E}(B))
$$

(Even though substitutivity is not valid for TLA or the Logic of Actions, we can apply it to the syntactic definition (5.19) of $\mathbb{E}$, which treats $x$ and $x^{\prime}$ as two different variables of ordinary math-that is, two different constants.)

However, we can't deduce $\operatorname{PNext}(p) \equiv\langle\operatorname{PNext}(p)\rangle_{v}$ from the definition of $P N \operatorname{ext}(p)$. For example, if $p c(p)=c s$, then the definition of $P N e x t(p)$ asserts

$$
p c^{\prime}=(p c \operatorname{EXCEPT} p \mapsto e x i t)
$$

If $p$ is not in the domain of $p c$, then $p c^{\prime}(p)=p c(p)$. If $p c$ is not a function, then we have no idea what $p c^{\prime}(p)$ equals, so it could equal $p c(p)$. Fortunately, we care what $\mathbb{E}\langle\operatorname{PNext}(p)\rangle_{v}$ equals only in reachable states of $L M$. So, we just have to prove that Inv implies $\mathbb{E}\langle\operatorname{PNext}(p)\rangle_{v} \equiv \mathbb{E}(\operatorname{PNext}(p))$ for an invariant Inv of $L M$ that asserts type correctness. To do this, we observe that for any action $A$ and state predicate $P$, rules $\mathbb{E} 3$ and $\mathbb{E} 4$ imply $P \wedge \mathbb{E}(A) \equiv \mathbb{E}(P \wedge A)$. So, to prove that Inv implies $\mathbb{E}\langle P N e x t(p)\rangle_{v} \equiv$ $\mathbb{E}(\operatorname{PNext}(p))$, it suffices to prove

$$
\models \operatorname{Inv} \Rightarrow\left(\langle\operatorname{PNext}(p)\rangle_{v} \equiv \operatorname{PNext}(p)\right)
$$

which is straightforward. In general, we reason about liveness under the assumption that the program's safety property is satisfied, so we can assume $\square I n v$ is true for an invariant Inv of the program.

Since the formula $\square[N e x t]_{v}$ always allows stuttering steps, there is no need for a next-state action Next to allow them. Usually, it doesn't. However, there is no reason for Next not to allow stuttering steps, and sometimes it's more convenient to write a subaction $A$ that allows them. In that case, we have to use the definition (5.19) to compute $\mathbb{E}\langle A\rangle_{v}$. However, we apply the definition to $\mathbb{E}\left(\operatorname{Inv} \wedge\langle A\rangle_{v}\right)$, which equals $\mathbb{E}\langle\operatorname{Inv} \wedge A\rangle_{v}$, for a program invariant Inv.

### 5.4.4.3 The Trouble With $\mathbb{E}$

Refinement is based on substitution. Program $O B$ refines $L M$ means:

$$
\begin{equation*}
\models O B \Rightarrow(L M \text { with } p c \leftarrow p c B a r, \text { sem } \leftarrow \operatorname{semBar}) \tag{5.21}
\end{equation*}
$$

We no longer need the subscripts that were added to help us understand which program an identifier refers to. We continue using the abbreviation that, for any formula $F$ :

$$
\bar{F} \triangleq(F \text { with } p c \leftarrow p c B a r, \text { sem } \leftarrow \operatorname{semBar})
$$

Almost without thinking, we replaced $\overline{\text { Init } \wedge \square[N e x t]_{v}}$ with the equivalent property $\overline{\text { Init }} \wedge \square[\overline{N e x t}]$. We were actually using these three rules:

- $\overline{F \wedge G} \equiv \bar{F} \wedge \bar{G}$ for any formulas $F$ and $G$.
- $\overline{\square F} \equiv \square \bar{F}$ for any formula $F$.
- $\overline{[A]_{v}} \equiv[\bar{A}]_{\bar{v}}$ for any action $A$ and state expression $v$.

The first asserts that substitution distributes over $\vee$; the second asserts that substitution distributes over $\square$; and the third asserts that substitution distributes over the construct [...]....

We expect substitution to distribute in this way over all mathematical operators, so we would expect $\overline{\mathbb{E}(A)}$ and $\mathbb{E}(\bar{A})$ to be equal for any action $A$. In fact, they are equal for most actions encountered in practice. But here's an action $A$ for which they aren't for the refinement mapping of (5.21):

$$
\begin{aligned}
A \triangleq & \wedge p c^{\prime}=(p \in\{0,1\} \mapsto \text { wait }) \\
& \wedge \operatorname{sem}^{\prime}=0
\end{aligned}
$$

Rules $\mathbb{E} 3$ and $\mathbb{E} 5$ imply that $\mathbb{E}(A)$ equals true, so $\overline{\mathbb{E}(A)}$ equals true. By definition of the refinement mapping:

$$
\begin{aligned}
\bar{A} \triangleq & \wedge p c B a r^{\prime}=(p \in\{0,1\} \mapsto \text { wait }) \\
& \wedge \operatorname{semBar}^{\prime}=0
\end{aligned}
$$

$\bar{A}$ implies $\operatorname{pcBar}^{\prime}(p)=$ wait for $p \in\{0,1\}$. By definition of $p c B a r$, this implies:
(1) $p c^{\prime}(p) \in\{w 2, w 3, w 4$, wait $\}$ for $p$ equal to 0 or 1 .

But $\bar{A}$ also implies semBar $=0$, which by the definition of semBar implies:
(2) $p c^{\prime}(p) \in\{c s$, exit $\}$ for $p$ equal to 0 or 1 .

Both (1) and (2) can't be true, so $\bar{A}$ must equal false and thus $\mathbb{E}(\bar{A})$ equals false. Therefore, $\overline{\mathbb{E}(A)}$ does not equal $\mathbb{E}(\bar{A})$, so substitution does not always distribute over $\mathbb{E}$.

The reason substitution doesn't distribute over $\mathbb{E}$ is that $\mathbb{E}(\bar{A})$ performs the substitutions $p c \leftarrow p c B a r$ and sem $\leftarrow s e m B a r$ for the primed variables $p c^{\prime}$ and $s e m^{\prime}$. However, as we see from (5.19), those primed variables do not occur in $\mathbb{E}(A)$; they are replaced by bound constants. The substitutions should be performed only on the unprimed variables. Therefore:

$$
\mathbb{E}(A) \text { шітн } p c \leftarrow \ldots, \text { sem } \leftarrow \ldots
$$

does not equal
$\mathbb{E}(A$ with $p c \leftarrow \ldots$, sem $\leftarrow \ldots)$
Instead, it equals
$\mathbb{E}(A$ AWITH $p c \leftarrow \ldots$, sem $\leftarrow \ldots)$
which substitutes only for unprimed variables.
Since WF and SF are defined in terms of $\mathbb{E}$, substitution does not distribute over them either. We proved that $O B$ refines $L M$ by proving that $O B$ implies $\overline{\mathrm{WF}}_{v}(A)$ for six actions $A$. To evaluate $\overline{\mathrm{WF}_{v}(A)}$, we expanded the definition of WF. Since substitution distributes over all the operators other than $\mathbb{E}$ in the definition of $\mathrm{WF}_{v}(P N)$, including in the definition $P N(p)$, we could perform the substitutions everywhere in the resulting formula except in $\overline{\left.\mathbb{E}\langle A\rangle_{v}\right)}$. We could then have used (5.19) to expand the definition of $\mathbb{E}$ and perform the substitution on the resulting formula, which contains no primed variables. (This is equivalent to performing the substitution in $\mathbb{E}\langle A\rangle_{v}$, except using AwITH instead of with.)

While expanding the definition of $\mathbb{E}$ in this way would have allowed $\overline{\mathbb{E}\langle A\rangle_{v}}$ to be evaluated, it would have required applying $\mathbb{E}$ to an action that was more complicated than $\langle A\rangle_{v}$. That's not what we did in the proof sketch in Section 5.4.3. Instead we showed that $\langle A\rangle_{v}$ equals $A$ and performed the substitution on $\mathbb{E}(A)$. Showing $\langle A\rangle_{v} \equiv A$ required an invariant Inv of $L M$, but because $O B$ refines LMSafe, the formula $\overline{I n v}$ is an invariant of $O B$, allowing us to deduce that $\overline{\mathbb{E}\langle A\rangle_{v}}$ equals $\bar{A}$.

Substitution not distributing over $\mathbb{E}$ makes $\mathbb{E}$ mathematically weird. You should be suspicious of such weird things. The operators $\square$ and ' (prime) that TLA adds to ordinary math are weird because they are not substitutive. But substitution does distribute over them. Moreover, temporal logic is a well-studied field of math. I find $\mathbb{E}$ weirder than the temporal logic operators.

However, fairness is an important concept in concurrent programs. The WF and SF operators are the mathematical expressions of what fairness has meant since Dijkstra introduced the assumption of weak fairness in 1965 [9]. There seems to be no good way to express it mathematically without the operator $\mathbb{E}$.

A similarly weird operator has been at the heart of traditional programs since the earliest coding languages - namely, the action composition operator "." introduced in Section 3.4.1.4. If $x_{1}, \ldots, x_{n}$ are all the variables that appear in actions $A$ and $B$, then $A \cdot B$ can be defined syntactically by:

$$
\begin{aligned}
A \cdot B \triangleq \exists c_{1}, \ldots, c_{n}: & \wedge\left(A \text { AWITH } x_{1}^{\prime}{ }_{1} \leftarrow c_{1}, \ldots, x_{n}^{\prime} \leftarrow c_{n}\right) \\
& \wedge\left(B \text { AWITH } x_{1} \leftarrow c_{1}, \ldots, x_{n} \leftarrow c_{n}\right)
\end{aligned}
$$

The primed variables of $A$ and the unprimed variables of $B$ are replaced by bound constants, and substitution does not distribute over "." for the same reason it doesn't distribute over $\mathbb{E}$.

The common methods for reasoning about traditional programs written in an imperative language can be viewed as a form of Hoare logic. As explained in Appendix Section A.5, such a logic can be viewed mathematically as defining the meaning of a statement $S$ to be an action $A_{S}$. If the meanings of statements $S$ and $T$ are the actions $A_{S}$ and $A_{T}$, then the meaning of $S ; T$ is the action $A_{S} \cdot A_{T}$.

With this way of reasoning, the semicolon of imperative coding languages therefore has the same weirdness as the $\mathbb{E}$ operator. I suspect this was never discovered because people thought of programs in terms of conventional code, and it makes no sense to implement a variable $x$ by an expression when $x$ can appear in an assignment statement $x:=\ldots$.

### 5.5 A Warning

We have defined correctness of a program $S$ to mean $\models S \Rightarrow P$ for some property $P$. We have to be careful to make sure that we have chosen $P$ so that this implies what we really want correctness of the program to mean. As discussed in Section 4.3, we have to be concerned with the accuracy of $P$.

When correctness asserts that $S$ refines a program $T$, the property $P$ is ( $T$ with $\ldots$ ) for a refinement mapping "...". That refinement mapping is as important a part of the property as the program $T$, and it must be examined just as carefully to be sure that proving refinement means what you want it to. As an extreme example, $O B$ also implements $L M$ under this refinement mapping:

$$
p c_{L M} \leftarrow(p \in\{0,1\} \mapsto n c s), \operatorname{sem}_{L M} \leftarrow 1
$$

Implementation under this refinement mapping tells us nothing about $O B$, because under it, every behavior of $O B$ implements a behavior in which all processes remain forever in their noncritical sections. The program obtained by replacing the next-state action of $O B$ by false also implements $L M$ under this refinement mapping.

Such an egregiously useless refinement mapping can often be detected because, under a refinement mapping that implements behaviors of a program $T$ by behaviors of program $S$ that do nothing, $S$ won't implement the fairness properties of $T$. However, programs often don't require that actions representing the initiation of an operation by the environment ever occur. In such a case, it's a good idea to make sure that $S$ refines $T$ when fairness requirements are added to those actions in both programs. This is an application of the general idea of adding fairness to verify possibility that was introduced in Section 4.3.2.

## Chapter 6

## Auxiliary Variables

An auxiliary variable is a variable that is added to an abstract program without altering the values assumed by the program's regular variables. It's sometimes necessary to add auxiliary variables to a program in order to prove that it refines another program. Sections 6.2, 6.3, and 6.4 define the three kinds of auxiliary variables that may be needed, illustrating them with silly little examples. Section 6.5 describes a realistic example that makes use of all three kinds of auxiliary variables. We begin with a section that explains variable hiding, which is the basis for auxiliary variables and is also used in Chapter 7.

### 6.1 Variable Hiding

## Math IX

Reasoning About $\exists$ Variable hiding in abstract programs is performed with an existential quantifier of temporal logic. That quantifier obeys the same rules as the unbounded quantifier $\exists$ of ordinary math, so we now describe those rules. We are concerned with two rules: the $\exists$ Introduction rule used for proving a formula $\exists v: F$, and the $\exists$ Elimination rule used for proving that $\exists v: F$ implies a formula $G$. Rules for reasoning about the bounded quantifier $\exists v \in S$ can be obtained from these rules by replacing $F$ with $(v \in S) \wedge F$ and then replacing $\exists v:(v \in S) \wedge F$ with $\exists v \in S: F$.
$\exists$ Introduction To prove $\exists v: F$, we have to show that there is a value of $v$ that makes $F$ true. We do that by explicitly describing that value. This
is asserted by the following rule, where $\exp$ is a arbitrary expression:

$$
\models(F \text { with } v \leftarrow e x p) \Rightarrow(\exists v: F)
$$

$\exists$ Elimination Suppose $\exists v: F$ is true and $F \Rightarrow G$ is true when $v$ has any value. This implies that $G$ is true for the particular value of $v$ that makes $F$ true, so $\exists v: G$ is true. Stated precisely, this rule is:

$$
\models F \Rightarrow G \text { implies } \quad \models(\exists v: F) \Rightarrow(\exists v: G)
$$

This doesn't look like an $\exists$ elimination rule because we use $\exists v: F$ to prove another existentially quantified formula $\exists v: G$, so we haven't eliminated the $\exists$. It becomes an elimination rule if $v$ is not a free variable of $G$, because then $\exists v: G$ is equivalent to $G$. The rule is usually stated with $\exists v: G$ replaced by $G$ and the side condition that $v$ is not a free variable of $G$. This syntactic side condition can be replaced by the more general mathematical condition that substituting 0 (or any other fixed value) for $v$ leaves $G$ unchanged. (This condition is satisfied by the formula $v=v$, in which $v$ occurs.) In practice, the syntactic condition is good enough. But the mathematical condition makes it clear that $v$ not occurring free in $G$ means that $v$ does not occur in $G$ after the definitions of all defined symbols that appear in $G$ have been expanded. With this understanding of what it means, the rule used to eliminate the quantifier from $\exists x: G$ is:

$$
\begin{equation*}
\vDash(\exists v: G) \equiv G \quad \text { if } v \text { does not occur free in } G \tag{6.1}
\end{equation*}
$$

Of course, the same rule holds for the quantifier $\forall$ as well.

### 6.1.1 Introduction

Recall the behavior predicate $F_{12}$, discussed in Section 4.1.2, that is true of a behavior iff the value of $x$ can equal 2 in a state only if $x$ equaled 1 in a previous state. We gave a semantic definition of $F_{12}$; it can't be expressed in RTLA or TLA as those languages have been defined so far. We observed that $F_{12}$ can be expressed as the abstract program $S_{12}$, defined in (4.2), by introducing an additional variable $y$.

The variable $x$ that we're interested in is called an interface variable. The variable $y$ that's used only to describe how the values of $x$ can change is called an internal variable. There's a problem with using the internal variable $y$ to describe $F_{12}$. Consider the abstract program $S_{x}$ that starts with $x=0$ and can keep incrementing $x$ by one:

$$
S_{x} \triangleq(x=0) \wedge \square\left[x^{\prime}=x+1\right]_{x}
$$

Since $S_{x}$ allows $x$ to equal 2 only after it has equaled 1, it satisfies property $F_{12}$. However, $S_{x}$ doesn't imply $S_{12}$ because $S_{12}$ describes how the values of $x$ and $y$ change, while $S_{x}$ allows behaviors in which $y$ can have any values.

We want to express $F_{12}$ by a formula that asserts of a behavior $\sigma$ that there is some way to assign values to $y$ that makes $S_{12}$ true, but says nothing about the actual values of $y$. As mentioned in Section 4.1.2, that formula is written $\exists y$ : $S_{12}$. The operator $\boldsymbol{\exists}$ is explained here.

In ordinary math, the formula $\exists y: x * y^{2}=36$ asserts that there is some value $y$ for which $x * y^{2}$ equals 36 , but says nothing about the actual value of $y$. The variables of ordinary math correspond to the constants of temporal logic. The $y$ in $\exists y: S_{12}$ is a constant, so that formula asserts that there is a constant value $y$ that satisfies $S_{12}$; and that value equals true if the initial value of $x$ is 1 , otherwise it equals false. Formula $\exists y: S_{12}$ asserts that $x$ can never equal 2 unless the initial value of $x$ is 1 , which is not what $F_{12}$ asserts.

The formula $\exists y: S_{12}$ is true of a behavior iff the values of $x$ in that behavior are the same as its values in a behavior satisfying $S_{12}$, where $y$ is a variable rather than a constant; but it says nothing about the actual values assumed by $y$. Thus, $y$ is a bound variable, not a free variable, of $\exists y: S_{12}$. The precise definition of $\boldsymbol{\exists}$ is subtle and is given below. For now, we just need to know that $\llbracket \exists y: S_{12} \rrbracket$ equals $F_{12}$. I like to say that $\exists y: S_{12}$ is formula $S_{12}$ with $y$ hidden, because $\boldsymbol{\exists}$ does what hiding is supposed to do in coding languages.

We now generalize abstract programs to allow quantification over variables. As with the operator $\exists$, we let $\exists y_{1}, \ldots, y_{n}: F$ be an abbreviation for $\exists y_{1}: \ldots \exists y_{n}: F$. The general form of an abstract program with hidden variables is:

$$
\begin{equation*}
\exists y_{1}, \ldots, y_{k}: \text { Init } \wedge \square[\text { Next }]_{v} \wedge L \tag{6.2}
\end{equation*}
$$

with internal (bound) variables $y_{1}, \ldots, y_{k}$. (The interface variables are the free variables of the formula.) Theorem 4.9 shows that any property that can be described mathematically can be written in this form, with a single bound variable. However, $\exists$ is of little use in practice. The only role it plays is telling us that, when implementing the program, it doesn't matter how the internal variables are refined. That can be stated just as well in a comment; we don't need to introduce a new operator just for that. In fact, although $\exists$ is an operator of $\mathrm{TLA}^{+}$and is recognized by the parser, none of the current tools handle it. Model checking formulas containing $\exists$ seems to be computationally infeasible. I don't know of any engineer wanting to use it.

The reason to understand the temporal existential quantification operator $\exists$ is that it is the logical underpinning of important concepts such as the auxiliary variables discussed in this chapter.

### 6.1.2 Reasoning About $\exists$

Allowing an abstract program to be described with a formula of the form (6.2) raises the question of how to reason about such formulas. The answer is that the operator $\exists$ obeys the same introduction and elimination rules as the quantifier $\exists$ of ordinary math, except with program variables (now called variables) replacing the mathematical variables (now called constants). In principle, $\exists$ has the same problem of variable capture as $\exists$, but in practice, $\boldsymbol{\exists}$ is used in such a restricted way that variable capture is not an issue.

We want to reason about a formula of the form $\exists y_{1}, \ldots, y_{k}: F$. Applying the $\exists$ introduction rule $k$ times to $\exists$, we get the following rule, where the $\exp _{i}$ may be any expressions:

$$
\begin{aligned}
& \models G \Rightarrow\left(F \text { with } y_{1} \leftarrow \exp _{1}, \ldots, y_{k} \leftarrow \exp _{k}\right) \\
& \quad \text { implies } \models G \Rightarrow \exists y_{1}, \ldots, y_{k}: F
\end{aligned}
$$

Applying the $E$ elimination rule $k$ times to $\exists$, we get the rule:

$$
\begin{aligned}
& \models F \Rightarrow G \text { implies } \models\left(\exists y_{1}, \ldots, y_{k}: F\right) \Rightarrow G \\
& \text { if no variable } y_{i} \text { occurs free in } G .
\end{aligned}
$$

Of course, we can always ensure that no $y_{i}$ occurs free in $G$ by renaming the internal variables $y_{i}$ of $F$.

Combining these two rules, we see that we can prove that one program of the form (6.2) implements another program of that form by proving an assertion of the form

$$
\begin{equation*}
T \Rightarrow\left(S \text { WITH } y_{1} \leftarrow \exp _{1}, \ldots, y_{k} \leftarrow \exp _{k}\right) \tag{6.3}
\end{equation*}
$$

where $S$ and $T$ have the standard form Init $\wedge \square[N e x t]_{v} \wedge L$ of an abstract program, and none of the internal variables of $T$ are interface variables of $S$, which in practice will always be the case. For every interface variable $x$ of $S$, which in practice must also be an interface variable of $T$, the WITH clause includes an implicit substitution $x \leftarrow x$ that substitutes the variable $x$ of $T$ for the variable $x$ of $S$. Thus, the with clause describes a refinement mapping under which $T$ refines $S$.

This raises a question: If $\models T \Rightarrow \exists y_{1}, \ldots, y_{k}: S$ is true, do there always exist expressions $\exp _{i}$ for which (6.3) is true? The answer is no, if
we can use only the variables that appear in $T$ to define the refinement mapping. If $S$ has the form Init $\wedge \square[N e x t]_{v} \wedge L$, then the answer is yes if we're allowed to add auxiliary variables to $T$. Adding an auxiliary variable $a$ (which does not occur in $T$ ) to $T$ means writing a formula $T^{a}$ such that $\exists a: T^{a}$ is equivalent to $T$. By this equivalence, we can verify $\models T \Rightarrow S$ by verifying $\models\left(\exists a: T^{a}\right) \Rightarrow S$. By the $\boldsymbol{\exists}$ Elimination rule, we do this by verifying $=T^{a} \Rightarrow S$. And to verify this, we can use $a$ as well as the variables of $T$ to define the refinement mapping. Auxiliary variables are the main topic of this chapter and are discussed below.

### 6.1.3 The Definition

The standard way temporal existential quantification is defined in most temporal logics is not suitable for TLA because it does not preserve stuttering insensitivity (SI), defined in Section 3.5.3. It's the natural way to define it for RTLA, so we will call the operator defined in that way $\boldsymbol{\exists}_{\text {RtLa }}$.

To define $\boldsymbol{\exists}_{\text {RtLa }}$, we first define $s={ }_{y} t$ to be true for states $s$ and $t$ iff the values of all variables except $y$ are the same in states $s$ and $t$. Remembering that $\sigma(i)$ is state number $i$ of a behavior $\sigma$, we define the relation $\simeq{ }_{y}$ on behaviors by:

$$
\sigma \simeq_{y} \tau \triangleq \forall i \in \mathbb{N}: \sigma(i)={ }_{y} \tau(i)
$$

Therefore, $\sigma \simeq{ }_{y} \tau$ asserts that behaviors $\sigma$ and $\tau$ are the same except for the values assigned to $y$ by their states. We then define $\exists_{\text {RTLA }} y: F$ to be satisfied by a behavior $\sigma$ iff it is satisfied by some behavior $\tau$ with $\sigma \simeq_{y} \tau$.

The operator $\exists_{\text {RTLA }}$ is not a suitable hiding operator for properties, and hence not suitable for TLA, because the formula $\exists_{\text {RTLA }} y: F$ need not be a property even if $F$ is. For example, let $F$ be the following formula, where $\lfloor r\rfloor$ is the largest integer less than or equal to $r$ :

$$
\begin{equation*}
(x=y=0) \wedge \square\left[\left(y^{\prime}=y+1\right) \wedge\left(x^{\prime}=\left\lfloor y^{\prime} / 2\right\rfloor\right)\right]_{\langle x, y\rangle} \tag{6.4}
\end{equation*}
$$

Ignoring the values of other variables, the property $F$ is satisfied by this non-halting behavior with no stuttering steps:

$$
\left[\begin{array}{lll}
x:: & 0 \\
y:: & 0
\end{array}\right]_{0} \rightarrow\left[\begin{array}{lll}
x:: & 0 \\
y:: & 1
\end{array}\right]_{1} \rightarrow\left[\begin{array}{lll}
x:: & 1 \\
y & : & 2
\end{array}\right]_{2} \rightarrow\left[\begin{array}{lll}
x & :: & 1 \\
y & : & 3
\end{array}\right]_{3} \rightarrow\left[\begin{array}{lll}
x & :: & 2 \\
y:: & 4
\end{array}\right]_{4} \rightarrow \cdots
$$

The non-halting behaviors of $\boldsymbol{\exists}_{\text {RTLA }} y: F$ consist of this behavior:

$$
\begin{equation*}
[x:: 0]_{0} \rightarrow[x:: 0]_{1} \rightarrow[x:: 1]_{2} \rightarrow[x:: 1]_{3} \rightarrow[x:: 2]_{4} \rightarrow \cdots \tag{6.5}
\end{equation*}
$$

and behaviors obtained from it by adding stuttering steps. An SI formula containing the one free variable $x$ that allows behavior (6.5) should also allow this behavior:

$$
\begin{equation*}
[x:: 0]_{0} \rightarrow[x:: 1]_{1} \rightarrow[x:: 2]_{2} \rightarrow[x:: 3]_{3} \rightarrow[x:: 4]_{4} \rightarrow \cdots \tag{6.6}
\end{equation*}
$$

which $\exists_{\text {RTLA }} y: F$ does not allow, so it is not a property.
To obtain the proper quantifier $\boldsymbol{\exists}$ for TLA, we modify the definition of $\exists_{\text {RTLA }}$ so $\exists y: F$ is satisfied by (6.6). The definition of $\boldsymbol{\exists}$ is the same as that of $\boldsymbol{\Xi}_{\text {RTLA }}$ except with the relation $\simeq_{y}$ on behaviors replaced by a relation $\sim_{y}$. This relation is defined so $\sigma \sim_{y} \tau$ means approximately that $\sigma$ can be obtained from $\tau$ by adding and removing stuttering steps and then changing the values of $y$. The precise definition of $\sim_{y}$ is a bit subtle. (In fact, its definition in [34] is wrong.)

To define $\sim_{y}$, we first define the operator $\natural_{y}$ on behaviors. This operator is the same as the operator $\ddagger$ defined in Section 3.5.3, except it removes "almost stuttering" steps instead of just stuttering steps, where a step $s \rightarrow t$ is almost stuttering if $s={ }_{y} t$. The precise definition is that $\mathfrak{b}_{y}(\sigma)(n)$ equals $\sigma\left(f_{y, \sigma}\right)(n)$, where the definition of $f_{y, \sigma}$ is obtained from the definition of $f_{\sigma}$ in Section 3.5.3 by replacing $=$ and $\neq$ by $=_{y}$ and $\neq y$ in " $\sigma(i)=$ " and " $\sigma(i) \neq$ ".

We now define $\sigma \sim_{y} \tau$ to equal $\mathfrak{\natural}_{y}(\sigma) \simeq_{y} \natural_{y}(\tau)$ and define $\exists y: F$ to be satisfied by a behavior $F$ iff there is a behavior $\tau$ satisfying $F$ such that $\sigma \sim_{y} \tau$. Observe that $\sigma \simeq_{y} \tau$ implies $\sigma \sim_{y} \tau$, so $\exists_{\text {RTLA }} y: F$ implies $\exists y: F$ for any behavior predicate $F$.

One reason not to use $\boldsymbol{\exists}$ is that if $S$ is a safety property, then $\exists y: S$ need not be a safety property. Temporal quantification destroys the nice separation of safety and liveness provided by our way of describing abstract programs. For example, let $F$ be this safety property for an abstract program:

$$
\begin{align*}
& \wedge(x=0) \wedge(y \in \mathbb{N})  \tag{6.7}\\
& \wedge \square\left[(y>0) \wedge\left(x^{\prime}=x+1\right) \wedge\left(y^{\prime}=y-1\right)\right]_{\langle x, y\rangle}
\end{align*}
$$

In a behavior satisfying this formula, $x$ cannot be incremented forever because eventually $y$ would equal 0 , making any further non-stuttering steps impossible. Therefore, formula $\exists y: F$ is equivalent to

$$
\begin{equation*}
(x=0) \wedge \square\left[x^{\prime}=x+1\right]_{x} \wedge \diamond \square\left[x^{\prime}=x\right]_{x} \tag{6.8}
\end{equation*}
$$

To see that this is not a safety property, remember that a behavior $\sigma$ satisfies a safety property iff every finite prefix of $\sigma$ satisfies that property. Consider
a behavior $\sigma$ in which $x$ does keep being incremented forever. Every finite prefix of $\sigma$ satisfies (6.8), since completing the prefix with stuttering steps makes the behavior satisfy the liveness property $\diamond \square\left[x^{\prime}=x\right]_{x}$. However, $\sigma$ doesn't satisfy (6.8) because it doesn't satisfy this liveness property. Therefore, even though formula $F$, defined to equal (6.7), is a safety property, formula $\exists y: F$, which is equivalent to (6.8), is not a safety property.

### 6.2 History Variables

The simplest kind of auxiliary variable is a history variable. As the name implies, a history variable is used to remember things that happened in the past and can't be deduced from the current state. We may need to add a history variable to $T$ to prove $\models T \Rightarrow S$ when the internal state of $S$ records information about past events that isn't needed to describe the behavior of its interface variables.

### 6.2.1 How to Add a History Variable

Except in one unusual case described in Section 6.3.5, we add an auxiliary variable to an abstract program by adding it to the safety part of the program. Thus, if $T$ equals Init $\wedge \square[N e x t]_{v} \wedge L$ for a liveness property $L$, then the formula $T^{h}$ obtained by adding a history variable $h$ will equal

$$
\text { Init }^{h} \wedge \square\left[N_{\text {ext }}{ }^{h}\right]_{v h} \wedge L
$$

where Init $^{h}$ and Next ${ }^{h}$ are obtained by augmenting Init and Next to describe, respectively, the initial value of $h$ and how $h$ can change; and $v h$ is the tuple $v \circ\langle h\rangle$ of the variables of $v$ and the variable $h$. Since $h$ does not appear in $L$, the formula $\exists h: T^{h}$ equals

$$
\left(\exists h: \text { Init }^{h} \wedge \square\left[\text { Next }^{h}\right]_{v h}\right) \wedge L
$$

We can therefore ignore $L$ for now, so we assume $T$ equals Init $\wedge \square[N e x t]_{v}$ and show how to define $I_{n i t}{ }^{h}$ and $N e x t^{h}$.

We use a tiny example to illustrate history variables. There is an abstract program in which a user inputs a sequence of real numbers and the system displays the average of the numbers entered thus far. The interface variables are inp and avg. Initially, inp equals a value $r d y$ that is not a number and $a v g=0$. The user's input action sets inp to a real number and leaves avg unchanged. The system's output action sets avg to the new average of the inputs and resets inp to $r d y$.

$$
\begin{aligned}
& \text { InitS } \triangleq(i n p=r d y) \wedge(a v g=0) \wedge s e q=\langle \rangle \\
& \text { User } \triangleq \wedge i n p=r d y \\
& \wedge i n p^{\prime} \in \mathbb{R} \\
& \wedge\left(a v g^{\prime}=a v g\right) \wedge\left(s e q^{\prime}=s e q\right) \\
& \text { Syst } \triangleq \wedge i n p \in \mathbb{R} \\
& \wedge s e q^{\prime}=\operatorname{Append}(s e q, i n p) \\
& \wedge a v g^{\prime}=\operatorname{SeqSum}\left(s e q^{\prime}\right) / \operatorname{Len}\left(s e q^{\prime}\right) \\
& \wedge i n p^{\prime}=r d y \\
& \text { NextS } \triangleq \text { User } \vee \text { Syst } \\
& I S \triangleq I n i t S \wedge \square[N e x t S]_{\langle i n p, a v g, s e q\rangle} \\
& S \triangleq \exists \mathrm{seq}: I S
\end{aligned}
$$

Figure 6.1: The abstract averaging program $S$.

This abstract program is described by formula $S$ of Figure 6.1. It uses an internal variable seq whose value is the ordinal sequence of numbers input so far. Recall that $\mathbb{R}$ is the set of real numbers, and Section 2.8.3 defines these operators on sequences seq: Append (seq,inp) is the sequence obtained by appending inp to the end of $\operatorname{seq} ; \operatorname{Len}(s e q)$ is the length of $s e q$; and Tail(seq) is the sequence obtained by removing the first element of seq if seq is nonempty. The operator SeqSum is defined as follows so that $\operatorname{SeqSum}(s q)$ is the sum of the elements of a finite sequence $s q$ of numbers:

$$
\operatorname{SeqSum}(s q) \triangleq \text { IF } s q=\langle \rangle \text { THEN } 0 \operatorname{ELSE} s q(1)+\operatorname{SeqSum}(\operatorname{Tail}(s q))
$$

Using the internal variable seq to write the behavior predicate $S$ is arguably the clearest way to describe the values assumed by the interface variables inp and $a v g$. It's a natural way to explain that the value of $a v g$ is the average of the values that have been input. However, it's not a good way to describe how to implement the system. There's no need for an implementation to remember the entire sequence of past inputs; it can just remember the number of inputs and their sum. In fact, it doesn't even need an internal variable to remember the sum. We can implement it with an abstract program $T$ that implements $S$ using only a single internal variable num whose value is the number of inputs that the user has entered.

We first describe $T$ in pseudocode and construct $T^{h}$ by adding a history variable $h$ to the code. The TLA translations of the pseudocode show how to add a history variable to an abstract program described in TLA.

```
variables \(i n p=r d y\), avg \(=0\), num \(=0\);
while TRUE do
 usr: inp \(: \in \mathbb{R}\);
 sys: avg \(:=(\) avg \(*\) num + inp \() /(n u m+1) ;\)
 num \(:=\) num +1 ;
 inp \(:=r d y\)
end while
```

Figure 6.2: Abstract program $T$ in pseudocode.

```
variables inp=rdy, avg=0, num=0,h=\langle\rangle;
while TRUE do
 usr: inp :}\in\mathbb{R}\mathrm{ ;
 sys: avg:= (avg*num + inp)/(num + 1);
 num := num + 1 ;
 h:=Append(h,inp);
 inp := rdy
end while
```

Figure 6.3: Abstract program $T^{h}$ in pseudocode.

It's natural to think of the user and the system in this example as two separate processes. However, the abstract programs $S$ and $T$ are predicates on behaviors, which are mathematical objects. Process is not a mathematical concept; it's a way in which we interpret predicates on behaviors. For simplicity, we write $T$ as a single-process program.

The pseudocode for program $T$ is in Figure 6.2. It uses the operator $: \in$ introduced in Figure 4.8, so statement usr sets inp to an arbitrary element of $\mathbb{R}$. Since we're not concerned with implementing $T$, there's no reason to hide its internal variable num.

Because the sum of $n$ numbers whose average is $a$ is $n * a$, it should be clear that program $T$ implements program $S$. But showing that $T$ implements $S$ requires defining a refinement mapping under which $T$ implements IS (program $S$ without variable seq hidden). And that requires adding an auxiliary variable that records the sequence of input values. Adding the required auxiliary variable $h$ is simple and obvious. We just add the two pieces of code shown in black in Figure 6.3.

It is a straightforward exercise to prove

$$
\models T^{h} \Rightarrow(I S \text { with } \operatorname{inp} \leftarrow i n p, \text { avg } \leftarrow a v g, \text { seq } \leftarrow h)
$$

using that fact that

$$
\operatorname{avg} \equiv \operatorname{IF} h=\langle \rangle \text { THEN } 0 \text { ELSE } \operatorname{SeqSum}(h) / \operatorname{Len}(h)
$$

is an invariant of $T^{h}$. To show that this proves $\models T \Rightarrow S$, we have to show that $T^{h}$ actually is obtained by adding the auxiliary variable $h$ to $T$-that is, we have to show that $T$ is equivalent to $\exists h: T^{h}$. This requires showing (i) $\models\left(\exists h: T^{h}\right) \Rightarrow T$ and (ii) $\models T \Rightarrow\left(\exists h: T^{h}\right)$.

To show (i) we have to show $\models T^{h} \Rightarrow T$, which is obvious because it's easy to see that the initial predicate and next-state action of $T^{h}$ imply the initial predicate and next-state action of $T$. To show (ii), we have to show that for any behavior $\sigma$ satisfying $T$ there is a behavior $\tau$ satisfying $T^{h}$ with $\tau \sim_{h} \sigma$. From the code for $T^{h}$, it's easy to obtain a recursive definition of the value of $h$ in each state $\tau(i)$ of $\tau$. The declaration of $h$ provides the value of $h$ in state $\tau(0)$, and the rest of the code defines the value of $h$ in state $\tau(i+1)$ as a function of its value and the value of $p c$ in state $\tau(i)$.

It's pretty obvious how to generalize from this example to adding a history variable $h$ to any abstract program $T$ described by pseudocode. We let the initial value of $h$ be any expression that can contain the variables of $T$. We modify the pseudocode by adding at most one statement assigning a value to $h$ to any action of the code. The right-hand side of the assignment can contain $h$ as well as the variables of $T$. Making this precise would require making pseudocode precise, which we don't want to do. When we want to be precise, we use math.

So, let's now see how we add a history variable when the abstract program $T$ is written in TLA. The translation of the code in Figure 6.2 to TLA defines

$$
T \triangleq \text { Init } \wedge \square[N e x t]_{\langle i n p, a v g, n u m\rangle} \text { where Next } \triangleq \text { Usr } \vee \text { Sys }
$$

Actions Usr and Sys are the actions executed from control points usr and sys, respectively. The TLA translation of the code in Figure 6.3 is

$$
\begin{align*}
& T^{h} \triangleq \text { Init }^{h} \wedge \square\left[\text { Next }^{h}\right]_{\langle\text {inp }, \text { avg }, \text { num }, h\rangle}  \tag{6.9}\\
& \text { where } \text { Init }^{h} \\
& \text { Next }^{h} \triangleq \operatorname{Init} \wedge(h=\langle \rangle) \\
& U_{\text {Usr }}{ }^{h} \vee \text { Sys }^{h} \\
& \text { Sys }^{h} \\
& \triangleq \operatorname{Usr} \wedge\left(h^{\prime}=h\right) \\
& \text { Sys } \wedge\left(h^{\prime}=\operatorname{Append}(h, \text { inp })\right)
\end{align*}
$$

Here is the general result that describes how to add a history variable to a program. Its proof is a simple generalization of the proof for our example.

Theorem 6.1 (History Variable) Let $T$ equal Init $\wedge \square[N e x t]_{v}$, where Next equals $\exists i \in I: A_{i}$ and $v$ is the tuple of variables in $T$, and assume $h$ is not one of those variables. If $T^{h}$ equals Init $^{h} \wedge \square\left[\text { Next }^{h}\right]_{v h}$, where

- Init ${ }^{h} \triangleq$ Init $\wedge(h=\exp )$
- Next $^{h} \triangleq \exists i \in I: A_{i} \wedge\left(h^{\prime}=\exp _{i}\right)$
- $v h \triangleq v \circ\langle h\rangle$
- $\exp$ is a state expression that does not contain the variable $h$, and the $\exp _{i}$ are step expressions that do not contain $h^{\prime}$,
then $\models T \equiv \exists h: T^{h}$.


### 6.2.2 History Variables and Fairness

We add a history variable $h$ to a safety property $T$ of the form Init $\wedge \square[N e x t]_{v}$ to obtain a formula $T^{h}$ such that $\exists h: T^{h}$ is equivalent to $T$. If a program also contains a liveness condition $L$, this gives us the program $T^{h} \wedge L$. Since the variable $h$ does not occur in $L$, the formula $\exists h: T^{h} \wedge L$ is equivalent to $\left(\exists h: T^{h}\right) \wedge L$ which equals $T \wedge L$. Therefore the history variable $h$ is an auxiliary variable for $T^{h} \wedge L$.

As explained in Section 4.2.7, the standard form for the liveness condition of a program is the conjunction of weak and/or strong fairness conditions of subactions of its next-state action. Even if $T \wedge L$ has this form, $T^{h} \wedge L$ will not because a subaction of Next will not be a subaction of Next ${ }^{h}$. (An action that does not mention $h$ cannot imply Next ${ }^{h}$.) This means that we can't apply Theorem 4.7 to show that $\left\langle T^{h}, L\right\rangle$ is machine closed. However, we can show as follows that if $\langle T, L\rangle$ is machine closed, then $\left\langle T^{h}, L\right\rangle$ is also machine closed. By definition of machine closure, this means showing that any finite behavior $\rho$ satisfying $T^{h}$ can be extended to an infinite behavior satisfying $T^{h} \wedge L$. Since $T^{h}$ implies $T$, machine closure of $\langle T, L\rangle$ implies $\rho$ can be extended to a behavior $\rho \circ \sigma$ satisfying $T \wedge L$. By definition of $T^{h}$, we can modify the values of $h$ in the states of $\sigma$ to obtain a behavior $\tau$ such that $\rho \circ \tau$ satisfies $T^{h}$. Since the truth of $L$ does not depend on the values of $h$, the behavior $\rho \circ \tau$ also satisfies $L$, as required.

When using TLA, the fact that $L$ will contain fairness conditions on actions that are not subactions of $N e x t^{h}$ makes no difference. However, not everyone uses TLA. In some approaches, abstract programs are described in something like a coding language, and they define fairness only in terms of weak and strong fairness of subactions of the next-state action. So, it is
interesting to know if we can replace a fairness condition on a subaction $B_{i}$ of $T$ with the same fairness condition on a corresponding subaction $B_{i}^{h}$ of $T^{h}$. We can, under the following condition, which is likely to be satisfied by programs written in those other languages: The next-state action of $T$ must be the disjunction of actions $A_{i}$, and each $B_{i}$ must be a subaction of $A_{i}$ such that a $B_{i}$ step is not an $A_{j}$ step for $j \neq i$. The precise result is the following, whose proof is in the Appendix. In this theorem, letting $B_{i}$ equal FALSE is equivalent to omitting that fairness condition because weak and strong fairness of FALSE are trivially true. (The action FALSE is never enabled, so (4.23) implies $\mathrm{SF}_{v}$ (FALSE) equals $\square \diamond$ FALSE $\Rightarrow \square \diamond$ FALSE, which equals true.)

Theorem 6.2 With the assumptions of Theorem 6.1, for all $i \in I$ let $B_{i}$ be a subaction of $A_{i}$ such that $T \wedge(i \neq j) \Rightarrow \square\left[\neg\left(B_{i} \wedge A_{j}\right)\right]_{v}$ for all $j$ in $I$; and let $B_{i}^{h} \triangleq\left\langle B_{i}\right\rangle_{v} \wedge\left(h^{\prime}=\exp _{i}\right)$. Then

$$
T \wedge\left(\forall i \in I: \mathrm{XF}_{v}^{i}\left(B_{i}\right)\right) \equiv \exists h: T^{h} \wedge\left(\forall i \in I: \mathrm{XF}_{v h}^{i}\left(B_{i}^{h}\right)\right)
$$

where each $\mathrm{XF}^{i}$ is either WF or SF.

### 6.2.3 A Completeness Result for History Variables

A popular approach to proving safety properties of concurrent programs, derived from work by Owicki and Gries [43], can prove only invariance properties. We can, in theory, reduce proving safety properties to proving invariance. We do this by adding a history variable $h$ to a program $T$ to obtain a program $T^{h}$. For any safety property $F$, we can then define a state predicate $I_{F}$ that is an invariant of $T^{h}$ iff (every behavior of) $T$ satisfies $F$. The idea is simple: We define the value of $h$ to be the sequence of system states in the current behavior up to and including the current state. We then define $I_{F}$ to be true iff the value of $h$ satisfies $F$. The result is stated in the following theorem, whose proof is sketched in the Appendix.

Theorem 6.3 Let $T$ equal Init $\wedge \square[N e x t]_{\langle\mathbf{x}\rangle}$ where $\mathbf{x}$ is the list of all variables of $S$; let $F$ be a safety property such that $F(\sigma)$ depends only on the values of the variables $\mathbf{x}$ in $\sigma$, for any behavior $\sigma$; and let $h$ be a variable not one of the variables $\mathbf{x}$. We can add $h$ as a history variable to $T$ to obtain $T^{h}$ and define a state predicate $I_{F}$ in terms of $F$ such that $\models \llbracket T \rrbracket \Rightarrow F$ is true iff $I_{F}$ is an invariant of $T^{h}$.

A simple example of the theorem is when $F$ is the safety property $F_{12}$ defined semantically by (4.1) of Section 4.1.2. That property asserts $x$ must
equal 1 before it can equal 2. A program Init $\wedge \square[\text { Next }]_{v}$ satisfies $F_{12}$ iff the formula $(x=2) \Rightarrow h$ is an invariant of the program obtained by adding the history variable $h$ to that program as follows:

$$
(\text { Init } \wedge(h=\text { FALSE })) \wedge \square\left[\text { Next } \wedge\left(h^{\prime}=h \vee(x=1)\right)\right]_{v \circ\langle h\rangle}
$$

Theorem 6.3 assumes only that $F$ is a safety property. This might suggest we can show that one program satisfies the safety part of another program by verifying an invariance property. However, I have never seen this done, and in practice it seems unlikely to be possible to describe any but the simplest abstract programs with an invariant.

### 6.3 Stuttering Variables

Typically, when a lower-level abstract program $T$ implements a higher-level abstract program $S$, program $T$ takes more steps than $S$ does to perform an operation. Under the refinement mapping, the extra steps of $T$ implement stuttering steps of $S$. It's also possible for $S$ to take more steps than $T$. In that case, defining a refinement mapping requires adding steps to behaviors of $T$ that implement those extra steps of $S$. This is done by adding a stuttering variable $s$ to $T$. The extra steps are ones that change only $s$, so when $s$ is hidden, those steps become stuttering steps of $T$.

There are two kinds of stuttering variables used in practice: ones that add stuttering steps immediately after steps of an action, and ones that add stuttering steps immediately before steps of an action. They are described in Sections 6.3.2 and 6.3.3. Multiple such variables can be combined into a single stuttering variable. Section 6.3 .5 explains another kind of stuttering variable that is never needed in practice but could, in theory, be required.

This section talks about adding stuttering steps, which literally makes no sense because it's impossible to require or forbid stuttering steps in a TLA formula. Here, adding stuttering steps to an abstract program $T$ means writing a formula $T^{s}$ containing $s$ and the variables of $T$ by adding steps that change $s$ and leave the variables of $T$ unchanged, so that $\exists s: T^{s}$ is equivalent to $T$. In this section, a stuttering step usually means one of those additional steps that leave the variables of $T$ unchanged and change $s$.

## Math X

Case Proof Steps A common proof method is case splitting-for example, splitting the proof of a formula containing a number $x$ into proving it
first if $x \geq 0$ and then if $x<0$. This is done with CASE statements, where if $G$ is the current goal, then CASE: $F$ is an abbreviation of $F \Rightarrow G$. A proof by case splitting usually ends with a sequence of CASE steps followed by a Q.E.D. step showing that those steps cover all possible cases.

Well-Founded Relations A relation $\succ$ is said to be well-founded on a set $S$ iff there is no infinite sequence $s_{1} \succ s_{2} \succ \ldots$ with $s_{i} \in S$ for all $i$. If we think of $s \succ t$ meaning that $t$ is smaller than $s$, then well-founded on $S$ means that if you keep taking smaller and smaller elements of $S$, then you'll eventually reach a minimal element. (There may be many minimal elements.) The prototypical example of a well-found relation on a set is the relation $>$ on the set $\mathbb{N}$ of natural numbers.

### 6.3.1 The Example

Stuttering variables are explained with the silly example of a tiny censoring system. An artist paints pictures and submits them to a censor, who decides either to display or reject each picture. This system is described by the abstract program Cen 1 defined as follows.

There are two interface variables inp and disp. The artist submits a picture $w$, which is an element of the set Art of all possible pictures, by setting the value of the variable inp to $w$. The censor then either displays $w$ by setting the value of the variable disp to $\langle w, i\rangle$, where $i$ is set alternately to 0 and 1 , or else rejects $w$. (The second component of disp is needed so displaying the same picture twice isn't a stuttering step, which would needlessly complicate the example.) The censor then acknowledges receipt of the picture by setting the value of inp to a special value NotArt that is not an element of Art.

There is also an internal variable $a w$ that is hidden. The value of $a w$ is initially the empty sequence $\rangle$. It is set to $\langle w\rangle$ when the artist submits a picture $w$, and it is reset to $\rangle$ when $w$ is either displayed or rejected. The value of aw records whether or not the display/reject decision has been made. That information is encoded in aw this way so the example is more easily modified to obtain an example in Section 6.4. The complete description of the abstract program is formula Cen 1 in Figure 6.4, where ICen 1 is the program without $a w$ hidden. (Initially, any painting may be displayed.)

There is another way to describe the artist/censor system as an abstract program. In ICen 1 , submission of a picture $w$ by the artist is described by an input action that sets inp to $w$ and $a w$ to $\langle w\rangle$. A separate action DispOrNot either displays or rejects $w$. We define Cen 2 to equal

```
Cen \(1 \triangleq \exists a w: I C e n 1\)
ICen \(1 \triangleq\) Init \(\wedge \square[\text { Next } 1]_{v}\)
 \(v \triangleq\langle i n p\), disp,\(a w\rangle\)
 Init \(\triangleq \wedge i n p=N o t A r t\)
 \(\wedge a w=\langle \rangle\)
 \(\wedge\) disp \(\in \operatorname{Art} \times\{0,1\}\)
 Next \(1 \triangleq\) Input \(\vee\) DispOrNot \(\vee\) Ack
 Input \(\triangleq \wedge(\) inp \(=N o t A r t) \wedge(a w=\langle \rangle)\)
 \(\wedge i n p^{\prime} \in A r t\)
 \(\wedge a w^{\prime}=\left\langle i n p^{\prime}\right\rangle\)
 \(\wedge\) disp \(^{\prime}=\) disp
 DispOrNot \(\triangleq \wedge a w \neq\langle \rangle\)
 \(\wedge \vee\) disp \(^{\prime}=\langle a w(1), 1-\operatorname{disp}(2)\rangle\)
 \(\vee\) disp \(^{\prime}=\) disp
 \(\wedge a w^{\prime}=\langle \rangle\)
 \(\wedge i n p^{\prime}=i n p\)
 Ack \(\triangleq \wedge(i n p \in A r t) \wedge(a w=\langle \rangle)\)
 \(\wedge i n p^{\prime}=\) NotArt
 \(\wedge\left(a w^{\prime}=a w\right) \wedge\left(\right.\) disp \(\left.^{\prime}=d i s p\right)\)
```

Figure 6.4: The program Cen1.
$\exists a w: I C e n 2$ where $I C e n 2$ describes a program in which it is the input action that decides whether to display or reject $w$, setting $a w$ to $\langle w\rangle$ iff it decides to display $w$. The displaying action always displays $w$ if $a w$ equals $\langle w\rangle$. The program Cen 2 is defined in Figure 6.5, where $v$, Init, and Ack are the same as in Cen 1 and are defined in Figure 6.4.

If we ignore the values of $a w$, the only difference between behaviors of ICen 1 and ICen 2 is that, when a picture is rejected, the behavior of ICen 1 takes one more step than the corresponding behavior of ICen 2 -a step that leaves inp and disp unchanged. Since inp and disp are the only free variables in the two definitions of Cen, stuttering insensitivity implies that the formulas $C e n 1$ and $C e n 2$ are equivalent, so they describe the same abstract program.

To show that the two definitions are equivalent, we have to show that ICen 1 and ICen 2 each implement the other under a suitable refinement map-

```
Cen \(2 \triangleq \exists a w: I C e n 2\)
ICen \(2 \triangleq\) Init \(\wedge \square[N e x t 2]_{v}\)
Next \(2 \triangleq\) InpOrNot \(\vee\) Display \(\vee\) Ack
InpOrNot \(\triangleq \wedge(i n p=N o t A r t) \wedge(a w=\langle \rangle)\)
 \(\wedge i n p^{\prime} \in A r t\)
 \(\wedge \vee a w^{\prime}=\left\langle i n p^{\prime}\right\rangle\)
 \(\vee a w^{\prime}=a w\)
 \(\wedge\) disp \({ }^{\prime}=\) disp
Display \(\triangleq \wedge a w \neq\langle \rangle\)
 \(\wedge \operatorname{disp}^{\prime}=\langle a w(1), 1-\operatorname{disp}(2)\rangle\)
 \(\wedge a w^{\prime}=\langle \rangle\)
 \(\wedge i n p^{\prime}=i n p\)
```

Figure 6.5: The program Cen 2.
ping. We will see here how to define the refinement mapping under which ICen 2 implements ICen 1 . Section 6.4 shows how to define the refinement mapping under which ICen 1 implements ICen 2 .

### 6.3.2 Adding Stuttering Steps After an Action

To define the refinement mapping that shows ICen 2 implements ICen 1 , we have to add a stuttering step to an execution of ICen 2 for each operation of receiving an input and rejecting it. We do that by adding a stuttering variable that adds a stuttering step after each InpOrNot step of the execution that rejects the input - that is, after InpOrNot steps that set $a w$ to $\rangle$.

The simplest stuttering variable $s$ is one whose value is a natural number that equals 0 except when it is adding stuttering steps (steps that change only $s$ ), in which case $s$ equals the number of such steps it has yet to take. Here's how we add such a variable that adds stuttering steps after a subaction $A$ of the next-state action.

Let $T$ equal Init $\wedge \square[N e x t]_{v}$, where $N e x t$ equals $A \vee\left(\exists j \in J: B_{j}\right)$ for actions $A$ and $B_{j}$. We define $T^{s}$ to equal Init $\left.^{s} \wedge \square\left[N^{s}\right)^{s}\right]_{v s}$, where Next ${ }^{s}$ equals $A^{s} \vee\left(\exists j \in J: B_{j}^{s}\right)$ and $I_{n i t}{ }^{s}, A^{s}, B_{j}^{s}$, and vs are defined as follows:

S1. vs is the tuple of variables obtained by appending $s$ to the tuple $v$ of variables.

S2. Init $^{s} \triangleq$ Init $\wedge(s=0)$.

S3. $A^{s} \triangleq \vee(s=0) \wedge A \wedge\left(s^{\prime}=\exp \right)$

$$
\vee(s>0) \wedge\left(v^{\prime}=v\right) \wedge\left(s^{\prime}=s-1\right)
$$

where exp is an expression whose value is a natural number; it can contain the original variables primed or unprimed.

S4. $B_{j}^{s} \triangleq(s=0) \wedge B_{j} \wedge\left(s^{\prime}=0\right)$, for $j \in J$.
Ignoring the value of $s$, the behaviors satisfying $T^{s}$ are the same as behaviors satisfying $T$, except each $A$ step in a behavior of $T$ is followed in $T^{s}$ by a finite number (possibly 0 ) of steps that leave the variables of $T$ unchanged. Therefore, by stuttering insensitivity, $T$ and $\exists s: T^{s}$ are satisfied by the same sets of behaviors, so they are equivalent.

To show that ICen 2 implements ICen 1 , we define $\operatorname{ICen} 2^{s}$ in this way, where $A$ equals InpOrNot and the $B_{i}$ are Ack and Display. In the definition of InpOrNot ${ }^{s}$, we let:

$$
\exp \triangleq \mathrm{IF} a w^{\prime}=\langle \rangle \text { THEN } 1 \text { ELSE } 0
$$

This adds a stuttering step to a behavior of $\operatorname{ICen} 2^{s}$ after an InpOrNot step that rejects the input.

Programs ICen 1 and $I C e n 2^{s}$ take the same number of steps to process an input. A stuttering step of $\operatorname{ICen} 2^{s}$ corresponds to a DispOrNot step of ICen 1 that rejects the input. If we compare behaviors of these two programs, we find that corresponding states have the same values of the variables inp, disp, and aw except when $I C e n 2^{s}$ is about to take a stuttering step. In that state, $s=1$ in $\operatorname{ICen} 2^{s}$, and the value of $a w$ for an input $w$ is $\left\rangle\right.$ in $I C e n 2^{s}$ and $\langle w\rangle$ in ICen 1 . This means that the value of $a w$ in a behavior of ICen 1 always equals the value of the following state function in the corresponding behavior of $\operatorname{ICen} 2^{s}$ :

$$
\begin{equation*}
a w B a r \triangleq \text { IF } s=0 \text { THEN aw ELSE }\langle i n p\rangle \tag{6.10}
\end{equation*}
$$

Therefore, ICen $2^{s}$ implements ICen 1 under the refinement mapping that substitutes $a w B a r$ for $a w$. In other words:

$$
\begin{equation*}
\vDash I C e n 2^{s} \Rightarrow(I C e n 1 \text { witн } a w \leftarrow a w B a r) \tag{6.11}
\end{equation*}
$$

The proof of (6.11) is similar to, but simpler than, the refinement proof sketched in Section 5.4.2. Here, we give only the briefest outline of a proof to present results that will be used below when discussing liveness.

Let's abbreviate ( $F$ with $a w \leftarrow a w B a r$ ) by $\bar{F}$ for any formula $F$, so we must prove $\models I C e n 2^{s} \Rightarrow \overline{I C e n} 1$. The proof of $\models$ Init $^{s} \Rightarrow \overline{\text { Init }}$ is trivial, since
$s=0$ implies $\bar{v}=v$ by definition of $a w B a r$, so Init $^{s}$ implies $\overline{\text { Init }}=$ Init. The main part of the proof is proving:

$$
\begin{equation*}
\vDash I C e n 2^{s} \Rightarrow \square \overline{[N e x t 1]_{v}} \tag{6.12}
\end{equation*}
$$

This is proved by proving assertions C1-C4 below, which are the analogs of assertions R1-R7 of the proof in Section 5.4.2. Again, assertions containing actions of the form $\overline{\langle A\rangle_{v}}$ are proved for use in reasoning about liveness when a weaker assertion containing $\bar{A}$ suffices to prove (6.12). Two of the assertions require an invariant $\operatorname{Inv} 2^{s}$ of $\operatorname{ICen} 2^{s}$. That invariant needs to assert type correctness of disp (for C3) and that $s=1$ implies $a w=\langle \rangle$ (for C2).

$$
\begin{aligned}
\text { C1. } & =(s=0) \wedge \text { InpOrNot }^{s} \Rightarrow \overline{\text { Input }^{2}} \\
\text { C2. } & =\text { Inv }^{s} \wedge(s=1) \wedge \text { InpOrNot }^{s} \Rightarrow \overline{\left\langle\text { DispOrNot }_{v}\right.} \\
\text { C3. } & =\text { Inv }^{s} \wedge \text { Display }^{s} \Rightarrow \overline{\left\langle\text { DispOrNot }_{v}\right.} \\
\text { C4. } & =\text { Ack }^{s} \Rightarrow \overline{\left\langle\text { Ack }_{v}\right.}
\end{aligned}
$$

Proving these assertions is a good way to start learning to write proofs.
Often, when showing that one program implements another, after adding a simple stuttering variable it's necessary to add a history variable to be able to define the refinement mapping. For example, suppose the input actions of the censor programs set inp to some value Busy instead of letting it be unchanged. We could then not define $a w B a r$ to make (6.11) true because the input value would be forgotten when $s$ equals 1 . To define a state function awBar to make (6.11) true, we would have to add a history variable that remembers what value was input.

We can avoid having to add a history variable by letting the stuttering variable carry additional information. This is done by generalizing the way stuttering steps are counted. In the censor example, instead of setting $s$ to 1 when adding a stuttering step and to 0 otherwise, we can set it to $\langle w\rangle$ when adding the step, where $w$ is the value being input, and to $\rangle$ when not adding the step. The number of stuttering steps to be taken at any point in the execution is then the length $\operatorname{Len}(s)$ of the sequence $s$. We would define awBar to equal:

$$
\text { IF } s=\langle \rangle \text { THEN aw ELSE } s
$$

In general, we can let $s$ assume values in any set with a well-founded relation. We just require that every added stuttering step decreases the value of $s$.

One use of this generality is for adding stuttering steps after multiple actions. To do this, we let the value of $s$ be a pair $\langle m, i\rangle$, where $m$ is the
number of remaining stuttering steps and $i$ identifies the action. We define the well-founded ordering $\succ$ on this set of pairs by letting $\langle m, i\rangle \succ\langle n, j\rangle$ iff $m>n$. We can use this same trick to let the value of $s$ be a tuple with additional components. Information in those other components can be used in defining the refinement mapping so it makes the stuttering steps implement the appropriate steps of the higher-level program. For simplicity, we state our theorem just for this particular use of a well-founded order. However, the conjunct $s(2)=i$ in the definition of $A_{i}^{s}$ is added to ensure that only $A_{i}^{s}$ performs stuttering steps added after $A_{i}$, although that matters only if $s$ contains additional components that depend on $i$.

## Theorem 6.4 (Post-Action Stuttering Variable)

Let $T$ equal Init $\wedge \square[N e x t]_{v}$, where Next equals $\left(\exists i \in I: A_{i}\right) \vee B$ for a constant set $I$, and $v$ is a tuple of all the variables of $T$. If $T^{s}$ equals Init $^{s} \wedge \square\left[\text { Next }^{s}\right]_{v s}$ where

- $s$ is not a variable of $T$ and $v s \triangleq v \circ\langle s\rangle$.
- Init $^{s} \triangleq \operatorname{Init} \wedge\left(s=\left\langle 0, i_{0}\right\rangle\right)$ for some $i_{0}$ in $I$.
- $N e x t^{s} \triangleq\left(\exists i \in I: A_{i}^{s}\right) \vee B^{s}$
- $A_{i}^{s} \triangleq \vee(s(1)=0) \wedge(s(2)=i) \wedge A_{i} \wedge\left(s^{\prime}=\left\langle\exp _{i}, i\right\rangle\right)$

$$
\vee(s(1)>0) \wedge\left(v^{\prime}=v\right) \wedge\left(s^{\prime}=\langle s(1)-1, s(2)\rangle\right)
$$

where $=T \Rightarrow \square\left[\exp _{i} \in \mathbb{N}\right]_{v}$ and $\exp _{i}$ is a step expression not containing $s$.

- $B^{s} \triangleq(s(0)=0) \wedge B \wedge\left(s^{\prime}=s\right)$
then $\exists s: T^{s}$ equals $T$.
The theorem does not assume that the actions $A_{i}$ and $B$ are mutually disjoint. A step could be both an $A_{i}$ and an $A_{j}$ step for $i \neq j$, or both an $A_{i}$ and a $B$ step. That should rarely be the case when applying the theorem, since it allows a nondeterministic choice of how many stuttering steps (if any) are added in some states. The action $B$ will usually be the disjunction of actions $B_{j}$. In that case, $B^{s}$ equals the disjunction of the actions $(s(0)=0) \wedge B_{j} \wedge\left(s^{\prime}=s\right)$.


### 6.3.3 Adding Stuttering Steps Before an Action

Suppose that instead of adding stuttering steps after InpOrNot steps of $I C e n 2$, we want to add them before Ack steps. That's a silly thing to do, but it's a silly example anyway. One thing that makes it silly is that when the Ack action is enabled, nothing in the state tells us whether a stuttering step is necessary. The value of $a w$ is $\rangle$ regardless of whether or not a Display step has occurred. So we'll have to add the stuttering step whether or not it's needed. But that's not a problem, since an unnecessary stuttering step can simply implement a stuttering step of ICen 1 .

For a simple stuttering variable that counts down to 0 , we add stuttering steps before an action $A$ the way we added them after $A$, except instead of $A^{s}$ executing $A$ in the first step when $s$ equals 0 , it executes $A$ in the last step, when $s$ equals 1 (unless it adds 0 stuttering steps). However, to ensure that an $A^{s}$ step can be taken after those $k$ stuttering steps, the stuttering steps can begin only when $A$ is enabled. (Once $A$ is enabled, stuttering steps leave it enabled.) To add $\exp$ stuttering steps before an $A$ step, we define:

$$
\begin{aligned}
& A^{s} \triangleq \wedge \\
& \vee \mathbb{E}(A) \wedge(s=0) \wedge\left(s^{\prime}=\exp \right) \\
& \vee(s>0) \wedge\left(s^{\prime}=s-1\right) \\
& \wedge \text { IF } s^{\prime}=0 \text { THEN } A \text { ELSE } v^{\prime}=v
\end{aligned}
$$

Since $A$ is enabled when $s^{\prime}=0$ is true, any enabling condition (conjunct with no primed variable) can be removed from $A$ in the last line of the definition.

We could define $A c k^{s}$ this way in $I C e n 2^{s}$ with $\exp =1$ to add a stuttering step before every Ack step. However, there's nothing in the state to indicate whether that stuttering step should implement a Display step or a stuttering step of ICen1. To define the refinement mapping that shows ICen $2^{s}$ implements ICen1, we would have to add a history variable that records whether or not the InputOrNot ${ }^{s}$ step decided to display the input. Alternatively, we could add the history variable before adding the stuttering variable. We could then define $A c k^{s}$ so it adds a stuttering step iff the InpOrNot step chose not to display the input.

To obtain the general result for adding stuttering steps before actions $A_{i}$, we modify Theorem 6.4 by changing the definition of $A_{i}^{s}$ to:

$$
\begin{aligned}
A_{i}^{s} \triangleq & \wedge \\
& \vee \mathbb{E}\left(A_{i}\right) \wedge(s(1)=0) \wedge\left(s^{\prime}=\left\langle\exp _{i}, i\right\rangle\right) \\
& \vee(s>0) \wedge(s(2)=i) \wedge\left(s^{\prime}=\langle s(1)-1, s(2)\rangle\right) \\
& \wedge \operatorname{IF} s^{\prime}(1)=0 \text { THEN } A_{i} \operatorname{ELSE}\left(v^{\prime}=v\right)
\end{aligned}
$$

where $\exp _{i}$ is a state expression. (Although allowed, there is usually no point having primed variables in $\exp _{i}$, because they equal the unprimed variables unless $\exp _{i}$ equals 0 .)

We can also add stuttering steps both before and after $A_{i}$ steps. We add a third component to $s$ to indicate whether the next stuttering steps to be added for $A_{i}$ are ones that precede or follow the $A_{i}$ step. Writing a precise definition is left as an exercise for motivated readers.

### 6.3.4 Fairness and Stuttering Variables

As with other auxiliary variables, we add a stuttering variable to a safety property $T$ of the form Init $\wedge \square[N e x t]_{v}$. If a program is described by the property $T \wedge L$ for a liveness property $L$, then the program with the added stuttering variable $s$ is $T^{s} \wedge L$.

To see how stuttering variables work with liveness conditions, we add fairness requirements $L 1$ and $L 2$ to our two censor programs to define:

$$
I C 1 \triangleq I C e n 1 \wedge L 1 \quad I C 2 \triangleq I C e n 2 \wedge L 2
$$

We've shown that $I C e n 2^{s}$ implements $I C e n 1$ under a refinement mapping. We show here that $I C 2^{s}$ implements $I C 1$ under that same refinement mapping. That is, we show:

$$
\begin{equation*}
\models I C 2^{s} \Rightarrow(I C 1 \text { witн } a w \leftarrow a w B a r) \tag{6.13}
\end{equation*}
$$

The fairness requirements are:

$$
\begin{aligned}
& L 1 \triangleq \mathrm{WF}_{v}(\text { DispOrNot }) \wedge \mathrm{WF}_{v}(\text { Ack }) \\
& L 2 \triangleq \mathrm{WF}_{v}(\text { Display }) \wedge \mathrm{WF}_{v}(\text { Ack })
\end{aligned}
$$

(Theorem 4.8 implies that $L 1$ and $L 2$ are equivalent to weak fairness of DispOrNot $\vee$ Ack and Display $\vee$ Ack respectively, but it's more convenient to write them this way.) It's clear that $L 1$ and $L 2$ are the appropriate fairness requirements for $I C 1$ and $I C 2$, ensuring that an $A c k$ step occurs after each input step. In particular, an input step of IC2 is a DispOrNot step, after which eventually $A c k$ is enabled - either immediately if the input is rejected or after a Display step that $\mathrm{WF}_{v}$ (Display) implies must occur. When $A c k$ is enabled, $\mathrm{WF}_{v}(A c k)$ implies that an $A c k$ step must occur.

For $I C 2^{s}$ to implement $I C 1$ under a refinement mapping, it should ensure that an input step is eventually followed by an $A c k^{s}$ step. In $I C 2^{s}$, an input is entered by an $(s=0) \wedge$ InpOrNot ${ }^{s}$ step. We must show that such a step is eventually followed by an $A c k^{s}$ step. This appears problematic because if
the step rejects the input, then it sets $s$ to 1 , in which case the only enabled action of $\operatorname{Next2}^{s}$ is $(s=1) \wedge \operatorname{InpOrNot}{ }^{s}$; and $L 2$ asserts no fairness condition for that action. To show that the $(s=0) \wedge \operatorname{InpOrNot}{ }^{s}$ step must be followed by an $A c k^{s}$ step, we first show as follows that $\exists s: I C 2^{s}$ is equivalent to $I C 2$ :

$$
\begin{aligned}
\exists s: I C 2^{s} & \equiv \exists s: I \operatorname{Cen} 2 \wedge L 2 & & \text { By definition of } I C 2^{s} . \\
& \equiv\left(\exists s: I C e n 2^{s}\right) \wedge L 2 & & \text { Because } s \text { does not occur in } L 2 . \\
& \equiv I C e n 2 \wedge L 2 & & \text { By Theorem 6.4. } \\
& \equiv I C^{2} & & \text { By definition of } I C 2^{s} .
\end{aligned}
$$

Any behavior that satisfies $I C 2^{s}$ satisfies $\exists s: I C 2^{s}$, so it satisfies $I C 2$. An $(s=0) \wedge \operatorname{InpOrNot}{ }^{s}$ step is an InpOrNot step, which by IC2 must eventually be followed by an Ack step, which by definition of ICen $2^{s}$ must be an $A c k^{s}$ step. Thus, $I C 2^{s}$ implies that any input step is eventually followed by an $A c k^{s}$ step.

In the case of the input being rejected, the necessary $(s=1) \wedge$ InpOrNot ${ }^{s}$ step must occur to satisfy the fairness requirement $\mathrm{WF}_{v}(A c k)$ on the action Ack in IC2. If you think of the abstract program $I C 2^{s}$ as instructions to a computer for generating behaviors, then this makes no sense. How can a fairness condition on $A c k$ tell the computer to take an InpOrNot ${ }^{s}$ step? But by now, you should understand that an abstract program is a predicate on behaviors, not instructions for generating them. Formula $I C e n 2^{s} \wedge \mathrm{WF}_{v}(A c k)$ implies that if a state with $s=1$ has been reached, then there must be another InpOrNot ${ }^{s}$ step and then an Ack $^{s}$ step in the behavior.

This may seem weird. The source of the apparent weirdness is that $I C S^{2}$ contains a fairness condition on the action $A c k$, which is not a subaction of the next-state action $N e x t 2^{s}$. Fairness conditions on actions not a subaction of the next-state action can lead to weirdness, including program descriptions that are not machine closed. However, in this case, we still get a machine-closed program description. In fact, this is true in general. If $\langle T, L\rangle$ is machine closed and $T^{s}$ is obtained from $T$ by adding a stuttering variable, then $\left\langle T^{s}, L\right\rangle$ is also machine closed. The proof is the same as the one for history variables sketched in Section 6.2.2, except in defining the behavior $\tau$, we may have to add stuttering steps to $\sigma$ as well as changing the values of the variable $s$. Stuttering insensitivity of $L$ implies that $\rho \circ \tau$ still satisfies $L$.

We now explain the proof of (6.13). As before, define $\bar{F}$ to equal ( $F$ wITH $a w \leftarrow a w B a r$ ) for any formula $F$, so (6.13) asserts $\models I C 2^{s} \Rightarrow \overline{I C 1}$.

The proof of $\models I \operatorname{Cen} 2^{s} \Rightarrow \overline{I C e n 1}$ is discussed in Section 6.3.2, so we consider only the proof of $\models I C 2^{s} \Rightarrow \overline{L 1}$, which requires proving:

$$
\begin{align*}
& \text { (a) } \models I C 2^{s} \Rightarrow \overline{\mathrm{WF}_{v}(\text { DispOrNot })}  \tag{6.14}\\
& \text { (b) } \models I C 2^{s} \Rightarrow \overline{\mathrm{WF}_{v}(\text { Ack })}
\end{align*}
$$

We now sketch a proof of (6.14a). As usual when proving temporal properties, instead of assuming $I C 2^{s}$, which is true only for a behavior starting in a state satisfying Init $^{s}$, we assume this $\square$ formula implied by $I C 2^{s}$

$$
I I C 2^{s} \triangleq \square I n v 2 \wedge \square\left[N e x t 2^{s}\right]_{v s} \wedge L 2
$$

where $I n v 2$ is an invariant of $I C e n 2^{2}$ that asserts some obvious invariants such as type correctness. Here is the proof sketch.

1. Suffices: Assume: $I I C 2^{s} \wedge \square \overline{\mathbb{E}\left\langle\text { DispOrNot }_{v}\right.} \wedge \square \overline{[\neg \text { DispOrNot }]_{v}}$ Prove: $\diamond \overline{\left\langle\text { DispOrNot }_{v}\right.}$
Proof: By (4.15).
2. $\square((a w \neq\langle \rangle) \vee(s \neq 0))$

Proof: The definition of DispOrNot implies that $\mathbb{E}\langle\text { DispOrNot }\rangle_{v}$ equals $a w \neq\langle \rangle$, so the step 1 assumption $\square \overline{\mathbb{E}\left\langle\text { DispOrNot }_{v}\right.}$ implies $\square \overline{a w \neq\langle \rangle}$; and the definition of $a w B a r$ implies $\overline{a w \neq\langle \rangle}$ equals $(a w \neq\langle \rangle) \vee(s \neq 0)$.
3. $\diamond \square(a w \neq\langle \rangle) \vee \diamond \square(s \neq 0)$
3.1. $\square((a w \neq\langle \rangle) \Rightarrow \square(a w \neq\langle \rangle))$

Proof: The assumption $I I C 2^{s}$ implies that $a w \neq\langle \rangle$ can be made false only by a Display ${ }^{s}$ step, which by C 3 is a $\overline{\left\langle\text { DispOrNot }_{v}\right.}$ step. The assumption $\square \overline{[\neg D i s p O r N o t]_{v}}$ implies that such a step can't occur. Therefore, if $a w \neq\langle \rangle$ ever becomes true, then it must remain true forever.
3.2. Q.E.D.

Proof: By steps 2 and 3.1 and the temporal logic tautology:

$$
\vDash \square(F \vee G) \wedge \square(F \Rightarrow \square F) \Rightarrow(\diamond \square F \vee \diamond \square G)
$$

4. CASE: $\diamond \square(a w \neq\langle \rangle)$

Proof: Since $a w \neq\langle \rangle$ equals $\mathbb{E}\left\langle\right.$ Display $_{v}$, the case assumption and $\mathrm{WF}_{v}($ Display $)$ imply that, when $\square(a w \neq\langle \rangle)$ becomes true, a $\left\langle\right.$ Display $_{v}$ step eventually occurs, and $I I S^{s}$ implies that this step must be a Display ${ }^{s}$ step. By C3, this Display ${ }^{s}$ step is a $\overline{\left\langle\text { DispOrNot }_{v}\right.}$ step, which implies the goal introduced by step 1 .
5. CASE: $\square(s \neq 0)$

Proof: The case assumption and the assumption $\square \operatorname{Inv} 2$ imply $\square(s=1)$. As shown above in the explanation of why a behavior of $I C 2^{s}$ can't halt in a state with $s=1$, the property $\mathrm{WF}_{v}(A c k)$ implies that, in such a state, an $(s=1) \wedge$ Inp OrNot $^{s}$ step must eventually occur. By C2, that is the $\overline{\left\langle\text { DispOrNot }_{v}\right.}$ step that proves the step 1 goal.
6. Q.E.D.

Proof: Step 3 implies that the step 4 and 5 cases are exhaustive.
The proof of (6.14b) is similar but simpler, since it doesn't have the complication of deducing from fairness of one action $\left(A c k^{s}\right)$ that a step of another action (DispOrNot ${ }^{s}$ ) of the same program must occur.

Theorem 6.2 shows how, after adding a history variable to a program, we can rewrite the program's fairness properties as fairness conditions of subactions of the modified program's next-state action. I don't know if there is a similar result for stuttering variables. Theorem 6.2 is relevant to methods other than TLA for describing abstract programs. Those other methods that I'm aware of do not assume stuttering insensitivity, so a similar result for stuttering variables seems to be of no interest.

### 6.3.5 Infinite-Stuttering Variables

Suppose a terminating program is described by a formula $\exists y: I S$, where $I S$ implies that the value of $y$ keeps changing forever. (IS implies that at some point, the values of all its other variables stop changing.) Suppose also that program $\boldsymbol{\exists} y: I S$ is refined by a terminating program $T$ with no internal variables, so all its variables eventually stop changing. The methods of adding stuttering steps to a program described so far add a finite number of stuttering steps to non-stuttering steps of the program. They can't define a state function that keeps changing forever, so they can't be used to define a refinement mapping to show that $T$ implements $\exists y: I S$.

It's easy to construct an example of such programs $I S$ and $T$, but I can't imagine one occurring in practice. We consider them only for completenessand in particular, to prove the completeness theorem in Section 6.4.4 stating that if $\models T \Rightarrow \exists \mathbf{y}$ : IS is true for some tuple $\mathbf{y}$ of variables, then we can add auxiliary variables to $T$ to obtain a program $T^{a}$ that implements $I S$ under a refinement mapping. For that theorem to be true, we need to define an infinite-stuttering variable whose value keeps changing forever to handle this situation that never occurs in practice.

There are lots of ways to define an infinite-stuttering variable. Here is the definition used in the proof of Theorem 6.6. Let $T$ equal Init $\wedge \square[N e x t]_{v}$, where $v$ is the tuple of all variables that appear in $T$, and let $s$ not be one of those variables. We then define $T^{s}$ to equal:

$$
\text { Init } \wedge \square\left[\left(\text { Next } \wedge\left(v^{\prime} \neq v\right)\right) \vee\left(\left(s^{\prime} \neq s\right) \wedge\left(v^{\prime}=v\right)\right]_{v \circ\langle s\rangle} \wedge \square \diamond\left\langle s^{\prime} \neq s\right\rangle_{s}\right.
$$

### 6.4 Prophecy Variables

## Math XI

General Recursive Definitions We have recursively defined a function $f$ with domain $\mathbb{N}$ by defining $f(0)$ and defining $f(n)$ in terms of $f(n-1)$ for $n>0$. That is, we can define $f$ by:
$f \triangleq n \in \mathbb{N} \mapsto$ IF $n=0$ THEN $\exp _{0}$ ELSE $\exp _{1}$
where the value of $\exp _{0}$ cannot depend on $f$ and the value
of $\exp _{1}$ can depend only on the value of $f(n-1)$.
We can generalize this by allowing the value of $\exp _{1}$ to depend on $f(i)$ for any $i \in\{j \in \mathbb{N}: j<n\}$. Moreover, the condition that $\exp _{0}$ not depend on $f$ can be expressed as the condition that it can depend only on $f(i)$ with $i \in\{j \in \mathbb{N}: j<0\}$, since that allows $\exp _{0}$ to depend on $f(i)$ only if $i$ is in the empty set. We can therefore express this more general form of a recursive definition as:

RC1. $f \triangleq n \in \mathbb{N} \mapsto \exp$
where the value of exp can depend on the value of $f(i)$ only if
$i \in\{j \in \mathbb{N}: n>j\}$.
RC1 ensures a meaningful definition of $f$ because it implies that the value of $f(n)$ can be computed from the definition in a finite number of steps, for any $n \in \mathbb{N}$. The reason the computation terminates is that the relation $>$ is well-founded on the set $\mathbb{N}$ of natural numbers. We can generalize RC 1 from $\mathbb{N}$ to any set $S$ with a well-founded relation $\succ$ to obtain this most general form of a recursive function definition:

RC2. $f \triangleq n \in S \mapsto \exp$
where $f$ occurs in $\exp$ only in an expression $f(i)$ with
$i \in\{j \in S: n \succ j\}$ and $\succ$ a well-founded relation on $S$.

As an example, we can define the sum $\operatorname{SSum}(\sigma)$ of the items of a finite sequence $\sigma$ of real numbers to equal 0 if $\sigma$ is the empty sequence $\rangle$ and otherwise to equal the first element of $\sigma$ plus the sum of its remaining elements. The definition is:

$$
\begin{aligned}
& \text { SSum } \triangleq \\
& \sigma \in \operatorname{Seq}(\mathbb{R}) \mapsto \text { IF } \sigma=\langle \rangle \text { THEN } 0 \\
& \text { ELSE } \operatorname{Head}(\sigma)+\operatorname{SSum}(\operatorname{Tail}(\sigma))
\end{aligned}
$$

This definition is justified by the well-founded ordering $\succ$ on $\operatorname{Seq}(\mathbb{R})$ defined by $\sigma \succ \tau \triangleq \operatorname{Len}(\sigma)>\operatorname{Len}(\tau)$.

Two Set Operators If you've ever learned about sets, you should know that $S \cup T$ is the set of values that are in the set $S$ or the set $T$ (or both), and $S \cap T$ is the set of values that are in both $S$ and $T$. We can define $\cap$ with the subsetting constructor, since $S \cap T$ equals $\{v \in S:(v \in T)\}$. It is an axiom of ZF that $S \cup T$ is a set if $S$ and $T$ are sets.

### 6.4.1 Simple Prophecy Variables

We observed in Section 6.3.1 that the descriptions Cen 1 and Cen 2 of the censor system were equivalent. We showed that Cen 2 implies Cen 1 , which required adding a stuttering variable to ICen2. We now complete the demonstration of equivalence by showing that Cen 1 implies Cen 2 . This requires defining a state function awBar such that ICen 1 implies:
(ICen 2 with $a w \leftarrow a w B a r$ )
However, this is impossible for the following reason. Because the refinement mapping substitutes the variables inp and disp of ICen 1 for the corresponding variables of ICen2, an Input step of ICen 1 must implement an InpOrNot step of ICen 2 . Besides choosing the input, the InpOrNot action of ICen 2 also decides whether or not that input is to be displayed, recording its decision in the value of $a w$. However, that decision is made by ICen 1 later, when executing the DispOrNot action. Immediately after the Input action, there's no information in the state of ICen 1 to determine what the value of variable $a w$ of $I C e n 2$ should be.

The solution to this problem is to have the Input action guess what DispOrNot will do, indicating its guess by setting a prophecy variable $p$ to a value that predicts whether the input will be displayed or rejected by the DispOrNot step.

To make the generalization from this example more obvious, let's write action DispOrNot of ICen 1 as the disjunction of two actions: $\operatorname{Dor} N_{\text {Yes }}$ that displays the input and $\operatorname{Dor} N_{N o}$ that doesn't. Remember that:

$$
\begin{aligned}
\text { DispOrNot } \triangleq & \wedge \ldots \\
& \wedge \vee \operatorname{disp}^{\prime}=\langle\operatorname{aw}(1), 1-\operatorname{disp}(2)\rangle \\
& \vee \operatorname{disp}^{\prime}=\operatorname{disp}
\end{aligned}
$$

We can define $\operatorname{Dor}_{i}$, for $i=Y e s$ and $i=N o$, by modifying the definition of DispOrNot to get:

$$
\begin{aligned}
\operatorname{Dor}_{N_{i}} \triangleq & \wedge \\
& \wedge \\
& \wedge(i=Y e s) \wedge\left(\text { disp }^{\prime}=\langle a w(1), 1-\operatorname{disp}(2)\rangle\right) \\
& \vee(i=N o) \wedge\left(\text { disp }^{\prime}=\operatorname{disp}\right)
\end{aligned}
$$

We then replace $\operatorname{DispOrNot}$ in $I C e n 1$ by $\exists i \in \Pi: \operatorname{Dor} N_{i}$, where $\Pi$ equals $\{Y e s, N o\}$. We can then add to $\operatorname{ICen} 2$ an auxiliary variable $p$ called a prophecy variable to obtain a formula $I C e n 2^{p}$ in which the Input action is replaced by

$$
\text { Input }^{p} \triangleq \text { Input } \wedge\left(p^{\prime} \in \Pi\right)
$$

and the DispOrNot action is replaced by:

$$
\operatorname{DispOrNot}^{p} \triangleq \operatorname{DorN}_{p}
$$

Thus the Input $^{p}$ action predicts what the DispOrNot action will do, and DispOrNot ${ }^{p}$ is modified to ensure that the prediction comes true. To complete the definition of $\operatorname{ICen} 1^{p}$, we can let nnit $^{p}$ equal Init and $A c k^{p}$ equal Ack, since the value of $p$ matters only after an Input ${ }^{p}$ step and before the following DispOrNot ${ }^{p}$ step.

In ICen2, the value of $a w$ is $\rangle$ except after an InpOrNot step that chose to display the input. This implies

$$
\begin{equation*}
\vDash I C e n 1^{p} \Rightarrow(I C e n 2 \text { wıTн } a w \leftarrow a w B a r) \tag{6.15}
\end{equation*}
$$

where awBar is defined by:

$$
a w B a r \triangleq \mathrm{IF} a w \neq\langle \rangle \wedge(p=Y e s) \text { THEN } a w \operatorname{ELSE}\rangle
$$

To show that (6.15) implies $\models I C e n 1 \Rightarrow$ ICen 2 , we have to show that $p$ is an auxiliary variable-that is, we have to show that $\exists p:$ ICen $1^{p}$ is equivalent to ICen 1 . To do that, we prove two things:

1. Every behavior satisfying $\operatorname{ICen} 1^{p}$ satisfies ICen 1

Proof: It's clear that Init $^{p}$ equals Init, Act $t^{p}$ equals Act, and Input ${ }^{p}$ implies Input. To complete the proof, we must show that every DispOrNot ${ }^{p}$ step is a DispOrNot step. It's easy to see that

$$
\mathbb{E}\left(\text { DispOrNot }^{p}\right) \Rightarrow(p \in\{Y e s, N o\})
$$

is an invariant of ICen $1^{p}$, and to check that DispOrNot ${ }^{p}$ implies DispOrNot for each of those two values of $p$.
2. For any behavior $\sigma$ satisfying ICen 1 there is a behavior $\tau$ satisfying $I C e n 1^{p}$ such that $\sigma \simeq{ }_{p} \tau$.
Proof: We let $\sigma$ be a behavior satisfying ICen 1 and construct the states of $\tau$ from the states of $\sigma$ by specifying the value of $p$ in each of those states, so obviously $\sigma \simeq{ }_{p} \tau$. The behavior $\tau$ will satisfy ICen $1^{p}$ if the values chosen for $p$ satisfy these three conditions:

1. The value of $p$ in the second state of a stuttering step of $\sigma$ (one leaving the variables of ICen 1 unchanged) is the same as its value in the first state of the step.
2. After an Input ${ }^{p}$ step, the value of $p$ is either Yes or No.
3. In the first state of a DispOrNot step of $\sigma$, the value of $p$ must make that step a DispOrNot ${ }^{p}$ step of $\tau$.

We define the values of $p$ in all states of $\tau$ as follows. We let $p$ have any value in the initial state. In any other state of $\tau$, we let the value of $p$ be the same as its value in the previous state except if the state is the second state of an Input step of $\sigma$. In that case, we let the value of $p$ equal Yes if the next DispOrNot step of $\sigma$ changes disp; otherwise we let it equal No. (If there is no next DispOrNot step, so there remain only stuttering steps, we can let $p$ have either value.) It's easy to check that this way of defining $p$ makes it satisfy the three conditions. End Proof

Let's now generalize from this example. We want an action $B$ to predict the result of the next execution of an action $A$. We do this by writing $A$ as $\exists i \in \Pi: A_{i}$ for a constant set $\Pi$ of possible predictions and having $B$ predict for which value of $i$ the next $A$ step will be an $A_{i}$ step. Action $B$ makes the prediction by setting the variable $p$ to equal its prediction, so we define $B^{p}$ to equal $B \wedge\left(p^{\prime} \in \Pi\right)$. The prediction is made to come true by defining $A^{p}$ to equal $A_{p}$.

One way our example was special is that the prediction made by an Input ${ }^{p}$ step is used by DispOrNot ${ }^{p}$ in the first non-stuttering step after it
is made. This allowed $\operatorname{ICen} 1^{p}$ to leave the new value of $p$ unspecified by other actions. Usually, there can be steps of other actions between when the prediction is made and when it is fulfilled. Those other actions should leave the value of $p$ unchanged. For any subaction $B$ of the next-state action other than $A$, we let $B^{p}$ equal either $B \wedge\left(p^{\prime}=p\right)$ if it doesn't make a prediction or $B \wedge\left(p^{\prime} \in \Pi\right)$ if it makes one. It doesn't matter if multiple predictions are made for the same $A$ step; only the most recent one counts.

There is no reason not to let $p$ always equal an element of $\Pi$, so we will do that. This means we let Init $^{p}$ equal Init $\wedge(p \in \Pi)$. This can represent an initial prediction, or it can be overridden by a subsequent prediction. In either case, it means that we have the type invariant $\square(p \in \Pi)$.

It doesn't matter if a prediction is never used - either because it is overridden by another prediction or an $A$ step never occurs. What does matter is that a prediction must be used at most once. Our ability to choose the right prediction in the proof that $\exists p: I \operatorname{Cen} 1^{p}$ is equivalent to $I C e n 1$ depended on this. To make sure that this is true, we require that $A^{p}$ makes a prediction, so we define $A^{p}$ to equal $A_{p} \wedge\left(p^{\prime} \in \Pi\right)$. That prediction can always be overridden by a subsequent prediction made by a different action. The argument above that the variable $p$ in our example was a prophecy variable then generalizes to prove:

Theorem 6.5 (Simple Prophecy Variable) Let $T \triangleq$ Init $\wedge \square[N e x t]_{v}$ where $v$ is the tuple of variables in $T$, let

$$
\text { Next } \triangleq\left(\exists i \in \Pi: A_{i}\right) \vee\left(\exists j \in J: B_{j}\right)
$$

and let $\Pi$ be a constant set. If $p$ is not a variable of $T$,

$$
\begin{aligned}
& T^{p} \triangleq \text { Init }^{p} \wedge \square\left[\text { Next }^{p}\right]_{v p}, \\
& v p \triangleq v \circ\langle p\rangle \\
& \text { Init }^{p} \triangleq \operatorname{Init} \wedge(p \in \Pi), \\
& \text { Next }^{p} \triangleq\left(A_{p} \wedge\left(p^{\prime} \in \Pi\right)\right) \vee\left(\exists j \in J: B_{j} \wedge C_{j}\right),
\end{aligned}
$$

and each $C_{j}$ equals $p^{\prime}=p$ or $p^{\prime} \in \Pi$, then $\models\left(\exists p: T^{p}\right) \equiv T$.
The theorem makes no disjointness assumption about the actions $A_{i}$ and $B_{j}$, but in most applications of the theorem they will be mutually disjoint.

It is inelegant and possibly confusing to have a program make predications that are never used-for example, by having the DispOrNot ${ }^{p}$ action of $I C e n s 1^{p}$ make a prediction that is always replaced by the prediction made by the Input ${ }^{p}$ action. If the prediction will never be used, we can replace
$p^{\prime} \in \Pi$ by $p^{\prime}=$ None (or $p \in \Pi$ by $p=$ None for an initial prediction), where None is a value not in $\Pi$. The assertion that the prediction is never used means that the following state predicate is an invariant of $T^{p}$ :

$$
(p=\text { None }) \Rightarrow \neg \mathbb{E}\left(\exists i \in \Pi: A_{i}\right)
$$

We could also modify $N e x t^{p}$ to allow a special value of $p$ indicate that no prediction is being made, but there is no reason to do that.

### 6.4.2 Predicting the Impossible and Liveness

What if a prophecy variable makes a prediction that can't be fulfilled? A prophecy variable predicts, for an action $A$ equal to $\exists i \in \Pi: A_{i}$, the value of $i$ for which the next $A$ step is an $A_{i}$ step. The prediction that the next $A$ step will be an $A_{p}$ step can't be fulfilled if action $A_{p}$ can't be enabled until an $A_{j}$ step occurs for some $j \neq p$.

Let's look at the worst case: a prediction that predicts that the next $A$ step will be an $A_{i}$ step, where $A_{i}$ equals FaLSE. We can write any next-state action Next as

$$
\exists i \in\{0,1\}:((i=1) \wedge \text { Next }) \vee((i=0) \wedge \text { FALSE })
$$

(If $i=0$, then a $[N e x t]_{v}$ step leaves the variables of $v$ unchanged.) The observation that $\exists i \in\{0,1\}: F_{i}$ equals $F_{0} \vee F_{1}$ and a bit of propositional logic show that

$$
\models \exists i \in\{0,1\}:(p=i) \wedge(((i=1) \wedge N e x t) \vee((i=0) \wedge \text { FALSE }))
$$

equals $(p=1) \wedge$ Next. Theorem 6.5 therefore implies that if $T$ equals Init $\wedge \square[N e x t]_{v}$, then $T$ equals $\exists p: T^{p}$ where

$$
\begin{aligned}
T^{p} \triangleq & \wedge \operatorname{Init} \wedge(p \in\{0,1\}) \\
& \wedge \square\left[(p=1) \wedge \text { Next } \wedge\left(p^{\prime} \in\{0,1\}\right)\right]_{v p}
\end{aligned}
$$

In other words, if $p$ ever becomes equal to 0 , then the next-state relation of $T^{p}$ is never again enabled, so the behavior halts with an infinite sequence of stuttering steps - ones that leave $p$ and the variables of $T$ unchanged.

But that's perfectly OK. $T$ is a safety property; it allows behaviors that terminate at any point. The prophecy variable $p$ is simply predicting whether the behavior will terminate before the next Next step.

If we are describing an abstract program in which $\langle N e x t\rangle_{v}$ is always enabled and its execution is never supposed to stop, then we must conjoin to $T$ some fairness property, such as $\mathrm{WF}_{v}(N e x t)$. If $\langle N e x t\rangle_{v}$ is enabled
in every reachable state of $T$, then it is enabled in every reachable state of $T^{p}$, since the reachable states of $T^{p}$ are reachable states of $T$ because $T$ equals $\exists p: T^{p}$. In that case, conjoining $\mathrm{WF}_{v}($ Next $)$ to $T^{p}$ adds the requirement that in every behavior, an infinite number of non-stuttering Next steps must occur. In our worst-case example, $p=0$ implies $N e x t{ }^{p}=$ FALSE, so $T^{p} \wedge \mathrm{WF}_{v}($ Next $)$ is satisfied only by behaviors in which infinitely many $\langle N e x t\rangle_{v}$ steps occur, and hence in which $p$ never equals 0 .

Conjoining $\mathrm{WF}_{v}($ Next $)$ to $T^{p}$ rules out finite behaviors allowed by $T^{p}$ ones in which $p$ equals 0 . Hence, the pair $\left\langle T^{p}, \mathrm{WF}_{v}(\right.$ Next $\left.)\right\rangle$ is not machine closed, so $\mathrm{WF}_{v}($ Next $)$ is not a fairness property for $T^{p}$. This doesn't contradict Theorem 4.7, because Next, which is a trivial subaction of Next, is not a subaction of $N e x t^{p}$. In general, if predicting that the next $A$ step is an $A_{p}$ step is a nontrivial predication, then every possible $A$ step can't be a $N e x t^{p}$ step, so $=A \Rightarrow N e x t^{p}$ can't be true - which by definition means $A$ is not a subaction of Next ${ }^{p}$.

As dramatically illustrated by this example, adding a prophecy variable that can make impossible predictions to a description of an abstract program with a fairness property produces a 〈safety, liveness〉 pair that is not machine closed. Although this is not a typical example, in practice prophecy variables often do make impossible predictions. This is usually because it's easier not to eliminate them. That's the case for the example in Section 6.5.

Programs that are not machine closed are weird, and unintentional weirdness usually indicates an error. An abstract program that describes how a concrete program works should be machine closed, because coding languages have no way of expressing liveness properties that are not fairness properties. Abstract programs that are not machine closed should almost always be avoided because they're hard to understand. However, there are exceptions [25, Section 3.2]. On the other hand, prophecy variables are added to a program only for verifying that it implements another program. There is no reason adding a prophecy variable should produce a machine closed program.

### 6.4.3 General Prophecy Variables

A simple prophecy variable makes a single prediction. General prophecy variables can make multiple predictions. Those multiple predictions can be successive predictions about a single action or separate predictions about different actions. These two possibilities are illustrated with variants of the censor system. There can also be multiple predictions about multiple actions, but we won't try to be that general. The two examples illustrate
the concepts. A very general definition has been described elsewhere for expert TLA ${ }^{+}$users [38].

### 6.4.3.1 A Sequence of Prophecies

Let's now modify the censor programs to allow the artist to submit a new picture before the censor has either displayed or rejected the previous submission. At any time, there may be a queue of submissions being processed by the censor. In the modified version of ICen 1 , called ICenSeq 1 , the censor has not yet decided whether to display or reject any of the submissions in that queue. In ICenSeq2, the modified version of ICen2, the censor decides immediately whether to accept or reject a submission and maintains only a queue of submissions to be displayed.

Formula CenSeq1 is defined in Figure 6.6, where everything is in gray except for parts that differ from the corresponding parts of the definition of Cen 1 in Figure 6.4 other than by adding "Seq" to names. Because of the way we defined Cen1, with aw equal to a sequence of 0 or 1 pictures, the changes are minimal. (Recall the definitions of Tail and Append from Section 2.8.3.)

Similarly, Figure 6.7 shows the definition of CenSeq2, using formulas defined in Figure 6.6. Shown in black are the parts that differ from the corresponding parts in the definition of $\operatorname{Cen} 2$ in Figure 6.5 by more than a name change.

In both ICenSeq1 and ICenSeq2, the value of the variable $a w$ is the queue being maintained by the censor. As with ICen 1 and ICen 2 , when $a w$ is hidden by $\exists$, the two formulas are equivalent. As in the previous example, ICenSeq 2 decides whether to display or reject an input before ICenSeq 1 does. To define a refinement mapping to show ICenSeq 1 implements ICenSeq 2 , we need to add a prophecy variable $p$ to ICenSeq 1 that is set by the Input action and predicts the decisions that will be made by the DispOrNotSeq action. However, this time there are multiple predictions to be remembered-one for every picture in $a w$.

You have probably figured out that this will be done by letting the value of $p$ be a sequence of Yes or No values, each element of $p$ predicting whether the corresponding input in the sequence $a w$ will be displayed or rejected by the DispOrNot action. Here's how we define ICenSeq1 ${ }^{p}$, the formula obtained by adding the prophecy sequence variable $p$ to ICenSeq1.

Let $\Pi$ be the set $\{Y e s, N o\}$ of predictions. The value of $p$ should always be a sequence of elements of $\Pi$ having the same length as the value of the

```
CenSeq1 \(\triangleq \exists a w: I C e n S e q 1\)
ICenSeq \(1 \triangleq\) Init \(\wedge \square[\text { NextSeq1 }]_{v}\)
 \(v \triangleq\langle i n p, d i s p, a w\rangle\)
 InitSeq \(\triangleq \wedge i n p=\) NotArt
 \(\wedge a w=\langle \rangle\)
 \(\wedge\) disp \(\in\) Art \(\times\{0,1\}\)
 NextSeq1 \(\triangleq\) InputSeq \(\vee\) DispOrNotSeq \(\vee\) AckSeq
 InputSeq \(\triangleq \wedge i n p=\) NotArt
 \(\wedge i n p^{\prime} \in A r t\)
 \(\wedge a w^{\prime}=\operatorname{Append}\left(a w, i n p^{\prime}\right)\)
 \(\wedge\) disp \(^{\prime}=\) disp
 DispOrNotSeq \(\triangleq \wedge a w \neq\langle \rangle\)
 \(\wedge \vee \operatorname{disp}^{\prime}=\langle a w[1], 1-\operatorname{disp}(2)\rangle\)
 \(\vee\) disp \(^{\prime}=\) disp
 \(\wedge a w^{\prime}=\operatorname{Tail}(a w)\)
 \(\wedge i n p^{\prime}=i n p\)
 AckSeq \(\triangleq \wedge i n p \in A r t\)
 \(\wedge i n p^{\prime}=\) NotArt
 \(\wedge\left(a w^{\prime}=a w\right) \wedge\left(d i s p^{\prime}=d i s p\right)\)
```

Figure 6.6: The program CenSeq1.

```
 CenSeq2 \(\triangleq \exists\) aw \(:\) ICenSeq 2
 ICenSeq \(2 \triangleq\) InitSeq \(\wedge \square[\text { NextSeq } 2]_{v}\)
 NextSeq \(2 \triangleq\) InpOrNotSeq \(\vee\) DisplaySeq \(\vee\) AckSeq
 InpOrNotSeq \(\triangleq \wedge i n p=\) NotArt
 \(\wedge i n p^{\prime} \in A r t\)
 \(\wedge \vee a w^{\prime}=\operatorname{Append}\left(a w, i n p^{\prime}\right)\)
 \(\vee a w^{\prime}=a w\)
 \(\wedge\) disp \(^{\prime}=\operatorname{disp}\)
 DisplaySeq \(\triangleq \wedge a w \neq\langle \rangle\)
 \(\wedge\) disp \(^{\prime}=\langle a w[1], 1-\operatorname{disp}(2)\rangle\)
 \(\wedge a w^{\prime}=\operatorname{Tail}(a w)\)
 \(\wedge i n p^{\prime}=i n p\)
```

Figure 6.7: The program CenSeq2.
variable $a w$ of ICenSeq1. The initial predicate of $\operatorname{ICenSeq} 1^{p}$ is:

$$
\operatorname{Init}^{p} \triangleq \operatorname{InitSeq} \wedge(p=\langle \rangle)
$$

In addition to appending the input to $a w$, the action InputSeq ${ }^{p}$ must append to $p$ the prediction of whether or not that input will be displayed:

$$
\text { InputSeq }^{p} \triangleq \text { InputSeq } \wedge\left(\exists i \in \Pi: p^{\prime}=\operatorname{Append}(p, i)\right)
$$

As in ICen $1^{p}$, to make DispOrNotSeq ${ }^{p}$ display the input iff $p$ predicts that it will, we define DorNSeq $_{i}$ so that

$$
\text { DispOrNotSeq }^{\triangleq} \exists i \in \Pi: \text { DorNSeq }_{i}
$$

where DorNSeq $_{\text {Yes }}$ displays the input and DorNSeq $_{\text {No }}$ rejects it. The definition of DorNSeq $_{i}$ is obtained by modifying DispOrNotSeq the same way we modified DispOrNot to obtain $\operatorname{Dor} N_{i}$ for ICen1. We can then define:

$$
\operatorname{DispOrNotSeq}^{p} \triangleq \operatorname{DorNSeq}_{p(1)} \wedge\left(p^{\prime}=\operatorname{Tail}(p)\right)
$$

Note that having $\operatorname{DispOrNotSeq}{ }^{p}$ set $p^{\prime}$ to $\operatorname{Tail}(p)$ ensures that every prediction is used only once. Since $A c k S e q^{p}$ neither makes nor satisfies a prediction, we define:

$$
A c k S e q^{p} \triangleq A c k S e q \wedge\left(p^{\prime}=p\right)
$$

Putting this all together we get:

$$
\text { ICenSeq } 1^{p} \triangleq \text { InitSeq }^{p} \wedge \square\left[\text { NextSeq } 1^{p}\right]_{v p}
$$

where

$$
\text { NextSeq }^{p} \triangleq \text { InputSeq }^{p} \vee \text { DispOrNotSeq }^{p} \vee \text { AckSeq }^{p}
$$

and $v p$ equals $\langle i n p$, disp, $a w, p\rangle$.
We can now show that CenSeq1 implements CenSeq2 by showing

$$
\begin{equation*}
\vDash I C e n S e q 1 \Rightarrow(\text { ICenSeq } 2 \text { with } a w \leftarrow a w B a r) \tag{6.16}
\end{equation*}
$$

where $a w B a r$ is the subsequence of $a w$ containing only the pictures that $p$ predicts will be displayed.

To define awBar, we first define Only Yes (wsq, ysq) to be the subsequence of the sequence $w s q$ consisting of all elements for which the corresponding elements of the sequence ysq equals Yes. We define OnlyYes to be a function of two arguments with domain the set of pairs $\langle w s q, y s q\rangle$ where
$w s q$ is a sequence of elements of Art, ysq is a sequence of Yes or No values, and $\operatorname{Len}(w s q)=\operatorname{Len}(y s q)$. (Remember that a function of two arguments is really a function of one argument whose domain is a set of pairs.) The definition is a recursive one, justified by the well-founded relation $\succ$ where $\left\langle w s q_{1}, y s q_{1}\right\rangle \succ\left\langle w s q_{2}, y s q_{2}\right\rangle$ iff the length of sequences $w s q_{1}$ and $y s q_{1}$ is greater than the length of $w s q_{2}$ and $y s q_{2}$. Since we haven't bothered to define a convenient syntax for writing recursive definitions of functions of two arguments, the definition is written somewhat informally as:

```
\(\operatorname{Only} Y e s(w s q, y s q) \triangleq\)
 IF \(w s q=\langle \rangle\) THEN \(\rangle\)
 ElSE \(\quad(\operatorname{IF} \operatorname{Head}(y s q)=\) Yes THEN \(\langle H e a d(w s q)\rangle\)
 ELSE 〈〉)
 - OnlyYes(Tail(wsq), Tail(ysq))
```

Defining awBar to equal $\operatorname{Only} \operatorname{Yes}(a w, p)$ makes (6.16) true.
It's straightforward to modify Theorem 6.5 to describe an arbitrary prophecy variable $p$ that makes a sequence of predictions. We replace the definition of $N e x t^{p}$ in the hypothesis of the theorem by:

$$
\begin{aligned}
& \operatorname{Next}^{p} \triangleq\left(A_{p(1)} \wedge D\right) \vee\left(\exists j \in J: B_{j} \wedge C_{j}\right), \text { where } \\
& D \text { equals } p^{\prime}=\operatorname{Tail}(p) \text { or } \exists i \in \Pi: p^{\prime}=\operatorname{Append}(\operatorname{Tail}(p), i) \\
& C_{j} \text { equals } p^{\prime}=p \text { or } \exists i \in \Pi: p^{\prime}=\operatorname{Append}(p, i)
\end{aligned}
$$

However, there's one problem: The empty sequence $\rangle$ is the value of $p$ indicating that no prediction is being made. When $p=\langle \rangle$, the value of the subscript $p(1)=i$ in this definition is undefined. That doesn't matter in our example because $p$ and $a w$ are sequences of the same length, so $p=\langle \rangle$ implies $a w=\langle \rangle$, which implies that DorNSeq ${ }_{i}$ equals false for $i \in \Pi$. Therefore, the value of the undefined subformula makes no difference. In general, to make the modified theorem valid, we need to add to its hypothesis the requirement that the following is an invariant of $T^{p}$ :

$$
(p=\langle \rangle) \Rightarrow \neg \mathbb{E}\left(\exists i \in \Pi: A_{i}\right)
$$

### 6.4.3.2 A Set of Prophecies

To illustrate a prophecy variable that makes a set of concurrent predictions, we now modify the censor programs CenSeq 1 and CenSeq 2 so that instead of displaying pictures in the order in which they were submitted, the censor can display them in any order. This is represented by letting $a w$ be a set rather than a sequence of pictures. It is done in the two programs ICenSet 1
and ICenSet2, where the first lets $a w$ be the set of all unprocessed inputs and the second lets $a w$ contain just the ones that will be displayed. Letting CenSet 1 and CenSet 2 be the programs obtained from these two programs by hiding $a w$, we want to show that CenSet 1 implements CenSet 2 . As you probably realize, defining a refinement mapping to show that this is true requires adding a prophecy variable $p$ to ICenSet 1 that predicts which of the inputs in $a w$ will be displayed.

Writing these two censor programs poses a problem. What if the artist submits the same picture twice? If we want the picture to be displayed twice, we would need to have two copies of it in $a w$, which means $a w$ couldn't simply be a set. In the example of Section 6.5 , you'll see one way of keeping multiple copies of a value in a set. But for simplicity, we'll modify the censor programs not to allow the artist to submit the same picture twice. This will be done by adding an interface variable old whose value is the set of all previously submitted pictures.

The definition of CenSet 1 is in Figure 6.8, with the changes from the definition of CenSeq 1 (Figure 6.6) in black. You should be able to write the definition of CenSeq2 yourself.

To define a refinement mapping under which ICenSet 1 implements ICenSet2, we need to add a prophecy variable $p$ to ICenSet 1 that predicts, for each picture in $a w$, whether or not that picture will be displayed. The obvious way to do that is to let the value of $p$ be a function in $a w \rightarrow \Pi$, the set of functions from $a w$ to $\Pi$. As before, we let $\Pi$ equal the set $\{Y e s, N o\}$.

Since $a w$ initially equals the empty set, the initial value of $p$ should be the function whose domain is the empty set. There is just a single such function, and the easiest way to write it is as the empty sequence $\rangle$, which is a (and hence the) function whose domain is the empty set. So, we define:

$$
\text { InitSet }^{p} \triangleq \text { InitSet } \wedge(p=\langle \rangle)
$$

The InputSet ${ }^{p}$ action must add a prediction of whether or not the picture $i n p^{\prime}$ that it adds to $a w$ will be displayed. Thus, it must assert that $p^{\prime}$ is the function obtained from $p$ by adding $i n p^{\prime}$ to its domain and letting the value of $p^{\prime}\left(i n p^{\prime}\right)$ be either element in $\Pi$. To write that action, let's define $\operatorname{FcnPlus}(f, w, d)$ to be the function obtained from a function $f$ by adding an element $w$ to its domain and letting that function map $w$ to $d$. The domain of $f$ is written Domain $(f)$, so the definition is:

$$
\begin{aligned}
& \text { FcnPlus }(f, w, d) \triangleq \\
& \quad x \in\{w\} \cup \operatorname{DOMAIN}(f) \mapsto \operatorname{IF} x=w \text { THEN } d \text { ELSE } f(x)
\end{aligned}
$$

```
CenSet1 \(\triangleq \exists\) aw: ICenSet 1
ICenSet \(1 \triangleq\) Init \(\wedge \square[\text { NextSet } 1]_{v}\)
 \(v \triangleq\langle\) inp, disp, aw, old \(\rangle\)
 InitSet \(\triangleq \wedge i n p=N o t A r t\)
 \(\wedge a w=\{ \}\)
 \(\wedge\) disp \(\in\) Art \(\times\{0,1\}\)
 \(\wedge\) old \(=\{ \}\)
 NextSet \(1 \triangleq\) InputSet \(\vee\) DispOrNotSet \(\vee\) AckSet
 InputSet \(\triangleq \wedge i n p=\) NotArt
 \(\wedge i n p^{\prime} \in\) Art \(\backslash\) old
 \(\wedge a w^{\prime}=a w \cup\left\{i n p^{\prime}\right\}\)
 \(\wedge\left(\right.\) disp \(\left.^{\prime}=\operatorname{disp}\right) \wedge\left(\right.\) old \(\left.d^{\prime}=o l d \cup\left\{i n p^{\prime}\right\}\right)\)
 DispOrNotSet \(\triangleq \exists w \in a w\) :
 \(\wedge \vee \operatorname{disp}^{\prime}=\langle w, 1-\operatorname{disp}(2)\rangle\)
 \(\vee\) disp \(^{\prime}=\) disp
 \(\wedge a w^{\prime}=a w \backslash\{w\}\)
 \(\wedge\left(\right.\) inp \(\left.^{\prime}=i n p\right) \wedge\left(\right.\) old \(\left.^{\prime}=o l d\right)\)
 AckSet \(\triangleq \wedge i n p \in A r t\)
 \(\wedge i n p^{\prime}=\) NotArt
 \(\wedge\left(a w^{\prime}=a w\right) \wedge\left(\right.\) disp \(^{\prime}=\) disp \() \wedge\left(\right.\) old \(\left.{ }^{\prime}=o l d\right)\)
```

Figure 6.8: The program CenSet1.

We can then define

$$
\text { InputSet }^{p} \triangleq \text { InputSet } \wedge\left(\exists i \in \Pi: p^{\prime}=\operatorname{FcnPlus}\left(p, \text { inp }^{\prime}, i\right)\right)
$$

To define DispOrNotSet ${ }^{p}$, we define $\operatorname{DorNSet}_{i}(w)$ as follows so DispOrNotSet equals $\exists w \in a w, i \in \Pi: \operatorname{DorNSet}_{i}(w)$.

$$
\begin{aligned}
\operatorname{DorNSet}_{i}(w) \triangleq & \wedge \\
& \vee(i=Y e s) \wedge\left(\text { disp }^{\prime}=\langle w, 1-\operatorname{disp}(2)\rangle\right) \\
& \wedge a w^{\prime}=a w \backslash\{w\} \\
& \wedge\left(i n p^{\prime}=i n p\right) \wedge\left(\text { old }^{\prime}=\text { old }\right)
\end{aligned}
$$

The DispOrNotSet ${ }^{p}$ action will have to erase the prediction by removing from the domain of $p$ the picture being displayed or rejected. So let's define $\operatorname{FcnMinus}(f, w)$ to equal the restriction of $f$ to its domain minus the
element $w$ :

$$
\operatorname{FcnMinus}(f, w) \triangleq x \in(\operatorname{Domain}(f) \backslash\{w\}) \mapsto f(x)
$$

We can now define:

```
DispOrNotSet \({ }^{p} \triangleq\)
 \(\exists w \in a w: \operatorname{DorNSet}_{p(w)}(w) \wedge\left(p^{\prime}=\operatorname{FcnMinus}(p, w)\right)\)
```

Since $A c k S e t^{p}$ neither makes nor satisfies a prediction, its definition is simply:

$$
\operatorname{AckSet}^{p} \triangleq \operatorname{AckSet} \wedge\left(p^{\prime}=p\right)
$$

The rest of the definition of ICenSet $1^{p}$ should be clear.
We can then show that CenSet 1 implements CenSet 2 by showing

$$
\models \text { ICenSet }^{p} \Rightarrow(\text { ICenSet } 2 \text { with } a w \leftarrow a w B a r)
$$

where awBar equals $\{w \in a w: p(w)=Y e s\}$, the set of elements in $a w$ that $p$ predicts will be displayed.

We won't bother writing the generalization of Theorem 6.5 for a prophecy variable $p$ that makes a set of predictions.

### 6.4.3.3 Further Generalizations

We now extract from our examples a more general formulation of prophecy variables. To construct a prophecy variable, we start with certain sets of actions we'll call action sets. For CenSeq 1 there is one action set consisting of two actions: DispOrNotSeq Yes, a DispOrNotSeq action that displays the picture, and DispOrNotSeq ${ }_{N o}$, a DispOrNotSeq action that doesn't display it. For CenSet1, for every $w \in A r t$, there is an action set consisting of two actions: DispOrNotSet $w_{w, Y e s}$ and DispOrNotSet ${ }_{w, \text { No }}$, which are DispOrNotSet actions that either display or don't display the input $w$. Thus, there is a set of action sets, one action set defined for each $w$ in Art.

In general, for a program $T$, we have a set of action sets, each of which can be written as $\left\{A_{i}: i \in \Pi\right\}$. (The set $\Pi$ can be different for different action sets.) That set of action sets is a constant; it doesn't change during a behavior of $T$.

A prophecy is a prediction about one of the program's action sets. That is, it is an element of the set $\Pi$ defining the action set $\left\{A_{i}: i \in \Pi\right\}$. It predicts the value of $i$ for which the next $A_{i}$ step occurs. In any state, the value of a prophecy variable describes a set of predictions, some of which are active.

For CenSeq1, the prophecy variable $p$ equals a sequence of predictions, all for the same action set, only the first element of the sequence being active. For CenSet1, the prophecy variable $p$ equals a set of prophecies, one for each action set defined by an element of $a w$, all of its prophecies being active.

In general, the program $T^{p}$ is defined by adding the variable $p$ in such a way that every behavior satisfying $T^{p}$ satisfies $T$. Moreover, it ensures that no active prediction of $p$ is ever violated. When an action predicted by an active prediction of $p$ occurs, we say that the prediction is fulfilled. The initial value of $p$ can contain prophecies. Prophecies can be added to or removed from $p$ and/or made active or inactive by any action of $T^{p}$, so long as the following conditions are satisfied:

- No two active prophecies can be predictions for the same action set.
- For any action of $T^{p}$ that adds a prophecy to $p$, it must be possible for the action to add a prophecy for any element of the set $\Pi$ for that action set.
- An action of $T^{p}$ that fulfills a prediction must remove that prediction from $p$. (It may also add one or more new predictions.)

The prophecy variables of CenSeq 1 and CenSet 1 made only predictions that were likely to be fulfilled. We could instead have used prophecy variables that a mathematician might consider simpler that make a lot more predictions. For CenSeq1, instead of having each InputSeq step add a prediction to $p$, we could have let the initial value of $p$ be an infinite sequence of predictions. The first element of the sequence would be the active one, and each DispOrNotSeq action would remove that element from $p$. For CenSet1, we could have let the initial value of $p$ be any element of Art $\rightarrow\{Y e s, N o\}$, predicting for each picture $w$ whether or not it will be displayed if it is input. Since the same picture can't be input twice, the value of $p(i n p)$ could be set by a DispOrNotSet action to a value indicating that its prediction is inactive.

We could have used an even more extravagant prophecy variable for CenSet1-one that predicts not only whether each picture will be displayed or rejected, but in which order they will be input. The initial value of $p$ would be an infinite sequence of predictions $\langle w, d\rangle$, for $w \in A r t$ and $d \in\{Y e s, N o\}$, predicting not just if the next DispOrNotSet step will display or reject the input, but that it must occur with inp equal to $w$. Almost all of those predictions will be impossible to fulfill because inp will not equal $w$. But as we've seen, impossible predictions don't matter because they
just require the behavior to halt, which is either allowed or is ruled out by a liveness hypothesis. This may seem silly, but a prophecy variable that makes predictions that are almost all impossible is used in the example of Section 6.5 because it seems to provide the simplest way to define the needed refinement mapping.

### 6.4.4 The Existence of Refinement Mappings

We now state a completeness result for the auxiliary variables that we've described. Completeness means that if $\models T \Rightarrow \boldsymbol{\exists} \mathbf{y}$ : $I S$ is true, where $\mathbf{y}$ is a list of variables, then we can successively add a list a of these auxiliary variables to $T$ to obtain a formula $T^{\mathrm{a}}$ that implies $I S$ under a refinement mapping that substitutes state expressions of $T^{\mathbf{a}}$ for the variables $\mathbf{y}$.

Like most such completeness results, it assumes that there is a mathematical proof of the result based on the semantics of the formulas. That is, we assume not only the truth of $\models T \Rightarrow \boldsymbol{\exists} \mathbf{y}: I S$, but that there exists a mathematical proof of its truth. Such a proof consists of an operator $\Phi$ such that for every behavior $\sigma$ satisfying $T$, there is a behavior $\Phi(\sigma)$ satisfying $I S$ that shows $\sigma$ satisfies $\exists \mathbf{y}: I S$. This means approximately that we can obtain $\Phi(\sigma)$ from $\sigma$ by adding and/or removing stuttering steps and changing the values of the variables of $\mathbf{y}$. The precise statement of this condition is $\Phi(\sigma) \sim_{\mathbf{y}} \sigma$, where the definition of $\sim_{\mathbf{y}}$ is the same as that of $\sim_{y}$ in Section 6.1.3 with $={ }_{y}$ replaced by $=\mathbf{y}$, and $s={ }_{\mathbf{y}} t$ defined to mean that states $s$ and $t$ are equal except perhaps for the values they assign to the variables of $\mathbf{y}$. The assumption that there exists a mathematical proof of $\models T \Rightarrow \exists \mathbf{y}$ : IS is embodied in the use of $\Phi$ to construct the refinement mapping. Here is the precise statement of the theorem. It uses the notation that if $\mathbf{y}$ is the list $y_{1}, \ldots, y_{n}$ of variables and $\exp$ is the list $\exp _{1}, \ldots, \exp _{n}$ of expressions, then $\mathbf{y} \leftarrow \exp$ is an abbreviation for $y_{1} \leftarrow \exp _{1}, \ldots, y_{n} \leftarrow \exp _{n}$.

Theorem 6.6 Let $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$ be lists of variables, all distinct from one another; let the variables of $T$ be $\mathbf{x}$ and $\mathbf{z}$ and the variables of $I S$ be $\mathbf{x}$ and $\mathbf{y}$; and let $T$ equal Init $\wedge \square[N e x t]_{\langle\mathbf{x}, \mathbf{z}\rangle} \wedge L$. Let the operator $\Phi$ map behaviors satisfying $T$ to behaviors satisfying $I S$ such that $\Phi(\sigma) \sim_{y} \sigma$. By adding history, stuttering, and prophecy variables to $T$, we can define a formula $T^{\mathbf{a}}$ such that $\exists \mathbf{a}: T^{\mathbf{a}}$ is equivalent to $T$ and a list $\exp$ of expressions defined in terms of $\Phi$ and the variables of $T^{\mathbf{a}}$ such that

$$
\models T^{\mathbf{a}} \Rightarrow(I S \text { wITH } \mathbf{y} \leftarrow \exp )
$$

The theorem makes no assumption about $L$ other than that it contains no variables besides those of $\mathbf{x}$ and $\mathbf{z}$. It doesn't even have to be a liveness property.

Here is the idea behind the theorem's proof. We first add an infinitestuttering variable $t$ to avoid having to worry about terminating behaviors. We then add a history variable $h$ that remembers the entire sequence of values of all the tuples $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in all the states reached thus far, including the current one. We then add a prophecy sequence variable $p$ that predicts the infinite sequence of all future values of $\langle\mathbf{x}, \mathbf{z}, t\rangle$. This means that in all states of the behavior, the value of $h \circ p$ is the entire sequence of values of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in the complete (infinite) behavior. Moreover, the length of $h$ indicates the position of the current state in that behavior. The values of $h$ and $p$ and the mapping $\Phi$ provide all the information needed to determine the values to substitute for $\mathbf{y}$ to obtain a refinement mapping under which $I S$ is simulated. The proof in the Appendix sketches the details.

The theorem shows that these auxiliary variables are, in principle, all we need to define a refinement mapping. It and its proof do not tell us how refinement mappings are defined in practice.

### 6.5 The FIFO Queue

This section presents a more realistic example of the use of auxiliary variables to show that one abstract program implements another. That makes it rather long, but it's included for two reasons. The first is that it describes serializability, which is an important concept for designing concurrent programs. The second is that stuttering and prophecy variables are not as intuitive as history variables, and a more realistic example may provide some insight into how they can be used in practice.

### 6.5.1 Fifo - A Linearizable Specification

Popular coding languages provide a small number of built-in data types such as finite-precision integers. Other data types must be implemented as objects. An object has a state and methods with which the program can read and modify parts of the state. We will ignore how objects are created and destroyed.

A simple example of such an object is a first in, first out queue, called a FIFO. We can think of the state of a FIFO as an ordinal sequence queue of elements from some set Data. A fifo provides two methods, usually described as follows.
enqueue Takes an element of Data as an argument, and appends it to the end of queue. It returns no value. ${ }^{1}$
dequeue If queue is nonempty, it removes the first element of queue and returns it as the result. If queue is the empty sequence, it returns some special value.

An object is accessed only by executing its methods. For the purpose of correctness, the programmer needs to know nothing about how these two methods are implemented.

This kind of description is adequate for a method in a traditional program. It is inadequate for concurrent programs because it says nothing about what happens if two processes concurrently access the object. The call of a method and the return are usually described as single steps, but execution of the operation may consist of steps that occur between those two steps.

Often, it is considered an error if two processes concurrently access the same object. The object must either be accessed by only one process, or else accesses by different processes must be inside the critical section of a mutual exclusion algorithm. We're interested in objects that are meant to be accessed concurrently by multiple processes-for example, a critical section object for implementing mutual exclusion with enter and exit methods.

Maurice Herlihy and Jeannette Wing defined an object to be linearizable iff if acts as if the execution of a method consists of three steps: the call, the return, and between them a single step that performs the actual reading and/or modifying of the object's state [18]. The state of a linearizable object is described by internal variables. Only the call and return steps change interface variables. Linearizability has become a standard requirement for shared objects in concurrent systems.

We describe a linearizable FIFO as an abstract program. We require that execution of a dequeue operation when queue is empty waits for an element to be enqueued rather than returning a special value. This makes the fifo more interesting because it involves process synchronization-making one process wait for another process to do something. Since the purpose of the example is to illustrate the use of auxiliary variables, which are added only to the safety property of a program, we consider only the safety property of a FIFO.

[^28]We assume there is a set EnQers of processes that perform enqueue operations. Execution of an enqueue operation by process $e$ consists of three steps: a $\operatorname{BeginEnq}(e)$ step that describes the call of the method, a $\operatorname{DoEnq}(e)$ step that modifies the variable queue, and an $\operatorname{EndEnq(e)~step~that~}$ describes the return. The enqueuers communicate with the object through the interface variable enq, whose value is a function with domain EnQers. The value of $\operatorname{enq}(e)$ equals Done when enqueuer $e$ is not performing an enqueue operation, and it equals the data value it is appending to queue when $e$ is performing the operation, where Done is some constant not in Data. There is also an internal variable enqInner, where enqInner $(e)$ is set to Busy by the BeginEnq(e) action and is set to Done by the DoEnq(e) action.

Similarly, there is a set DeQers of dequeuer processes, each $d \in$ DeQers performing $\operatorname{BeginDeq}(d)$, $\operatorname{DoDeq}(d)$, and $\operatorname{EndDeq}(d)$ steps. Dequeuers communicate with the object through the interface variable deq, where $\operatorname{deq}(d)$ is set to Busy by the BeginDeq(d) action and to the value that was dequeued by the $\operatorname{EndDeq}(d)$ action. There is an internal variable deqInner, where deqInner $(d)$ is set to Busy by the $\operatorname{BeginDeq(d)\text {actionandsetby}\operatorname {DoDeq}(d))}$ to the value dequeued by the dequeue operation. The complete definition of the abstract program is formula Fifo in Figure 6.9. It uses the unchanged operator, where UnCHANGED exp equals $\exp ^{\prime}=\exp$. Thus, if $v$ is a tuple $\left\langle v_{1}, \ldots, v_{n}\right\rangle$ of variables, UNCHANGED $v$ asserts that $v_{i}^{\prime}=v_{i}$ for all $i$ in $1 . . n$.

### 6.5.2 POFifo - A More General Specification

### 6.5.2.1 The Background

Many people, myself included, used to believe that any implementation of a FIFO had to be a more concrete version of program IFifo, with the value of the variable queue encoded in the program's state. This implied that any implementation of a FIFO should implement IFifo under a refinement mapping, without having to add auxiliary variables.

We were wrong. Suppose two processes concurrently execute enqueue operations. When the two operations' EndEnq steps have occurred, program IFifo has appended both values to queue in some order, determining the order in which they will be dequeued. However, in a behavior of program Fifo, where queue is hidden, there is no way to know in which order the two values appear in queue until that order is revealed by dequeue operations. In their paper defining linearizability, Herlihy and Wing gave an algorithm that

```
Fifo \(\triangleq \exists\) queue, enqInner, deqInner : IFifo
IFifo \(\triangleq\) Init \(\wedge \square[\text { Next }]_{v}\)
\(v \triangleq\langle e n q\), deq, queue, enqInner, deqInner \(\rangle\)
Init \(\triangleq \wedge e n q=(e \in\) EnQers \(\mapsto\) Done \()\)
 \(\wedge\) deq \(\in(\) DeQers \(\rightarrow\) Data \()\)
 \(\wedge\) queue \(=\langle \rangle\)
 \(\wedge\) enqInner \(=(e \in\) EnQers \(\mapsto\) Done \()\)
 \(\wedge\) deqInner \(=\) deq
Next \(\triangleq \vee \exists e \in \operatorname{EnQers}: \operatorname{BeginEnq}(e) \vee \operatorname{DoEnq}(e) \vee \operatorname{EndEnq}(e)\)
 \(\vee \exists d \in \operatorname{DeQers}: \operatorname{BeginDeq}(d) \vee \operatorname{DoDeq}(d) \vee \operatorname{EndDeq}(d)\)
\(\operatorname{BeginEnq}(e) \triangleq \wedge \operatorname{enq}(e)=\) Done
 \(\wedge \exists D \in\) Data : enq \({ }^{\prime}=(e n q \operatorname{EXCEPT} e \mapsto D)\)
 \(\wedge\) enqInner \({ }^{\prime}=(\) enqInner EXCEPT \(e \mapsto\) Busy \()\)
 \(\wedge\) UNCHANGED 〈deq, queue, deqInner〉
\(\operatorname{DoEnq}(e) \triangleq \wedge \operatorname{enqInner}(e)=\) Busy
 \(\wedge\) queue \(^{\prime}=\operatorname{Append}(\) queue, enq \((e))\)
 \(\wedge\) enqInner \(^{\prime}=(\) enqInner EXCEPT \(e \mapsto\) Done \()\)
 \(\wedge\) UnCHANGED \(\langle\) deq, enq, deqInner \(\rangle\)
\(\operatorname{EndEnq}(e) \triangleq \wedge \operatorname{enq}(e) \neq\) Done
 \(\wedge\) enqInner \((e)=\) Done
 \(\wedge e n q^{\prime}=(e n q\) EXCEPT \(e \mapsto\) Done \()\)
 \(\wedge\) UNCHANGED 〈deq, queue, enqInner, deqInner〉
\(\operatorname{BeginDeq}(d) \triangleq \wedge \operatorname{deq}(d) \neq \operatorname{Busy}\)
 \(\wedge d e q^{\prime}=(\) deq ExCEPT \(d \mapsto\) Busy \()\)
 \(\wedge\) deqInner \({ }^{\prime}=(\) deqInner EXCEPT \(d \mapsto\) NoData \()\)
 \(\wedge\) UNCHANGED 〈enq, queue, enqInner〉
\(\operatorname{DoDeq}(d) \triangleq \wedge \operatorname{deq}(d)=\) Busy
 \(\wedge\) deqInner \((d)=\) NoData
 \(\wedge\) queue \(\neq\langle \rangle\)
 \(\wedge\) deqInner \(^{\prime}=(\) deqInner EXCEPT \(d \mapsto\) Head (queue \(\left.)\right)\)
 \(\wedge\) queue \({ }^{\prime}=\operatorname{Tail}(q u e u e)\)
 \(\wedge\) UNCHANGED \(\langle e n q\), deq, enqInner \(\rangle\)
\(\operatorname{EndDeq}(d) \triangleq \wedge \operatorname{deq}(d)=\) Busy
 \(\wedge\) deqInner \((d) \neq\) NoData
 \(\wedge d e q^{\prime}=(\) deq EXCEPT \(d \mapsto\) deqInner \((d))\)
 \(\wedge\) UNCHANGED 〈enq, queue, enqInner, deqInner〉
```

Figure 6．9：The program Fifo．
implements a FIFO in which, from a state immediately after both enqueue operations have completed, it is possible for the two values to be dequeued in either order by two successive non-concurrent dequeue operations. There is no queue encoded in the algorithm. While their algorithm implements Fifo, there is no refinement mapping under which it implements IFifo without the addition of auxiliary variables. In particular, showing that their algorithm implements Fifo requires adding a prophecy variable that predicts the order in which data items enqueued by concurrent enqueue operations will be dequeued.

What is encoded in the state of their algorithm is not a linearly ordered queue of enqueued data values, but rather a partial order on the set of enqueued values that indicates the possible orders in which the values can be returned by dequeue operations. A partial order on a set $S$ is a relation $\prec$ on $S$ that is transitive and has no cycles (which implies $a \nprec a$ for any $a \in S$ ). For the partial ordering $\prec$ on the set of enqueued values, the relation $u \prec w$ means that value $u$ must be dequeued before value $w$. Program IFifo is the special case in which that partial order is a total order, meaning that either $u \prec w$ or $w \prec u$ for any two distinct enqueued values $u$ and $w$.

Presented here is a program POFifo that is equivalent to Fifo, but which is obtained by hiding internal variables in a program IPOFifo that maintains a partially ordered set of enqueued values rather than a queue. The Herlihy-Wing algorithm can be shown to implement IPOFifo under a refinement mapping defined in terms of its variables, without adding a prophecy variable.

### 6.5.2.2 Program POFifo

Execution of an operation is described by a sequence of steps. In a linearizable description, there are three steps: a step of the Begin action, a step of the Do action, and a step of the End action. One operation execution is defined to precede another if its End step precedes the other execution's Begin step. If neither of two operation executions precedes the other, then the executions are said to be concurrent.

Since Begin and End steps change interface variables, they appear in a behavior of Fifo. However, a Do step changes only internal variables, so it is not visible in a behavior of Fifo. If the executions of two enqueues are concurrent, then a behavior of Fifo does not show in which order their Do steps occurred in IFifo. Only if one enqueue execution precedes the other do we know from a behavior of Fifo the order in which the enqueued values appear in queue. Therefore, a behavior satisfies Fifo iff it satisfies the
following two safety properties. They are stated informally, where a value is taken to mean a particular enqueueing of a data value.

F1. Each dequeued value has been enqueued, and an enqueued value is dequeued at most once.

F2. If an enqueue of a value $v$ precedes an enqueue of a value $w$, then the dequeue of value $w$ cannot precede the dequeue of value $v$.

The values enqueued by two concurrent enqueue executions may be dequeued in either order.

Program IPOFifo must maintain a set of enqueued items and some ordering relation among them. The first thing to observe is that the same data item might be enqueued twice before any item is dequeued. Since this is not a silly example, that possibility should be handled. An easy way to do that is to maintain a set of pairs $\langle d, i\rangle$ where $d$ is the enqueued data value and $i$ is an element of a set $I d s$ of identifiers that serve to distinguish between different "copies" of an enqueued value. Let's call such a <data value, identifier pair〉 a datum. (We will use datums as the plural of datum because data suggests elements of Data rather than of Data $\times I d$. We will continue to call an element of Data a data value.)

IPOFifo will use an internal variable elts whose value is the set of currently enqueued datums. It will also have an internal variable whose value is an ordering relation $\prec$ on the set elts where, $u \prec w$ means that datum $u$ must be dequeued before datum $w$ is. For IPOFifo to describe a linearizable object, execution of an enqueue operation must consist of a BeginPOEnq step, followed by a DoPOEnq step that puts the datum in elts, followed by an EndPOEnq step. Condition F2 is satisfied if the DoPOEnq step that puts a datum $w$ in elts adds a relation $u \prec w$ for every datum $u$ put in elts by an enqueue operation that has completed. Of course, F1 is satisfied if every DoPODeq step obtains its data item from a datum that it removes from elts.

Given any behavior $\sigma$ satisfying IPOFifo, we can obtain a behavior $\tau$ satisfying IPOFifo by moving every DoPOEnq step earlier in the behavior so it occurs immediately after its operation's BeginPOEnq step, and moving every DoPODeq step later in the behavior so it occurs immediately before its operation's EndPODeq step. Moreover, since the Do ... steps change only internal variables, the values of the interface variables are the same in each state of $\tau$ as in $\sigma$. Therefore, without eliminating any possible behaviors of POFifo (which are obtained by hiding the internal variables of IPOFifo), we can require that a BeginPOEnq step be immediately followed by the
operation's DoPOEnq step, and that an EndPODeq step be immediately preceded by the operation's DoPODeq step. This means that there's no need for the Do ... actions; the BeginPOEnq and DoPOEnq actions can be combined into a single action, as can the DoPODeq and EndPODeq actions. We will therefore simplify IPOFifo be eliminating the Do... actions and having only Begin ... and End... actions.

We can now write the program IPOFifo. It will have the same constants as IFifo plus the set $I d s$ of identifiers; and it will have the same interface variables deq. It will have the internal variable elts whose value is the set of currently enqueued datums.

IPOFifo will need an internal variable to describe the partial order $\prec$ on the set elts. Mathematicians describe a relation $\prec$ on a set $S$ as a subset of $S \times S$, where $u \prec v$ is an abbreviation for $\langle u, v\rangle \in \prec$. We'll do the same thing, except it would be confusing to use the symbol $\prec$ as a variable. We will therefore let before be the variable whose value is a subset of elts $\times$ elts such that $u \prec v$ means $\langle u, v\rangle \in$ before.

Finally, when enqueueing a datum $w$, the BeginPOEnq step must add to $\prec$ the relation $u \prec w$ for a datum $u$ in elts iff the enqueue operation that added $u$ has completed. That information is not contained in the interface variable enq because enq(e) contains only the data value that an uncompleted enqueue operation is enqueueing, not which datum the operation put in elts. Therefore, we add to IPOFifo an internal variable adding such that adding $(e)$ equals the datum in elts that enqueuer $e$ put in elts, and equals a value NonElt that is not a datum if $e$ is not currently performing an enqueue operation.

We use adding to define the following state expression, whose value is the set of datums enqueued by operations whose executions have not yet completed:

$$
\text { beingAdded } \triangleq\{\operatorname{adding}(e): e \in \text { EnQers }\} \backslash\{\text { NonElt }\}
$$

The set beingAdded need not be a subset of elts because it can contain datums that were removed from elts by dequeue operations before the operations that enqueued them have completed.

The program POFifo is defined in Figure 6.10. Here are explanations of the four disjuncts of the next-state action PONext.
$\operatorname{BeginPOEnq}(e)$ Enabled when $\operatorname{enq}(e)=$ Done, it:

- Sets enq(e) to the data value $D$ that $e$ is enqueuing.
- Adds a datum $\langle D, i d\rangle$ to elts for some $i d \in I d s$ for which $\langle D, i d\rangle$ is not already in elts or beingAdded.

```
POFifo \(\triangleq \exists\) elts, before, adding: IPOFifo
IPOFifo \(\triangleq\) POInit \(\wedge \square[\text { PONext }]_{P O v}\)
 \(P O v \triangleq\langle e n q\), deq, elts, before, adding \(\rangle\)
 POInit \(\triangleq \wedge e n q=(e \in\) EnQers \(\mapsto\) Done \()\)
 \(\wedge\) deq \(\in(\) DeQers \(\rightarrow\) Data \()\)
 \(\wedge\) elts \(=\{ \}\)
 \(\wedge\) before \(=\{ \}\)
 \(\wedge\) adding \(=(e \in\) EnQers \(\mapsto\) NonElt \()\)
PONext \(\triangleq \vee \exists e \in\) EnQers : BeginPOEnq \((e) \vee \operatorname{EndPOEnq}(e)\)
 \(\vee \exists d \in\) DeQers : BeginPODeq \((d) \vee \operatorname{EndPODeq}(d)\)
\(\operatorname{BeginPOEnq}(e) \triangleq\)
 \(\wedge \operatorname{enq}(e)=\) Done
 \(\wedge \exists D \in\) Data \(: \exists i d \in\{i \in I d s:\langle D, i\rangle \notin(\) elts \(\cup\) beingAdded \()\}:\)
 \(\wedge e n q^{\prime}=(e n q \operatorname{EXCEPT} e \mapsto D)\)
 \(\wedge\) elts \({ }^{\prime}=\) elts \(\cup\{\langle D, i d\rangle\}\)
 \(\wedge\) before \(^{\prime}=\) before \(\cup\{\langle\) el, \(\langle D, i d\rangle\rangle:\) el \(\in(\) elts \(\backslash\) beingAdded \()\}\)
 \(\wedge\) adding \({ }^{\prime}=(\) adding EXCEPT \(e \mapsto\langle D, i d\rangle)\)
 \(\wedge d e q^{\prime}=d e q\)
\(\operatorname{EndPOEnq}(e) \triangleq \wedge \operatorname{enq}(e) \neq\) Done
 \(\wedge e n q^{\prime}=(e n q\) EXCEPT \(e \mapsto\) Done \()\)
 \(\wedge\) adding \({ }^{\prime}=(\) adding EXCEPT \(e \mapsto\) NonElt \()\)
 \(\wedge\) Unchanged 〈deq, elts, before〉
\(\operatorname{BeginPODeq}(d) \triangleq \wedge \operatorname{deq}(d) \neq B u s y\)
 \(\wedge d e q^{\prime}=(d e q\) EXCEPT \(d \mapsto\) Busy \()\)
 \(\wedge\) unchanged \(\langle e n q\), elts, before, adding \(\rangle\)
\(\operatorname{EndPODeq}(d) \triangleq \wedge \operatorname{deq}(d)=\) Busy
 \(\wedge \exists\) el \(\in\) elts :
 \(\wedge \forall\) el \(2 \in\) elts : \(\neg(e l 2 \prec e l)\)
 \(\wedge\) elts \(^{\prime}=\) elts \(\backslash\{\) el \(\}\)
 \(\wedge d e q^{\prime}=(d e q \operatorname{EXCEPT} d \mapsto e l(1))\)
 \(\wedge\) before \(^{\prime}=\) before \(\cap\left(\right.\) elts \(^{\prime} \times\) elts \(\left.^{\prime}\right)\)
 \(\wedge\) UNCHANGED 〈enq, adding〉
```

Figure 6．10：The program POFifo．

- Modifies before to add the relations $e l \prec\langle D, i d\rangle$ for every el in elts that is not in beingAdded.
- Sets $\operatorname{adding}(e)$ to $\langle D, i d\rangle$, thereby adding $\langle D, i d\rangle$ to beingAdded.
$\operatorname{EndPOEnq}(e)$ Enabled when $\operatorname{enq}(e)$ is a data value, it sets enq(e) to Done and sets adding (e) to NonElt, thereby removing from beingAdded the datum that $e$ had enqueued.
$\operatorname{BeginPODeq}(d)$ Enabled when $\operatorname{deq}(d)$ is a data value, it sets $\operatorname{deq}(d)$ to Busy.

EndPODeq(d) Enabled when $\operatorname{deq}(d)$ equals Busy and elts is not empty, which implies that elts contains at least one minimal datum (a datum not preceded in the $\prec$ relation by any other datum in elts), since the datum most recently added to elts must be a minimal datum. The action chooses an arbitrary minimal datum el of elts, removes it from elts, sets $\operatorname{deq}(d)$ to its data value component, and modifies before to remove all relations el $\prec e l 2$ for elements $e l 2$ of elts.

### 6.5.3 Showing IPOFifo Implements Fifo

Formulas POFifo and Fifo are equivalent. However, more important and more interesting than showing that Fifo refines POFifo is showing that POFifo refines Fifo. It's more important because Fifo is the generally accepted description of a FIFO. By showing that POFifo implements Fifo, we can show that an algorithm that doesn't maintain a totally ordered queue implements Fifo by showing that it implements POFifo. It's more interesting because showing that POFifo implements Fifo requires all three kinds of auxiliary variables. So, the problem of showing that Fifo refines POFifo is not discussed.

To show that POFifo refines Fifo, we have to define a refinement mapping under which IPOFifo implements IFifo. This requires adding to IPOFifo first a prophecy variable, then a history variable, then a stuttering variable. They are added in the three following subsections. Adding the prophecy variable is straightforward and the necessary details are presented. How to add the other two variables and define the refinement mapping are then sketched. Rigorously defining those two programs and the refinement mapping would be a marvelous learning experience. However, the chance of doing it without making any error is small unless you use a tool to check what you have done.

### 6.5.3.1 The Prophecy Variable

The most significant problem in showing that POFifo implements Fifo is that IFifo decides the order in which concurrently enqueued values will be dequeued before IPOFifo does. This tells us that to define a refinement mapping under which IFifo is implemented by POFifo, we need to add a prophecy variable $p$ to IPOFifo.

The simplest way I know of making the necessary predictions is with a prophecy sequence variable $p$ that predicts the sequence of datums that will be dequeued next. The first item in the sequence predicts the datum that the next EndPODeq step removes from elts, and that step of course removes the prediction from $p$. The natural step to append a prediction to the sequence $p$ is the BeginPOEnq step that adds a datum to elts. The length of $p$ therefore always equals the number of datums in elts. The predictions are completely arbitrary datums, so in almost all behaviors they will be impossible to fulfill, at some point not allowing any more datums to be dequeued. But as we've seen, unfulfillable predictions are no problem. Since no predictions are made about enqueue operations, they can keep being performed even if the datums they enqueue can never be dequeued.

The set $\Pi$ of possible predictions equals the set Data $\times I d s$ of all possible datums. The BeginPOEnq(e) action should append a prediction to $p$, and the EndPOEnq(e) and BeginPODeq(d) actions should leave $p$ unchanged. We can therefore define three of the four subactions of the next-state action PONext ${ }^{p}$ of IPOFifo $^{p}$ by:

$$
\begin{aligned}
& \operatorname{BeginPOEnq}^{p}(e) \triangleq \wedge \operatorname{BeginPOEnq}(e) \\
& \wedge \exists \operatorname{el} \in \operatorname{Data} \times \operatorname{Ids}: p^{\prime}=\operatorname{Append}(p, e l) \\
& \operatorname{EndPOEnq}^{p}(e) \triangleq \operatorname{EndPOEnq}(e) \wedge\left(p^{\prime}=p\right) \\
& \operatorname{BeginPODeq}^{p}(d) \triangleq \operatorname{BeginPODeq}(d) \wedge\left(p^{\prime}=p\right)
\end{aligned}
$$

The prediction made by the first item $p(1)$ of the sequence $p$ is the datum that the next $\operatorname{EndPODeq}(d)$ step will remove from elts. The datum $p(1)$ is removed by this step iff elts $s^{\prime}=$ elts $\backslash\{p(1)\}$ is true of the step. Since the step must remove the prediction, we can define:

$$
\begin{aligned}
& \operatorname{EndPODeq}{ }^{p}(d) \triangleq \\
& \quad \operatorname{EndPODeq}(d) \wedge\left(\text { elts }^{\prime}=\text { elts } \backslash\{p(1)\}\right) \wedge\left(p^{\prime}=\operatorname{Tail}(p)\right)
\end{aligned}
$$

These four action definitions, and the observation that Init ${ }^{p}$ should equal Init $\wedge(p=\langle \rangle)$ give us all the pieces of the definition of IPOFifo ${ }^{p}$. I won't bother to put them together.

### 6.5.3.2 The History Variable qBar

We now must decide how to define queueBar, the state expression that is substituted for queue in the refinement mapping. It's easiest to think of defining queueBar as the sequence not of the data values to be substituted for the variable queue of IFifo, but of the sequence of datums being dequeued from elts by POFifo. We can then define the refinement mapping so it substitutes for the variable queue of IFifo the sequence of data values in the datums of queueBar.

Since there are no Do... steps in IPOFifo, we will have to add stuttering steps to append datums to queueBar. To do that, we will first add to IPOFifo ${ }^{p}$ a history variable $q B a r$ to produce a program we'll call IPOFifo $^{p q}$. The value of qBar will be the sequence of datums that will appear in queueBar. However, datums will be appended to qBar by Begin... and End... steps, so stuttering steps will then have to be added to IPOFifo ${ }^{p q}$ that append the datums in qBar one at a time to queueBar, since IFifo appends data values to queue one at a time. How those stuttering steps are added is explained in Section 6.5.3.3.

We will see that a single BeginPOEnq ${ }^{p q}$ step may append multiple datums to $q B a r$, so letting IPOFifo have Do ... steps wouldn't have eliminated the need to add stuttering steps. The following definition of the history variable $q B a r$ is subtle. To help you understand it, I suggest you check how the definition works on the first few steps of several different behaviors of IPOFifo ${ }^{p}$.

Suppose that program BeginPOEnq ${ }^{p}$ is in a state in which it's possible for a dequeue operation to remove a datum from elts. For qBar to describe the datums that are in queueBar, the datum removed by that dequeue operation must be in $q B a r$. An EndPODeq ${ }^{p}$ step can remove only the datum $p(1)$ from elts, and it can remove $p(1)$ iff $p(1)$ is a minimal element for the relation $\prec$ of elts. Therefore, $p(1)$ must be the first element of $q B a r$ iff $p(1)$ is a minimal element of elts. If $p(1)$ can be dequeued, then $p(2)$ can be dequeued after it iff $p(2)$ is a minimal element of elts $\backslash\{p(1)\}$. And so on.

Define the state predicate $p g$ to be the longest prefix of $p$ all of whose datums can be dequeued from elts if no further datums are enqueued in elts. It follows from the definition of IPOFifo $^{p}$ that $p g$ equals the longest prefix of $p$ satisfying the following conditions:

Q1. Every datum in $p g$ is in elts.
Q2. No datum appears twice in $p g$.

Q3. For each $i \in 1 \ldots \operatorname{Len}(p g)$ and each datum $u \in$ elts, if $u \prec p g(i)$ then $u=p g(j)$ for some $j \in 1 \ldots(i-1)$.

We have shown that $p g$ must be a prefix of $q B a r$. Our strategy for defining IPOFifo ${ }^{p q}$ by adding the history variable qBar to IPOFifo $^{p}$ is to keep $q$ Bar equal to $p g$ for as long as possible. To see how to do that, let's see how $p g$ can change.

The sequence $p g$ can become shorter only when an $E n d P O D e q^{p}$ step occurs, in which case $p$ is not the empty sequence and $p g$ is a nonempty prefix of $p$. The step removes the first element of $p$ and $p g$, so $p^{\prime}=\operatorname{Tail}(p)$, $p g^{\prime}=\operatorname{Tail}(p g)$, and $q B a r^{\prime}=\operatorname{Tail}(q B a r)$.

The sequence $p g$ can be made longer by a $\operatorname{BeginPOEnq}{ }^{p}$ step as follows. Suppose the step appends the prediction $u$ to $p$ and adds the datum $w$ to elts. The value of $p g$ at the beginning of the step is a proper prefix of $p \circ\langle u\rangle$. If $w$ equals the prediction in $p \circ\langle u\rangle$ immediately after $p g$, then $w$ will be appended to $p g$ iff doing so would not violate Q3. (We'll see in a moment when it would violate Q3.) If $w$ can be appended to $p g$ and the prediction following $w$ in $p$ is already in elts, then it might be possible to append that datum to $p g$ as well. And so on. Thus, it's possible for the BeginPOEnq ${ }^{p}$ step to append several datums to $p g$. If our strategy has been successful thus far and $q B a r=p g$ at the beginning of the step, then a BeginPOEnq ${ }^{p q}$ step implies $q B a r^{\prime}=p g^{\prime}$. This makes $q B a r$ a prefix of $q B a r^{\prime}$, as it should be because stuttering steps to be added after a BeginPOEnq ${ }^{p}$ step should change queueBar only by appending datums to it.

There is one situation in which it is impossible for any further datum to be appended to $p g$. One or more datums can be appended to $p g$ only by a BeginPOEnq ${ }^{p}$ that adds a datum $w$ to elts that can be appended to $p g$. However if there is a datum $u$ in elts that is neither in the sequence $p g$ nor in the set beingAdded, then adding $w$ to elts also adds the relation $u \prec w$. This relation means that $w$ can't be appended to $p g$ because that would violate condition Q3. Thus, if there is a datum $u$ in elts that is neither in $p g$ nor beingAdded, then no datums can be added to $p g$. Moreover, the datum $u$ can never be removed from elts because it is not in $p g$ and can never be in $p g$ because no more datums can be added to $p g$. (The datum $u$ can't be added to beingAdded because a BeginPOEnq step can't add a datum to elts that is already in elts.) Let's call a state in which there is a datum in elts that is not in beingAdded or pg a blocked state. In a blocked state, datums can be removed from the head of $p g$ by EndPODeq ${ }^{p}$ steps, but no new datums can be appended to $p g$. So, if and when enough EndPODeq ${ }^{p}$ steps have occurred to remove all the datums from $p g$, then no more EndPODeq ${ }^{p}$ steps
can occur. That means that any further enqueue operations that are begun with a BeginPODeq ${ }^{p}$ step must block, never able to complete.

Let's consider the first step that caused a blocked state - that is, causing there to be an element $u$ in elts that is neither in $p g$ nor beingAdded. Since $u$ was added to elts by a BeginPOEnq ${ }^{p}$ step that put $u$ in beingAdded, it must be the EndPOEnq ${ }^{p}$ step of the enqueue operation that added $u$ to elts that caused the blocked state by removing $u$ from beingAdded. Until that blocked state was reached, $q B a r$ equaled $p g$. However, since $u$ has not been dequeued, it must be in queueBar after that EndPOEnq ${ }^{p}$ step because that step must implement the EndEnq step of IFifo. Thus that EndPOEnq ${ }^{p}$ step must append $u$ to $q B a r$. Therefore, the first blocked state is the first state in which $q B a r \neq p g$. In that state, $q B a r$ equals $p g \circ\langle u\rangle$.

From that first blocked state on, no new datums can be added to $p g$, so the datum $u$ can never be dequeued. Therefore, whenever an EndPOEnq ${ }^{p}$ step occurs for an operation that enqueued a datum $w$, if $w$ is in elts (so it hasn't been dequeued) and is not in $p g$, then that EndPOEnq ${ }^{p}$ step must append $w$ to $q B a r$.

To recapitulate, here is how we add the history variable qBar to IPOFifo $^{p}$ to obtain the program IPOFifo ${ }^{p q}$. These rules imply that, at any point in the behavior, $q$ Bar will equal $p g \circ e b$ where $p g$ is the state function of $I P O F i f o^{p}$ defined above and $e b$ is a sequence of datums in elts that are not in $p g$. Initially, $p g$ and $e b$ equal $\rangle$.

- An EndPODeq ${ }^{p}$ step can occur only if $p g \neq\langle \rangle$. Such a step satisfies $p g^{\prime}=\operatorname{Tail}(p g)$ and $q B a r^{\prime}=\operatorname{Tail}(q B a r)$.
- An EndPOEnq ${ }^{p}$ step that removes from beingAdded a datum $w$ that is in elts but not in $p g$ appends $w$ to $e b$ and hence to qBar.
- A BeginPOEnq ${ }^{p}$ step that occurs when $e b=\langle \rangle($ so $q B a r=p g)$ sets $q B a r^{\prime}$ equal to $p q^{\prime}$.

These rules imply that a datum can never be removed from $e b$, so once $e b$ is nonempty no new datums can be added to $p g$ and only datums currently in $p g$ can ever be dequeued.

Observe that the sequence $p g$ and the set of datums in $e b$ can be defined in terms of the variables of IPOFifo ${ }^{p}$. A history variable is needed only to remember the order in which datums have been appended to $e b$. This suggests that it's a little simpler to make $e b$ the history variable and define $q b a r$ to be the state expression $p g \circ e b$. However, I could not have discovered this without first understanding how $q B a r$ should be defined.

Writing a complete definition of IPOFifo ${ }^{p q}$ is straightforward, once we have solved the problem of writing a precise mathematical definition of the state function qBar in terms of the variables of IPOFifo $^{p}$. (It took me a few tries to get that definition right, using a model checker to find my mistakes.) That definition is omitted.

### 6.5.3.3 Stuttering and the Refinement Mapping

Having defined $q$ Bar for IPOFifo $^{p q}$, adding a stuttering variable $s$ and defining the refinement mapping under which the resulting program IPOFifo $^{p q s}$ implements IFifo are comparatively straightforward. First, $s$ has to add stuttering steps that allow us to define queueBar. Recall that $q B a r$ is defined so it is changed by interface actions (the only ones that IPOFifo ${ }^{p q}$ has) the way internal Do... actions of IFifo change the value of the internal variable queue of IFifo. Since queueBar should implement queue under the refinement mapping (except that queueBar contains datums not just the data values), it needs to be changed by stuttering steps added to IPOFifo ${ }^{p q}$. We define the program IPOFifo ${ }^{\text {pqs }}$ by adding a stuttering variable $s$ that adds steps in the following three cases. We define queueBar to be the state expression that equals $q B a r$ except as noted below.

1. $s$ adds a single stuttering step before each EndPODeq ${ }^{p q}$ step. The value of queueBar equals Tail( $q B a r$ ) immediately after that stuttering step.
2. $s$ adds a stuttering step before each EndPOEnq ${ }^{p q}$ step that appends an element $w$ to $e b$ (and hence to $q B a r$ ). Immediately after that stuttering step, queueBar equals $q B a r \circ\langle w\rangle$.
3. Following each BeginPOEnq ${ }^{p q}$ step such that $\operatorname{Len}\left(p g^{\prime}\right)>\operatorname{Len}(p g)$ (which implies $e b=\langle \rangle$ ), $s$ adds $\operatorname{Len}\left(p g^{\prime}\right)-\operatorname{Len}(p g)$ stuttering steps. While there are $k$ more of those stuttering steps left to be executed, queueBar equals the sequence obtained by removing the last $k$ elements of qBar.

Encoding in the value of the stuttering variable $s$ for which of the three cases the variable is being added, and in case 2 for which enqueuer $e$ the step is an $E n d P O E n q q^{p q}(e)$ step, allows the value of queueBar to be defined in terms of the values of $s, q B a r$, and (for case 2) adding.

We still have to define the state functions enqInnerBar and deqInnerBar that are substituted for enqInner and deqInner in the refinement mapping under which IPOFifo ${ }^{p q s}$ implements IFifo. The value of enqInnerBar $(e)$ for
an enqueuer $e$ should equal Done except when $\operatorname{adding}(e)$ equals the datum that $e$ is enqueueing, and that datum is not yet in queueBar. This means that enqInnerBar can be defined in terms of adding and queueBar.

The value of deqInnerBar $(d)$ for a dequeuer $d$ should equal the value of $\operatorname{deq}(d)$ except between when $d$ has removed the first element of queueBar (by executing the stuttering step added in case 1) and before the subsequent EndPODeq ${ }^{p q s}(d)$ step has occurred. In that case, $\operatorname{deq}(d)$ should equal $q \operatorname{Bar}(1)$. It's therefore easy to define deqInnerBar as a state function of IPOFifo ${ }^{p q s}$ if the value of the stuttering variable $s$ added in case 1 contains the value of $d$ for which the following $\operatorname{EndPODeq}{ }^{p q s}(d)$ step is to be performed.

This completes the sketch of how auxiliary variables are added to IPOFifo to define a refinement mapping under which it implies IFifo, showing that POFifo refines Fifo. The intellectually challenging part was discovering how to define $q B a r$. It took me quite a bit of thinking to find the definition. This was not surprising. The example of the FIFO had been studied for at least 15 years before Herlihy and Wing discovered that it could be implemented without maintaining a totally ordered queue. Given the definition of $q B a r$, constructing the refinement mapping required the ability to write abstract programs mathematically -an ability that comes with practice.

### 6.6 Prophecy Constants

We have seen examples of showing $\models T \Rightarrow S$, where $S$ equals $\exists \ldots: I S$, by adding an auxiliary variable $a$ to $T$ and showing $T^{a}$ implies $I S$ under a refinement mapping. In these examples, $I S$ and $S$ were safety properties. Liveness was shown by showing that $T^{a}$ conjoined with the lower-level program's liveness property implies the higher-level program's liveness property.

Let's return to an example we considered in Section 6.1.3. Define $I S$ and $T$ to be the two formulas defined in (6.7) in (6.8):

$$
\begin{aligned}
I S \triangleq & \wedge(x=0) \wedge(y \in \mathbb{N}) \\
& \wedge \square\left[(y>0) \wedge\left(x^{\prime}=x+1\right) \wedge\left(y^{\prime}=y-1\right)\right]_{\langle x, y\rangle} \\
T \triangleq & (x=0) \wedge \square\left[x^{\prime}=x+1\right]_{x} \wedge \diamond \square\left[x^{\prime}=x\right]_{x}
\end{aligned}
$$

and let $S$ equal $\exists y: I S$. We observed that formulas $S$ and $T$ are equivalent, so $=T \Rightarrow S$ is true. To define a refinement mapping under which $T$ implies $I S$, we have to add one or more auxiliary variables to $T$ to obtain an expression to substitute for $y$.

The liveness property $\diamond \square\left[x^{\prime}=x\right]_{x}$ implies that a behavior of $T$ eventually stops incrementing $x$ and terminates. To define the refinement mapping, we need a variable that can predict the value of $x$ when the behavior terminates. So, we need a prophecy variable.

Because we have to predict something that is implied by a liveness property, it appears that the only kind of prophecy variable that will work is one that predicts the entire future - namely an infinite prophecy variable that predicts all the future values of $x$. This means adding auxiliary variables, including a prophecy variable, the way it is done in the completeness proof of Section 6.4.4. This is disturbingly complicated for such a simple example.

Fortunately, there is a simple way to construct the refinement mapping under which $T$ implies $I S$ without using a prophecy variable. We first observe that $T$ implies that eventually $x$ is forever equal to some natural number-more precisely:

$$
\begin{equation*}
\vDash T \Rightarrow \exists n \in \mathbb{N}: \diamond \square(x=n) \tag{6.17}
\end{equation*}
$$

This implies:

$$
\models T \equiv \exists n \in \mathbb{N}: T \wedge \diamond \square(x=n)
$$

For any formulas $F$ and $G$ and constants $c$ and $C$, to prove $(\exists c \in C: F) \Rightarrow G$ it suffices to prove $(c \in C) \wedge F \Rightarrow G$. Therefore, to prove $T \Rightarrow I S$, it suffices to prove

$$
\begin{equation*}
\models(n \in \mathbb{N}) \wedge \diamond \square(x=n) \wedge T \Rightarrow I S \tag{6.18}
\end{equation*}
$$

We can do this by adding the history variable $h$ as follows to obtain $T^{h}$ :

$$
\begin{aligned}
T^{h} \triangleq & \wedge(n \in \mathbb{N}) \wedge(x=0) \wedge(h=n) \\
& \wedge \square\left[\left(x^{\prime}=x+1\right) \wedge\left(h^{\prime}=h-1\right)\right]_{\langle x, h\rangle} \\
& \wedge \diamond \square\left[x^{\prime}=x\right]_{x} \wedge \diamond \square(x=n)
\end{aligned}
$$

We can then use the refinement mapping that substitutes $h$ for $y$, and we show:

$$
\models T^{h} \Rightarrow(I S \text { with } y \leftarrow h)
$$

The key step in what we've done is the use of (6.17) to reduce showing $\vDash T \Rightarrow I S$ to showing (6.18). This procedure is called adding the prophecy constant $n$ to $T$. This is perhaps a silly name, since $n$ is just an ordinary bound constant. However, it serves to predict something that is eventually going to happen - in this case, the final value $x$ will have.

In general, we add a prophecy constant $c$ to a program $T$ by showing $\vDash T \Rightarrow \exists c \in C: L$, where the constant $c$ does not occur in $T$, which implies

$$
\vDash T \equiv \exists c \in C: T \wedge L
$$

and showing $\models T \Rightarrow I S$ by showing

$$
\vDash(c \in C) \wedge T \wedge L \Rightarrow I C
$$

It can be shown that prophecy constants are in principle as powerful as prophecy variables. In particular, Theorem 6.6 of Section 6.4.4 is true with the prophecy variable replaced by a prophecy constant. This is proved by modifying the proof of Theorem 6.6 as described in Appendix Section B.12, after the proof of that theorem.

Although in theory equivalent, prophecy variables and prophecy constants are quite different in practice. It appears that a prophecy variable is best for predicting what a safety property implies may happen, while a prophecy constant is best for predicting what a liveness property implies must eventually happen.

Prophecy constants were introduced by Wim Hesselink, who called them "eternity variables" [19]. He did not represent programs mathematically, so he had to invent a rule for adding them to programs.

## Chapter 7

## Loose Ends

This chapter covers two topics that, to my knowledge, have not yet seen any industrial application. However, they might in the future become useful. The first topic is reduction, which is about verifying that a program satisfies a property by verifying that a coarser-grained version of the program satisfies it. Even if you never use it, understanding the principles behind reduction can help you choose the appropriate grain of atomicity for abstract programs. For that purpose, skimming through sections 7.1.1-7.1.3 should suffice.

The second topic is about representing a program as the composition of component programs. We have been representing the components that make up a program, such as the individual processes in a multiprocess program, as disjuncts of the next-state action. Section 7.2 explains how the components that form a program can be described as programs. How this is done depends on why it is done. Two reasons for doing it and the methods they lead to are presented.

### 7.1 Reduction

### 7.1.1 Introduction

### 7.1.1.1 What Reduction Is

When writing an abstract program to describe some aspect of a concrete one, we must decide what constitutes a single step of a behavior. Stated another way, we must describe what the grain of atomicity of the next-state action should be. The only advice provided thus far is that we should use the coarsest grain of atomicity (the fewest steps) that is a sufficiently accurate representation of that aspect of the concrete program. "Sufficiently
accurate" means that either we believe it is easy to make the concrete program implement that grain of atomicity, or we are deferring the problem of how those atomic actions are implemented.

Some work has addressed the problem of formalizing what makes an abstract program "sufficiently accurate", starting with a 1975 paper by Richard Lipton [40]. This work used the approach called reduction, which replaces a program $S$ with an "equivalent" coarser-grained program $S^{R}$ called the reduced version of $S$. Certain properties of $S$ are verified by showing that $S^{R}$ satisfies them. The program $S^{R}$ is obtained from $S$ by replacing certain nonatomic operations with atomic actions, each atomic action producing the same effect as executing all the steps of the nonatomic operation it replaces one after another, with no intervening steps of other operations. The reduced program $S^{R}$ is therefore simpler and easier to reason about than program $S$.

It was never clear in exactly what sense $S^{R}$ was equivalent to $S$, and the results were restricted to particular classes of programs and of the properties that could be verified. TLA enabled a new way of viewing reduction. In that view, the variables of $S$ are replaced in $S^{R}$ by "virtual" variables, and $S$ implements $S^{R}$ under a refinement mapping. The refinement mapping is not made explicit, but the relation between the values of the actual and the virtual variables is described by an invariant. This mathematical view encompasses much of the previous work on reduction for concurrent programs.

Our basic approach to writing a correct concrete program is showing that it refines an abstract program. There are two aspects to refining one program with another: data refinement and step refinement. Modern coding languages have made data refinement easier by providing higher-level, more abstract data structures. It is now almost as easy to write a program that manipulates integers as one that manipulates bit strings representing a finite set of integers. There has been much less progress in making step refinement easier. As explained in Section 6.5.1, a linearizable object allows a coarse grain of atomicity in descriptions of the code that executes operations on the object. However, the only general method of implementing a linearizable object still seems to be the one invented by Dijkstra in the 1960s: putting the code that reads and/or modifies the state of the object in a critical section.

I believe that better ways of describing the grain of atomicity will be needed if rigorous verification that concrete concurrent programs implement abstract ones is to become common practice. Reduction may provide the key to doing this. Section 7.1 provides a mathematical foundation for under-
standing reduction. The theorems presented here are not the most general ones possible; some generalizations can be found elsewhere [8]. Also omitted are rigorous proofs. I know of no industrial use of reduction or of tools to support it; and I have no experience using the results described here in practice. The problem it addresses is real, but I don't know if reduction is the solution.

### 7.1.1.2 The TLA Approach

Here is how reduction can be described in TLA. Let $\mathbf{x}$ be the variables $x_{1}$, $\ldots, x_{n}$ of $S$. Reduction is usually described by letting $\mathbf{x}$ also be the variables of $S^{R}$. However, I find that reduction is easier to understand by letting the variables of $S^{R}$ be different from those of $S$. We will let those variables be the list $\mathbf{X}$ of variables $X_{1}, \ldots, X_{n}$. The goal is then to verify that $S$ satisfies a property $P$ by verifying that $S^{R}$ satisfies the property $P$ with $\mathbf{x} \leftarrow \mathbf{X}$.

To deduce $\vDash S \Rightarrow P$, where $S$ and $P$ contain the variables $\mathbf{x}$, from $\vDash S^{R} \Rightarrow(P$ with $\mathbf{x} \leftarrow \mathbf{X})$, we need a relation between the variables $\mathbf{x}$ and the variables $\mathbf{X}$. That relation is expressed by a state predicate $I^{R}$ containing the variables $\mathbf{x}$ and $\mathbf{X}$. We then deduce that $S$ satisfies $P$ from the following three conditions. The formula $T$ will be explained later; ignore it for the moment.

$$
\begin{aligned}
& \text { R1. } \models S \wedge T \Rightarrow \exists \mathbf{X}: S^{R} \wedge \square I^{R} \\
& \text { R2. } \models S^{R} \Rightarrow(P \text { with } \mathbf{x} \leftarrow \mathbf{X}) \\
& \text { R3. } \models(P \text { with } \mathbf{x} \leftarrow \mathbf{X}) \wedge \square I^{R} \Rightarrow P
\end{aligned}
$$

Condition R1 is implied by theorems whose hypotheses are the conditions necessary for reduction to be possible. Condition R2 asserts that $P$ with its variables $\mathbf{x}$ replaced by $\mathbf{X}$ is satisfied by the reduced program $S^{R}$, which should be easier to verify than that $P$ is satisfied by the finer-grained program $S$.

Throughout this section on reduction, we abbreviate $F$ with $\mathbf{x} \leftarrow \mathbf{X}$ as $\bar{F}$, for any formula $F$. Thus R2 and R3 can be written as

$$
\models S^{R} \Rightarrow \bar{P} \quad \text { and } \quad \models \bar{P} \wedge \square I^{R} \Rightarrow P
$$

We first consider the case in which $S$ is the usual TLA safety property Init $\wedge \square[N e x t]_{\langle\mathbf{x}\rangle}$ for an abstract program. We then consider the program described by $S \wedge F$, where $F$ is the conjunction of fairness properties for $S$. Conditions R1-R3 will then have $S$ replaced by $S \wedge F$, the reduced program $(S \wedge F)^{R}$ being defined to equal $S^{R} \wedge F^{R}$ where $F^{R}$ is obtained by replacing
each fairness condition for an action $A$ of $S$ with fairness of a corresponding action $A^{R}$ of $S^{R}$.

The formula $T$ in the hypothesis of R 1 is a liveness assumption that will be defined below. It turns out that even when $S$ is a safety property, so $S^{R}$ is also safety property, R1 requires a liveness assumption about $S$. For a program with a fairness property $F$, we expect $S \wedge F$ to imply $T$. If the program describes only safety, then it can satisfy only safety properties, so it would be strange if we required $S$ to satisfy a liveness property to use reduction. We will see that, to show $S$ satisfies a safety property $P$, showing that $S$ satisfies a possibility condition allows us to assume that $T$ is satisfied.

To prove the theorem that asserts R1, we construct an abstract program $S \otimes S^{R}$, with variables $\mathbf{x}$ and $\mathbf{X}$, that describes the programs $S$ and $S^{R}$ running simultaneously in parallel. ( $S \otimes S^{R}$ is just an identifier that names a formula, not an expression with formulas $S$ and $S^{R}$ and an operator $\otimes$. This unusual identifier is meant to remind us what the formula means.) We then show:

R1a. $\models S \Rightarrow \boldsymbol{\exists} \mathbf{X}: S \otimes S^{R}$
R1b. $\models S \otimes S^{R} \wedge T \Rightarrow S^{R} \wedge \square I^{R}$
R1b implies $\models\left(\boldsymbol{\exists} \mathbf{X}: S \otimes S^{R} \wedge T\right) \Rightarrow\left(\exists \mathbf{X}: S^{R} \wedge \square I^{R}\right)$; and the variables X don't appear in $T$, so $\boldsymbol{\exists} \mathbf{X}: S \otimes S^{R} \wedge T$ equals $\left(\exists \mathbf{X}: S \otimes S^{R}\right) \wedge T$. Therefore, R1a and R1b imply R1.

One property asserted by $I^{R}$ is that, if the values of $\mathbf{x}$ describe a state in which none of the nonatomic operations of $S$ being reduced is currently being executed, then $\mathbf{x}=\mathbf{X}$. The values of $\mathbf{x}$ and $\mathbf{X}$ are synchronized like this, despite the reduced program taking fewer steps than the original program, by having $S \otimes S^{R}$ take $\mathbf{X}$-stuttering steps-steps that leave the values of the variables $\mathbf{X}$ unchanged. R1b is satisfied because these $\mathbf{X}$-stuttering steps implement stuttering steps of $S^{R}$. R3 was satisfied in Lipton's original paper because he considered terminating programs and properties $P$ that depend only on the initial and final states of the program. In those states, none of the nonatomic operations of $S$ being reduced are being executed, so $\mathbf{x}=\mathbf{X}$. In what may have been the second paper published on reduction, Doeppner [10] satisfied R3 by proving only that an invariant is true when none of the reduced operations are being executed.

### 7.1.2 An Example

To explain reduction, we start by examining this commonly assumed rule: When reasoning about a multiprocess program in which interprocess com-


Figure 7.1: The nonatomic operation $R C L$.
munication is performed by atomic operations to shared data objects, the program can be represented with any grain of atomicity in which each atomic action accesses at most one shared data object. ${ }^{1}$ The following is a statement of the rule in our science and the argument generally used to justify it.

Suppose $S$ is a multiprocess program with a process that executes a nonatomic operation, which we call $R C L$, described by the statements shown in Figure 7.1. We assume this is "straight line" code, so an execution of $R C L$ consists of $k+1+m$ steps. For now, we let $S$ be the safety property described by the code; liveness is discussed later. We assume statements $\mathrm{R}_{i}$ and $\mathrm{L}_{j}$ can access only data local to the process, while statement $C$ can also access shared data. The rule asserts that we can replace $S$ with its reduced version $S^{R}$ obtained by removing all the labels between (but not including) $r_{1}$ and $o$, so those $k+1+m$ statements are executed as a single step, and replacing the variables $\mathbf{x}$ with the variables $\mathbf{X}$. It is usually claimed that we can do this because other processes can't observe when the statements $\mathrm{R}_{i}$ and $\mathrm{L}_{j}$ are executed, so we can pretend that they are executed in the same step as statement C.

We can reduce other operations of the same form to atomic actions as well, reducing the operations one at a time. So, it suffices to see how it's done for just this single operation $R C L$, which may be executed multiple times.

[^29]
### 7.1.2.1 The Reduced Behaviors

Let $R_{i}, C$, and $L_{j}$ be the TLA actions described by statements $\mathrm{R}_{i}, \mathrm{C}$, and $\mathrm{L}_{j}$. An execution of $R C L$ consists of a sequence of $R_{i}$ steps, for $i \in 1 \ldots k$, followed by a $C$ step, followed by a sequence of $L_{j}$ steps, for $j \in 1 \ldots m$. In an execution of the operation during a behavior of the program, interleaved between those steps may be steps performed by other processes. (There can also be stuttering steps that leave the values of variables $\mathbf{x}$ unchanged, but they are irrelevant and we can ignore them.) A reduced execution of the operation execution is one in which all the steps of $R C L$ occur one after the other, with no interleaved steps executed by other processes.

We transform a behavior to a reduced behavior, in which only reduced executions of $R C L$ occur, by a procedure illustrated with the following portion of a behavior containing an execution of $R C L$, where $R C L$ has one $R_{i}$ statement $(k=1)$ and two $L_{j}$ statements $(m=2)$. We show the name of the action that each step satisfies, where $E_{1}, E_{2}$, and $E_{3}$ are actions of other processes.

$$
\begin{equation*}
\cdots s_{41} \xrightarrow{R_{1}} s_{42} \xrightarrow{E_{1}} s_{43} \xrightarrow{C} s_{44} \xrightarrow{E_{2}} s_{45} \xrightarrow{E_{3}} s_{46} \xrightarrow{L_{1}} s_{47} \xrightarrow{L_{2}} s_{48} \cdots \tag{7.1}
\end{equation*}
$$

Define $\mathcal{R}$ to be the state predicate that is true of a state iff that state occurs during an execution of $R C L$ before the $C$ action. In the part of a behavior shown in (7.1), $\mathcal{R}$ is true only in states $s_{42}$ and $s_{43}$. Define $\mathcal{L}$ to be the state predicate asserting that the process is currently executing operation $R C L$ after the $C$ action, so in (7.1) it is true in states $s_{44}-s_{47}$. In general, if $p$ is the process executing $R C L$ of Figure 7.1, then $\mathcal{R}$ equals $p c(p) \in\left\{r 2, \ldots, r_{k}, c\right\}$ and $\mathcal{L}$ equals $p c(p) \in\left\{l_{1}, \ldots, l_{m}\right\}$. The behavior is currently executing $R C L$ iff the state predicate $\mathcal{R} \vee \mathcal{L}$ is true. Thus, the operation is not being executed iff $\neg(\mathcal{R} \vee \mathcal{L})$ is true.

Because $R_{i}$ and $L_{j}$ actions access only process-local state, they commute with actions from other processes, where two actions commute iff executing them in either order has the same effect. Recall that $A \cdot B$ is defined in Section 3.4.1.4 to be the action that is satisfied by a step $s \rightarrow t$ iff there is a state $u$ such that $s \rightarrow u$ is an $A$ step and $u \rightarrow t$ is a $B$ step. Actions $A$ and $B$ commute iff $A \cdot B$ equals $B \cdot A$. If $A$ and $B$ commute, then for any states $s, t$, and $u$ such that $s \xrightarrow{A} u \xrightarrow{B} t$, there exists a state $v$ such that $s \xrightarrow{B} v \xrightarrow{A} t$. By commuting $R_{i}$ and $L_{j}$ actions with actions of other processes, moving $R_{i}$ actions to the right and $L_{j}$ actions to the left, we obtain a behavior in which every execution of $R C L$ is reduced, with no steps of other processes interleaved. For example, commuting actions in this way
converts the original behavior into the reduced behavior in which the portion of the original behavior shown in (7.1) is converted to:

$$
\begin{equation*}
\cdots s_{41} \xrightarrow{E_{1}} u_{42} \xrightarrow{R_{1}} s_{43} \xrightarrow{C} s_{44} \xrightarrow{L_{1}} u_{45} \xrightarrow{L_{2}} u_{46} \xrightarrow{E_{2}} u_{47} \xrightarrow{E_{3}} s_{48} \cdots \tag{7.2}
\end{equation*}
$$

A state $s_{i}$ is changed to a possibly different state $u_{i}$ if commutativity was used to commute actions $A$ and $B$ in $\cdots \xrightarrow{A} s_{i} \xrightarrow{B} \cdots$. For example, state $s_{46}$ had to be (possibly) changed twice to arrive at $u_{46}$ because both the $E_{2}$ and $E_{3}$ actions had to be "moved across" state number 46 of the behavior to get from (7.1) to (7.2). If $\sigma$ is the original behavior (7.1), we define $\Phi(\sigma)$ to be its reduced version (7.2), obtained by transforming all executions of $R C L$ in this way.

Note that the states $s_{41}$ and $s_{48}$ are the same in $\sigma$ and $\Phi(\sigma)$ because $R C L$ is not being executed in those states. States $s_{43}$ and $s_{44}$, which form the $C$ step, are also the same in the original and reduced behaviors because the $C$ action is not commuted with any action. The reduced behavior (7.2) is also a behavior of program $S$ because it has the same initial state as (7.1), which satisfies Init, and every step satisfies a subaction of the next-state action Next.

### 7.1.2.2 The Program $S \otimes S^{R}$

We define $S \otimes S^{R}$ in terms of a mapping $\phi$ from states in the original behavior $\sigma$ to states in the reduced behavior $\Phi(\sigma)$-in our example, from states of (7.1) to states of (7.2). First, we define $\phi(s)$ for all states except the ones in a $C$ step, which in (7.1) are all states except for $s_{43}$ and $s_{44}$. We call those two states " $C$ states" and the other states "non- $C$ states".

We transform a behavior containing executions of $R C L$ to a reduced behavior by a sequence of action interchanges based on commutativity. There are two kinds of interchange, both involving an $E_{h}$ action of a different process: one that moves an $R_{i}$ step to the right of an $E_{h}$ step, and one that moves an $L_{j}$ step to the left of an $E_{h}$ step. To go from behavior (7.1) to behavior (7.2) requires five interchanges. Figure 7.2 shows the sequence of behaviors created by performing these interchanges, where each behavior is obtained from the preceding one by interchanging the left-most $R_{i}$ or $L_{j}$ action that can be moved closer to the $C$ action. The top behavior is the original behavior (7.1) and the bottom one is the reduced behavior (7.2). Observe that every state in one behavior equals the corresponding state in the next behavior except for the one state across which the actions are interchanged.


Figure 7.2: Constructing (7.2) from (7.1).

The arrows in the picture are drawn according to the following rules. There is a (thin) downward pointing arrow from each non- $C$ state that is unchanged by the interchange that yields the next behavior. From the one state in each behavior that is changed by the interchange, there is a (thick) diagonal arrow. If that state satisfies $\mathcal{R}$ (is before the $C$ action), then the arrow points one state to the left of the changed state. If the state satisfies $\mathcal{L}$, then the arrow points one state to the right.

These arrows define a unique path from every non- $C$ state $s_{i}$ of the original behavior to a state in the reduced behavior. Define $\phi\left(s_{i}\right)$ to be that state in the reduced behavior. For the example in Figure 7.2, $\phi\left(s_{45}\right)=u_{47}$ because the sequence of states in the path from $s_{45}$ in the top behavior to the bottom behavior is:

$$
\begin{equation*}
s_{45} \rightarrow s_{45} \rightarrow s_{45} \rightarrow r_{46} \rightarrow r_{46} \rightarrow u_{47} \tag{7.3}
\end{equation*}
$$

Figure 7.3 contains an arrow pointing from each non- $C$ state $s_{i}$ in the original behavior to the state $\phi\left(s_{i}\right)$ in the reduced behavior. Observe that for every non- $C$ state $s_{i}$, the state $\phi\left(s_{i}\right)$ is a state in which operation $R C L$ is not being executed-that is, a state satisfying $\neg(\mathcal{R} \vee \mathcal{L})$.

We define $\phi(s)$ for the $C$ states so that if the $C$ step is $s_{i} \xrightarrow{C} s_{i+1}$, then $\phi\left(s_{i}\right)$ is the first state to the left of $s_{i}$ for which $\neg(\mathcal{R} \vee \mathcal{L})$ is true, and $\phi\left(s_{i+1}\right)$ is the first state to the right of $s_{i+1}$ for which $\neg(\mathcal{R} \vee \mathcal{L})$ is true. In other words, $\phi\left(s_{i}\right)$ and $\phi\left(s_{i+1}\right)$ are the states of the reduced behavior in which the execution of $R C L$ begins and ends, respectively. The complete mapping $\phi$


Figure 7.3: The mapping $s_{i} \rightarrow \phi\left(s_{i}\right)$ for non- $C$ states.


Figure 7.4: The complete mapping $s_{i} \rightarrow \phi\left(s_{i}\right)$.
for our example is shown in Figure 7.4, where the mapping for non- $C$ states is in gray.

Formula $S \otimes S^{R}$ is defined so that it is satisfied by a behavior $\sigma$ iff $\sigma$ satisfies $S$ (which describes the values of variables $\mathbf{x}$ ) and the values of the variables $\mathbf{X}$ in any state $s_{k}$ of $\sigma$ equal the values of the variables $\mathbf{x}$ in the state $\phi\left(s_{k}\right)$ of the reduced behavior $\Phi(\sigma)$. Since this assigns values of variables X to every state of every behavior $\sigma$ so that the behavior satisfies $S \otimes S^{R}$, we see that $\models S \Rightarrow \exists \mathbf{X}: S \otimes S^{R}$ is true, so R1a is satisfied.

From Figure 7.4, we see that for any $k$ :
$\phi 1$. If $s_{k} \rightarrow s_{k+1}$ is an $E_{h}$ step (so $E_{h}$ is an action of another process) then $\phi\left(s_{k}\right) \rightarrow \phi\left(s_{k+1}\right)$ is also an $E_{h}$ step.
$\phi 2$. If $s_{k} \rightarrow s_{k+1}$ is an $R_{i}$ or $L_{j}$ step, then $\phi\left(s_{k}\right)=\phi\left(s_{k+1}\right)$.
$\phi 3$. If $s_{k} \rightarrow s_{k+1}$ is a $C$ step, then $\phi\left(s_{k}\right)$ and $\phi\left(s_{k+1}\right)$ are the first and last states of an execution of operation $R C L$ in the reduced behavior $\Phi(\sigma)$, which is an execution with no interleaved steps of other process actions.

Recall that $\bar{G}$ equals $G$ with $\mathbf{x} \leftarrow \mathbf{X}$ for any formula $G$. A step of $S^{R}$ is either an $\overline{E_{h}}$ step, a $\bar{D}$ step, where $D$ is an action that performs an execution of operation $R C L$ as a single step, or a stuttering step that leaves the variables $\mathbf{X}$ unchanged. From $\phi 1-\phi 3$, we see that if behavior (7.1) satisfies $S \otimes S^{R}$ (as well as $S$ ), then each step of that behavior is either an $\overline{E_{h}}$ step (by $\phi 1$ ), a $\bar{D}$ step (by $\phi 3$ ) or leaves the variables $\mathbf{X}$ unchanged (by $\phi 2$ ). Hence each step of $S \otimes S^{R}$ satisfies the next-state action of $S^{R}$.

The initial-state predicate of $S^{R}$ is $\overline{\text { Init }}$ (remember that Init is the initialstate predicate of $S$ ). Since operation $R C L$ is not being executed in the
initial state $s_{0}$ of (7.1), $\phi\left(s_{0}\right)$ equals $s_{0}$, which implies that $s_{0}$ satisfies $\overline{\text { Init. }}$ Thus, if (7.1) satisfies $S \otimes S^{R}$, then it satisfies $S^{R}$. Therefore, $S \otimes S^{R} \Rightarrow S^{R}$ is satisfied-or so it seems.

The reasoning works in this example because the behavior (7.1) contains a complete execution of operation $R C L$. However, $S$ is a safety property, which means that the process can stop executing actions at any point during the execution of the operation. The general definition of the reduced version of a behavior, which includes a possibly incomplete execution of $R C L$, is that actions performing steps of an $R C L$ execution are made to occur together by commuting $R_{i}$ actions to the right, $L_{j}$ actions to the left, and leaving a $C$ action unmoved. (If there is no $C$ step, then the last $R_{i}$ action can be left unmoved.) If $s$ is the last state of a $C$ step, $\phi(s)$ is defined to be the state after the last step of the $R C L$ operation being executed. That state will satisfy $\neg(\mathcal{R} \vee \mathcal{L})$ iff the behavior contains a complete execution of the operation.

The one part of what we've done that's not correct in the presence of a partial execution is $\phi 3$. Statement $\phi 3$ is vacuously true if the partial execution doesn't contain a $C$ step. In that case there are only $R_{i}$ steps which correspond to stuttering steps of $S^{R}$, so the behavior of $S \otimes S^{R}$ is a behavior of $S^{R}$ in which that $R C L$ action doesn't occur. The problem in $\phi 3$ arises in our example if the execution contains a $C$ step but doesn't contain both the $L_{1}$ and $L_{2}$ steps.

The solution is to rule out such behaviors. That's what the hypothesis $T$ in R1 and R1b does. Formula $T$ must assert that any execution of $R C L$ that includes the $C$ step must complete. The operation has performed the $C$ step but has not completed iff $\mathcal{L}$ is true. So we want to allow only behaviors in which it is not the case that $\mathcal{L}$ eventually becomes true and remains true forever. Such behaviors are ones satisfying $\neg \diamond \square \mathcal{L}$, which is equivalent to $\square \diamond \neg \mathcal{L}$. So, we can restate R1b as this assumption:

$$
\models S \otimes S^{R} \wedge(\square \diamond \neg \mathcal{L}) \Rightarrow S^{R} \wedge \square I^{R}
$$

The argument showing $S \otimes S^{R}$ implies $S^{R}$ for the behavior (7.1) applies to all behaviors of the program of Figure 7.1 satisfying $\square \diamond \neg \mathcal{L}$. That is, we have shown:

$$
\models S \otimes S^{R} \wedge(\square \diamond \neg \mathcal{L}) \Rightarrow S^{R}
$$

is satisfied by this program $S$. To complete the proof of R1b, we must define $I^{R}$ and show that it is an invariant of $S \otimes S^{R}$. Since we have seen that $S$ satisfies R1a, this will show that it satisfies R1 with $T$ equal to $\square \diamond \neg \mathcal{L}$. The assumption $\square \diamond \neg \mathcal{L}$ is discussed in Section 7.1.4.

### 7.1.2.3 The Invariant $I^{R}$

The invariant $I^{R}$ of $S \otimes S^{R}$ that relates the values of the variables $\mathbf{x}$ to those of the variables $\mathbf{X}$ follows from three additional properties of the mapping $\phi$. We can see why those properties hold from Figures 7.2-7.4.

The most obvious of these properties follows from the observation that if $\neg(\mathcal{R} \vee \mathcal{L})$ is true in a state $s$, then only downward pointing arrows are drawn from it in the figures. This shows:
$\phi 4$. For any state $s$ in which $\neg(\mathcal{R} \vee \mathcal{L})$ is true, $\phi(s)=s$.
For the next property, look at the path (7.3) from the state $s_{45}$ to the state $\phi\left(s_{45}\right)$, which equals $u_{47}$. Follow that path in Figure 7.2. Observe that each step in the path either leaves the state unchanged (is a stuttering step) or else is an $L_{1}$ or $L_{2}$ step. (To see this, look at the horizontal arrows just above the diagonal arrows.) We can see from the figure that this is true of the path from state $s$ to state $\phi(s)$ for the states $s_{46}$ and $s_{47}$ as well. The rule for drawing the arrows implies that this is true in general, for all executions of the program of Figure 7.1. The path from every non- $C$ state $s$ for which $\mathcal{L}$ is true to $\phi(s)$ consists of a sequence of steps each of which is either a stuttering step or an $L_{j}$ step for some $j$. From Figure 7.4, it's clear that this is also true for the $C$ state for which $\mathcal{L}$ is true.

Let's define $L$ to equal $L_{1} \vee \ldots \vee L_{m}$, so any $L_{j}$ step is an $L$ step. We have seen that we can get from a state $s$ in which $\mathcal{L}$ is true to the state $\phi(s)$ by a sequence of stuttering steps and/or $L$ steps. Recall that in Section 4.3.2, for any action $A$ we defined $A^{+}$to equal $A \vee(A \cdot A) \vee(A \cdot A \cdot A) \vee \ldots$ Therefore, a step $s \rightarrow t$ satisfies $\left([L]_{\langle\mathbf{x}\rangle}\right)^{+}$, which we abbreviate $[L]_{\langle\mathbf{x}\rangle}^{+}$, iff we can get from state $s$ to state $t$ by a sequence of $L$ steps or steps that leave the variables $\mathbf{x}$ unchanged. Let's write the subscript $\langle\mathbf{x}\rangle$ as simply $\mathbf{x}$, so $[A]_{\mathbf{x}}$ and $\langle A\rangle_{\mathbf{x}}$ mean $[A]_{\langle\mathbf{x}\rangle}$ and $\langle A\rangle_{\langle\mathbf{x}\rangle}$ for any action $A$.

We have thus seen:
$\phi 5$. For any state $s$ in which $\mathcal{L}$ is true, $s \rightarrow \phi(s)$ is an $[L]_{\mathbf{x}}^{+}$step.
Following the path from $s$ to $\phi(s)$ backwards for states $s$ in which $\mathcal{R}$ is true similarly leads to the following, where $R$ equals $R_{1} \vee \ldots \vee R_{k} .{ }^{2}$
$\phi 6$. For any state $s$ in which $\mathcal{R}$ is true, $\phi(s) \rightarrow s$ is an $[R]_{\mathrm{x}}^{+}$step.

[^30]Finally, Figure 7.4 shows that for any state $s$ of the original behavior, $\phi(s)$ is always a state in the reduced behavior in which the $R C L$ operation is not being executed, so $\neg(\mathcal{R} \vee \mathcal{L})$ is true for $\phi(s)$. Because the rule for drawing the arrows in Figure 7.2 creates a leftward pointing arrow whenever an $R$ step is moved to the right and a rightward pointing arrow whenever an $L$ step is moved to the left, this is true in general. Therefore, we have:
$\phi 7$. For any state $s$, the state predicate $\neg(\mathcal{R} \vee \mathcal{L})$ is true in state $\phi(s)$.
Statements $\phi 4-\phi 7$ give us relations between $s$ and $\phi(s)$ for all states $s$ of a behavior of our example program. We now have to turn them into relations between the values of the variables $\mathbf{x}$ and the variables $\mathbf{X}$ in any state $s$ in a behavior of $S \otimes S^{R}$.

It's easy to do this for $\phi 4$. The values of the variables $\mathbf{X}$ in state $s$ are the values of $\mathbf{x}$ in $\phi(s)$. Since $\phi(s)=s$ if $s$ satisfies $\neg(\mathcal{R} \vee \mathcal{L})$, this means that $\mathbf{x}=\mathbf{X}$ is true for any reachable state of $S \otimes S^{R}$ satisfying $\neg(\mathcal{R} \vee \mathcal{L})$. In other words:

$$
\begin{equation*}
\neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\mathbf{X}=\mathbf{x}) \quad \text { is an invariant of } S \otimes S^{R} \tag{7.4}
\end{equation*}
$$

To express the relations between $\mathbf{x}$ and $\mathbf{X}$ implied by $\phi 5$ and $\phi 6$, we need a bit of notation. For any action $A$ containing only the variables $\mathbf{x}$, a step $s \rightarrow t$ satisfies $A$ iff formula $A$ is true when we substitute for the variables $\mathbf{x}$ their values in state $s$ and for $\mathbf{x}^{\prime}$ their values in state $t$. Therefore, $\phi(s) \rightarrow s$ is an $[R]_{\mathbf{x}}^{+}$step iff $[R]_{\mathbf{x}}^{+}$is true when we substitute the values of $\mathbf{x}$ in $\phi(s)$ for the variables $\mathbf{x}$ and the values of $\mathbf{x}$ in $s$ for the primed variables $\mathbf{x}^{\prime}$. But the values of $\mathbf{x}$ in $\phi(s)$ are by definition the values of $\mathbf{X}$ in state $s$. So $\phi(s) \rightarrow s$ is an $[R]_{\mathbf{x}}^{+}$step iff $s$ satisfies the formula we get by substituting $\mathbf{X}$ for $\mathbf{x}$ and $\mathbf{x}$ for $\mathbf{x}^{\prime}$ in $[R]_{\mathbf{x}}^{+}$. Using the construct AWITH defined in Section 5.4.4.1, we write the formula produced by these substitutions as:

$$
[R]_{\mathrm{x}}^{+} \text {AWITH } \mathbf{x} \leftarrow \mathbf{X}, \mathbf{x}^{\prime} \leftarrow \mathbf{x}
$$

so formula $\phi 6$ implies:

$$
\begin{equation*}
\mathcal{R} \Rightarrow\left([R]_{\mathrm{x}}^{+} \text {AWITH } \mathbf{x} \leftarrow \mathbf{X}, \mathbf{x}^{\prime} \leftarrow \mathbf{x}\right) \quad \text { is an invariant of } S \otimes S^{R} \tag{7.5}
\end{equation*}
$$

Remember that in this formula, the definition of $[R]_{\mathrm{x}}^{+}$must be fully expanded before the AWITH substitution is performed.

We can obtain a similar relation between $\mathbf{x}$ and $\mathbf{X}$ from $\phi 5$. The statement that $s \rightarrow \phi(s)$ is an $[L]_{\mathbf{x}}^{+}$step is equivalent to the statement that state $s$ is satisfied by the formula obtained from $[L]_{\mathbf{x}}^{+}$by substituting for variables $\mathbf{x}$ their values in state $s$ and substituting for $\mathbf{x}^{\prime}$ the values of $\mathbf{x}$ in state
$\phi(s)$, the latter being the values of $\mathbf{X}$ in state $s$. Therefore, $\phi 5$ implies the following, where $\mathbf{x} \leftarrow \mathbf{x}$ has been eliminated from the AWITH formula, since it just states that $\mathbf{x}$ is substituted for itself:

$$
\begin{equation*}
\mathcal{L} \Rightarrow\left([L]_{\mathbf{x}}^{+} \text {AWITH } \mathbf{x}^{\prime} \leftarrow \mathbf{X}\right) \quad \text { is an invariant of } S \otimes S^{R} \tag{7.6}
\end{equation*}
$$

Finally, since the values of $\mathbf{X}$ in state $s$ equal the values of $\mathbf{x}$ in state $\phi(s)$, from $\phi 7$ we obtain:

$$
\begin{equation*}
\neg(\mathcal{R} \vee \mathcal{L}) \text { with } \mathbf{x} \leftarrow \mathbf{X} \quad \text { is an invariant of } S \otimes S^{R} \tag{7.7}
\end{equation*}
$$

The invariant $I^{R}$ of $S \otimes S^{R}$ relating the values of $\mathbf{x}$ and $\mathbf{X}$ is the conjunction of the invariants (7.4)-(7.7):

$$
\begin{aligned}
I^{R} \triangleq & \wedge \neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\mathbf{X}=\mathbf{x}) \\
& \wedge \mathcal{R} \Rightarrow\left([R]_{\mathbf{x}}^{+} \text {AWITH } \mathbf{x} \leftarrow \mathbf{X}, \mathbf{x}^{\prime} \leftarrow \mathbf{x}\right) \\
& \wedge \mathcal{L} \Rightarrow\left([L]_{\mathbf{x}}^{+} \text {AWITH } \mathbf{x}^{\prime} \leftarrow \mathbf{X}\right) \\
& \wedge \neg(\mathcal{R} \vee \mathcal{L}) \text { WITH } \mathbf{x} \leftarrow \mathbf{X}
\end{aligned}
$$

### 7.1.3 Reduction In General

So far, we have been considering reduction of an operation $R C L$ of one process of a multiprocess program having the form shown in Figure 7.1. We now extend this to a more general situation. First, some observations about reducing $R C L$.

The invariant $I^{R}$ is described in terms of the actions $R$ and $L$, which are the disjunction of the actions $R_{i}$ and $L_{j}$, respectively. The fact that $R$ and $L$ were defined in this particular way was irrelevant. All we required was that an execution of the operation $R C L$ consists of a sequence of $R$ steps followed by a $C$ step followed by a sequence of $L$ steps. We didn't need actions $E_{h}$ of other processes to commute with each of the actions $R_{i}$ and $L_{j}$. In drawing the diagrams illustrated by Figures 7.2 and 7.4, we didn't have to identify the subactions of $R$ and $L$ that are involved. We could have replaced each $R_{i}$ by $R$ and each $L_{i}$ by $L$. We only needed to assume that each action of another process commutes with $R$ and $L$, not with each $R_{i}$ and $L_{j}$ individually. (For example, an $E_{h} \cdot L_{1}$ step could be an $L_{2} \cdot E_{h}$ step.) Similarly, we didn't have to require that $R$ and $L$ commute with particular actions of other processes. We just required $R$ and $L$ to commute with the disjunction of the next-state relations of all the other processes - an action we will call $E$.

Furthermore, we didn't need to require that $R$ and $L$ commute with $E$. To move $R$ steps to the right, we just required that for any pair of steps
$s \xrightarrow{R} u \xrightarrow{E} t$ there is a pair of steps $s \xrightarrow{E} v \xrightarrow{R} t$ for some state $v$. This condition can be stated as the requirement $R \cdot E \Rightarrow E \cdot R$. When this formula holds, we say that $R$ right-commutes with $E$, and that $E$ left-commutes with $R$. Similarly, to move $L$ steps to the left, we don't need $E \cdot L$ to equal $L \cdot E$; we need only require $E \cdot L \Rightarrow L \cdot E$, which asserts that $L$ left-commutes with $E$ (and $E$ right-commutes with $L$ ).

Finally, suppose that $A$ is another action of the same process containing the $R C L$ operation, so $A$ does not allow steps that implement the $R C L$ operation. Since the next step of the process after an $R$ step can only be an $R$ step or a $C$ step, an $A$ step cannot follow an $R$ step. This implies that $R \cdot A$ must equal FALSE, which means that $R \cdot A \Rightarrow A \cdot R$ is trivially true. Similarly, the only step of the process that can immediately precede an $L$ step is an $L$ step or a $C$ step. Therefore, $A \cdot L$ must equal false, so $A \cdot L \Rightarrow L \cdot A$ must be true. Therefore, other actions of the process containing $R C L$ satisfy the same commutativity requirements as actions of other processes. This implies that we can completely forget about processes. We just assume that the program's next-state action equals $E \vee R \vee C \vee L$, where $R$ right-commutes with $E$ and $L$ left-commutes with $E$. If we represent the program as a collection of processes, there is no need for $R, C$, and $L$ steps to all be steps of the same process.

What we need to require is that execution of an $R C L$ operation consists of a sequence of $R$ steps followed by a $C$ step followed by a sequence of $L$ steps. To express this requirement, we generalize $\mathcal{R}$ and $\mathcal{L}$ from assertions about a process's control state to arbitrary state predicates satisfying certain conditions. We take as primitives the state predicates $\mathcal{R}$ and $\mathcal{L}$ and the actions $E$ and $M$ such that the program's next state relation equals $E \vee M$, where $M$ describes the operation to be reduced. The actions $R, C$, and $L$ will be defined in terms of $\mathcal{R}, \mathcal{L}$, and $M$. We therefore assume the original program $S$ is defined by:

$$
S \triangleq \text { Init } \wedge \square[E \vee M]_{\mathbf{x}}
$$

As in our example, we assume that $\mathcal{R}$ is true when execution of the operation described by $M$ is in its first phase, where execution has begun but the $C$ action has not yet been executed; and $\mathcal{L}$ is true when execution is in its second phase, where the $C$ action has been executed but the operation execution has not yet terminated. This is implied by the following assumptions on executions of an operation described by the action $M$ :

M1. In the initial state, $M$ is not in the middle of an execution, expressed by Init $\Rightarrow \neg(\mathcal{R} \vee \mathcal{L})$.

M2. An $E$ step can't change the current phase of an execution of $M$, expressed by $E \Rightarrow\left(\mathcal{R}^{\prime} \equiv \mathcal{R}\right) \wedge\left(\mathcal{L}^{\prime} \equiv \mathcal{L}\right)$.

M3. An $M$ step can't go from the second phase to the first phase, expressed by $\neg\left(\mathcal{L} \wedge M \wedge \mathcal{R}^{\prime}\right)$.

M4. The two phases are disjoint, expressed by $\neg(\mathcal{R} \wedge \mathcal{L})$.
We can define the actions $R, L$, and $C$ in terms of $M, \mathcal{R}$, and $\mathcal{L}$ by:

$$
R \triangleq M \wedge \mathcal{R}^{\prime} \quad L \triangleq \mathcal{L} \wedge M \quad C \triangleq(\neg \mathcal{L}) \wedge M \wedge\left(\neg \mathcal{R}^{\prime}\right)
$$

A complete execution of the operation described by $M$ consists of a sequence of $M$ steps beginning and ending in a state in which the $M$ operation is not being executed-in other words, in a state satisfying $\neg(\mathcal{R} \vee \mathcal{L})$. Therefore, the action $M^{R}$ that executes the complete operation as a single step for the variables $\mathbf{X}$ is:

$$
M^{R} \triangleq\left(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^{+} \wedge \neg(\mathcal{R} \vee \mathcal{L})^{\prime}\right) \text { with } \mathbf{x} \leftarrow \mathbf{X}
$$

We can therefore define $S^{R}$ as follows, where Init ${ }^{R}$ and $E^{R}$ are Init and $E$ with the variables $\mathbf{x}$ replaced by the variables $\mathbf{X}$ :

$$
S^{R} \triangleq \operatorname{Init}^{R} \wedge \square\left[E^{R} \vee M^{R}\right] \mathbf{X}
$$

If $\mathcal{R}$ always equals false, then $R$ equals false so there is no $R$ action. Similarly, there is no $L$ action if $\mathcal{L}$ always equals false. If there is neither an $R$ nor an $L$ action, then $M$ equals $C$ and $S^{R}$ equals ( $S$ with $\mathbf{x} \leftarrow \mathbf{X}$ ) so reduction accomplishes nothing.

Ignoring liveness, reduction is described in TLA by a theorem asserting that R1 (with $T$ equal to $\square \diamond \neg \mathcal{L}$ ) is implied by the definitions of $S, R, L$, $M$, and $S^{R}$ above, assumptions M1-M4, and the commutativity relations assumed of $R, L$, and $E$.

M1-M4 and the commutativity relations are action formulas. (Remember that a state predicate is an action whose value depends only on the first state of a step.) Those action formulas don't have to be true of all possible steps, just on steps in behaviors satisfying $S$. (The action formulas are usually meaningless for states not satisfying some type-correctness predicate.) If $\mathbf{x}$ is the list of all variables that can appear in $S$ and $A$, then the assertion that an action formula $A$ is true for all steps of behaviors satisfying $S$ can be written as $\models S \Rightarrow \square[A]_{\mathbf{x}}$. Here is reduction, without liveness, expressed as a theorem.

Theorem 7.1 Assume Init, $\mathcal{L}$, and $\mathcal{R}$ are state predicates, $M$ and $E$ are actions, $\mathbf{x}$ is a list of all variables appearing in these formulas, and $\mathbf{X}$ is a list of the same number of variables different from the variables $\mathbf{x}$. Define

$$
\begin{aligned}
S \triangleq & \text { Init } \wedge \square[E \vee M]_{\mathbf{x}} \quad R \triangleq M \wedge \mathcal{R}^{\prime} \quad L \triangleq \mathcal{L} \wedge M \\
\text { Init }^{R} \triangleq & \triangleq \text { Init } \text { with } \mathbf{x} \leftarrow \mathbf{X} \quad E^{R} \triangleq E \text { with } \mathbf{x} \leftarrow \mathbf{X} \\
M^{R} \triangleq & \left(\neg(\mathcal{R} \vee \mathcal{L}) \wedge M^{+} \wedge \neg(\mathcal{R} \vee \mathcal{L})^{\prime}\right) \text { with } \mathbf{x} \leftarrow \mathbf{X} \\
S^{R} \triangleq & \text { Init }^{R} \wedge \square\left[E^{R} \vee M^{R}\right]_{\mathbf{x}} \\
I^{R} \triangleq & \wedge \neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\mathbf{X}=\mathbf{x}) \\
& \wedge \mathcal{R} \Rightarrow\left([R]_{\mathbf{x}}^{+} \text {AWITH } \mathbf{x} \leftarrow \mathbf{X}, \mathbf{x}^{\prime} \leftarrow \mathbf{x}\right) \\
& \wedge \mathcal{L} \Rightarrow\left([L]_{\mathbf{x}}^{+} \text {AWITH } \mathbf{x}^{\prime} \leftarrow \mathbf{X}\right) \\
& \wedge \neg(\mathcal{R} \vee \mathcal{L}) \text { with } \mathbf{x} \leftarrow \mathbf{X}
\end{aligned}
$$

and assume:
(1) $\models$ Init $\Rightarrow \neg(\mathcal{R} \vee \mathcal{L})$
(2) $\vDash S \Rightarrow \square\left[\wedge E \Rightarrow\left(\mathcal{R}^{\prime} \equiv \mathcal{R}\right) \wedge\left(\mathcal{L}^{\prime} \equiv \mathcal{L}\right)\right.$

$$
\wedge \neg\left(\mathcal{L} \wedge M \wedge \mathcal{R}^{\prime}\right)
$$

$$
\wedge \neg(\mathcal{R} \wedge \mathcal{L})
$$

$$
\wedge R \cdot E \Rightarrow E \cdot R
$$

$$
\wedge E \cdot L \Rightarrow L \cdot E]_{\mathbf{x}}
$$

Then $\models S \wedge \square \diamond \neg \mathcal{L} \Rightarrow \exists \mathbf{X}: S^{R} \wedge \square I^{R}$.
Assumption (1) and the first three conjuncts in the action of assumption (2) are the conditions M1-M4, which assert that an execution of the operation described by the action $M$ consists of a sequence of $L$ steps followed by a $C$ step followed by a sequence of $R$ steps. The final two conjuncts in the action of assumption (2) are the assumptions that $R$ right-commutes with $E$ and $L$ left-commutes with $E$.

In practice, $R, L$, and $E$ will be defined to be the disjunction of subactions. This allows us to decompose the proofs of those commutativity conditions by using the following theorem that is proved in the Appendix.

Theorem 7.2 If $A \equiv \exists i \in I: A_{i}$ and $B \equiv \exists j \in J: B_{j}$ for actions $A_{i}$ and $B_{j}$, then:

$$
\models\left(\forall i \in I, j \in J: A_{i} \cdot B_{j} \Rightarrow B_{j} \cdot A_{i}\right) \Rightarrow(A \cdot B \Rightarrow B \cdot A)
$$

By this theorem, to show that $R$ right-commutes with $E$, it suffices to show that each subaction in the definition of $R$ right-commutes with each subaction in the definition of $E$. Similarly, $L$ left-commutes with $E$ if each subaction of $L$ left-commutes with each subaction of $E$.

### 7.1.4 The Hypothesis $\square \diamond \neg \mathcal{L}$

Formula $\square \diamond \neg \mathcal{L}$ is a liveness property. When we add liveness conditions to $S$ and hope to use reduction to prove that it satisfies a liveness property $P$, we would expect $S$ to imply $\square \diamond \neg \mathcal{L}$. But we wouldn't expect to have to add a liveness property to $S$ in order to verify that it satisfies a safety property. In fact, to verify a safety property, we don't have to prove that $\neg \mathcal{L}$ is always eventually true. The following theorem implies that, to verify $S$ satisfies a safety property, we can simply assume that $\square \diamond \neg \mathcal{L}$ is true if it is always possible for $\neg \mathcal{L}$ to eventually become true. To understand the theorem, recall that Section 4.3.2 defines what it means for it to be always possible for a state predicate $Q$ to eventually become true - namely, that the program Init $\wedge \square[N e x t]_{\mathbf{x}}$ implies $\square \mathbb{E}\left([N e x t]_{\mathbf{x}}^{+} \wedge Q^{\prime}\right)$. (See (4.27).) This theorem is proved in the Appendix:

Theorem 7.3 If $S$ equals Init $\wedge \square[N e x t]_{\mathbf{x}}, P$ is a safety property, and $Q$ is a state predicate such that $\vDash S \Rightarrow \square \mathbb{E}\left([N e x t]_{\mathrm{x}}^{+} \wedge Q^{\prime}\right)$, then $\models S \wedge \square \diamond Q \Rightarrow P$ implies $\models S \Rightarrow P$.

The theorem allows us to replace the formula $T$ in R1b (which we later defined to equal $\square \diamond \neg \mathcal{L})$ with $\square \mathbb{E}\left([N e x t]_{\mathbf{x}}^{+} \wedge \neg \mathcal{L}^{\prime}\right)$. Section 4.3.2 explains that we can verify this possibility condition by finding a fairness condition $F$ for $S$ and verifying $=S \wedge F \Rightarrow \square \diamond \neg \mathcal{L}$. This is the only case I know of in which a possibility condition is used to verify a correctness property.

### 7.1.5 Adding Liveness

Theorem 7.1 allows us to deduce safety properties of the program $S$ from safety properties of the coarser-grain program $S^{R}$. We also want to deduce liveness properties of $S$ from liveness properties of $S^{R}$. We deduce liveness properties of a program from fairness properties of program actions. To deduce liveness properties of $S$ by proving liveness properties of $S^{R}$, we extend Theorem 7.1 so its conclusion is

$$
\begin{equation*}
\vDash S \wedge F \wedge \square \diamond \neg \mathcal{L} \Rightarrow \exists \mathbf{X}: S^{R} \wedge \square I^{R} \wedge F^{R} \tag{7.8}
\end{equation*}
$$

where $F$ is the conjunction of fairness properties of subactions of the nextstate action $E \vee M$ of $S$ and $F^{R}$ is the conjunction of fairness properties of subactions of the next-state action $E^{R} \vee M^{R}$ of $S^{R}$.

To understand how this is done, it helps to think in terms of the program $S \otimes S^{R}$, a behavior of which is a behavior both of $S$ (described by the values of variables $\mathbf{x}$ ) and of $S^{R}$ (described by the values of variables $\mathbf{X}$ ) whose
existence is asserted by（7．8）．We expect $S$ to satisfy（7．8）because $S \otimes S^{R}$ satisfies：

$$
\begin{equation*}
\vDash S \otimes S^{R} \wedge F \wedge \square \diamond \neg \mathcal{L} \Rightarrow S^{R} \wedge \square I^{R} \wedge F^{R} \tag{7.9}
\end{equation*}
$$

Formula $F^{R}$ should assert fairness of subactions $A^{R}$ of $E^{R} \vee M^{R}$ ．For sim－ plicity，we consider only actions $A^{R}$ that are subactions of either $E^{R}$ or $M^{R}$ ，which I expect will usually be the case．When it is not the case，the requirements for deducing fairness of $A^{R}$ include requirements for deducing fairness of both $A^{R} \wedge E^{R}$ and $A^{R} \wedge M^{R}[8]$ ．

## 7．1．5．1 Fairness of Subactions of $E^{R}$

We defined $S^{R}$ so that $E^{R}$ equals $\bar{E}$ ．（Recall that we defined $\bar{G}$ to equal $G$ with $\mathbf{x} \leftarrow \mathbf{X}$ for any formula $G$ ．）Property $\phi 1$ of Section 7．1．2．2 for our example generalizes to show that，in any behavior of $S \otimes S^{R}$ ，an $E$ step is also an $\bar{E}$ step．

Because each $E^{R}$ step corresponds to a single $E$ step in a behavior of $S \otimes S^{R}$ ，we expect fairness of a subaction $A^{R}$ of $E^{R}$ to be implied by fairness of a single subaction $A$ of $E$ ．In other words，we expect this to be true：

$$
\begin{equation*}
\vDash S \otimes S^{R} \wedge \mathrm{XF}_{\mathbf{x}}(A) \Rightarrow \mathrm{XF}_{\mathbf{X}}\left(A^{R}\right) \tag{7.10}
\end{equation*}
$$

where XF is either WF or SF．By（4．14）and（4．23）we have

$$
\begin{aligned}
& \mathrm{XF}_{\mathbf{x}}(A) \equiv\left(\operatorname{los}^{(1)} \mathbb{E}\langle A\rangle_{\mathbf{x}} \Rightarrow \square \diamond\langle A\rangle_{\mathbf{x}}\right) \\
& \mathrm{XF}_{\mathbf{X}}\left(A^{R}\right) \equiv\left(\operatorname{lo}^{(0)} \mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{X}} \Rightarrow \square \diamond\left\langle A^{R}\right\rangle_{\mathbf{x}}\right)
\end{aligned}
$$

where $⿴ 囗 ⿰ 丿 ㇄$ a little temporal logic imply that to prove（7．10）it suffices to prove these two theorems：

$$
\begin{align*}
& \models S \otimes S^{R} \Rightarrow\left(\square \diamond\langle A\rangle_{\mathbf{x}} \Rightarrow \square \diamond\left\langle A^{R}\right\rangle_{\mathbf{x}}\right)  \tag{7.11}\\
& \models S \otimes S^{R} \Rightarrow \square\left(\mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{x}} \Rightarrow \mathbb{E}\langle A\rangle_{\mathbf{x}}\right)
\end{align*}
$$

We make（7．11）true by requiring every $\langle A\rangle_{\mathbf{x}}$ step in a behavior of $S \otimes S^{R}$ to be an $\left\langle A^{R}\right\rangle_{\mathbf{x}}$ step．Every $E$ step in a behavior of $S \otimes S^{R}$ is an $E^{R}$ step because $E^{R}$ equals $\bar{E}$ ．This suggests that we want $A^{R}$ to equal $\bar{A}$ ．（Note that $\overline{\langle A\rangle_{\mathbf{x}}}$ equals $\langle\bar{A}\rangle_{\mathbf{x}}$ because $\overline{\mathbf{x}}$ equals $\mathbf{X}$ ．）

Every $E$ step in a behavior of $S \otimes S^{R}$ is an $E^{R}$ step because of property $\phi 1$ ，and that property holds because of the commutativity assumptions of
action $E$ with respect to actions $R$ and $L$. Therefore, we must require that $\langle A\rangle_{\mathbf{x}}$ satisfies the same commutativity relation as $E$, namely:

$$
\begin{equation*}
\vDash S \Rightarrow \square\left[\left(R \cdot\langle A\rangle_{\mathbf{x}} \Rightarrow\langle A\rangle_{\mathbf{x}} \cdot R\right) \wedge\left(\langle A\rangle_{\mathbf{x}} \cdot L \Rightarrow L \cdot\langle A\rangle_{\mathbf{x}}\right)\right]_{\mathbf{x}} \tag{7.13}
\end{equation*}
$$

With this assumption, defining $A^{R}$ to equal $\bar{A}$ will make (7.11) true.
The commutativity relations satisfied by $E$ were used to define the mapping $\phi$, which in turn was used to define $S^{R}$. For example, in Figures 7.27.4, the state $u_{42}$, which equals $\phi\left(s_{43}\right)$, was chosen when right-commuting $R_{1}$ with $E_{1}$ so that $s_{41} \rightarrow u_{42}$ is an $E_{1}$ step and $u_{42} \rightarrow s_{43}$ is an $R_{1}$ step. Suppose that $A$ is a subaction of $E_{1}$ and $s_{41} \rightarrow s_{42}$ is an $\langle A\rangle_{\mathbf{x}}$ step. Nothing in the construction in those figures, which describes the choice of $\phi$ used to define $S^{R}$ in Theorem 7.1, ensures that the $E_{1}$ step $s_{41} \rightarrow u_{42}$ is also an $\langle A\rangle_{\mathbf{x}}$ step. However, the assumption (7.13) ensures that we could have chosen $u_{42}$ to make $s_{41} \rightarrow u_{43}$ an $\langle A\rangle_{\mathbf{x}}$ step.

In general, we can use (7.13) to ensure that every $E$ step in the original behavior that is an $\langle A\rangle_{\mathbf{x}}$ step remains an $\langle A\rangle_{\mathbf{x}}$ step whenever that step is commuted with an $R$ or $L$ step, so it remains an $\langle A\rangle_{\mathbf{x}}$ step in the reduced behavior. We can therefore define $S^{R}$ so that (7.12) is true, so this is not a problem when we want to ensure that (7.10) holds for a single action $A$. However, we may want (7.10) to hold for multiple subactions $A$ of $E$, and a single $E$ step can be an $\langle A\rangle_{\mathbf{x}}$ step for more than one of those subactions $A$. We will return to this problem in Section 7.1.5.3. Now, we consider making (7.12) true.

We can deduce (7.12) from these two theorems:

$$
\begin{align*}
& \text { (a) } \models S \otimes S^{R} \Rightarrow \square\left(\mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{x}} \Rightarrow \overline{\mathbb{E}\langle A\rangle_{\mathbf{x}}}\right)  \tag{7.14}\\
& \text { (b) } \models S \otimes S^{R} \Rightarrow \square\left(\overline{\mathbb{E}\langle A\rangle_{\mathbf{x}}} \Rightarrow \mathbb{E}\langle A\rangle_{\mathbf{x}}\right)
\end{align*}
$$

Since $\left\langle A^{R}\right\rangle_{\mathbf{X}}$ equals $\overline{\langle A\rangle_{\mathbf{x}}}$ and formulas $\mathbb{E} \overline{\langle A\rangle_{\mathbf{x}}}$ and $\overline{\mathbb{E}\langle A\rangle_{\mathbf{x}}}$ contain only the variables $\mathbf{X}$, (7.14a) is equivalent to:

$$
\begin{equation*}
\vDash S^{R} \Rightarrow \square\left(\mathbb{E} \overline{\langle A\rangle_{\mathbf{x}}} \Rightarrow \overline{\mathbb{E}\langle A\rangle_{\mathbf{x}}}\right) \tag{7.15}
\end{equation*}
$$

If $\mathbb{E}$ were not a weird operator (see Section 5.4.4.3), $\mathbb{E} \overline{\langle A\rangle_{\mathbf{x}}}$ would be equivalent to $\overline{\mathbb{E}\langle A\rangle_{\mathbf{x}}}$; and we expect that equivalence to be true for most actions $\langle A\rangle_{\mathbf{x}}$. However, because it is not always true, we have to add (7.15) as an assumption.

To see what is required to make (7.14b) true, we consider what assumption is required to ensure that $\bar{P} \Rightarrow P$ is true for an arbitrary state predicate $P$ with free variables $\mathbf{x}$. The free variables of $\bar{P}$ are $\mathbf{X}$, and the relation between the values of $\mathbf{x}$ and $\mathbf{X}$ is described by the invariant $I^{R}$ of $S \otimes S^{R}$.

There are three cases, depending on whether $\mathcal{R}$ is true, $\mathcal{L}$ is true, or neither is true:
$\mathcal{R}$ true: The conjunct

$$
\mathcal{R} \Rightarrow\left([R]_{\mathbf{x}}^{+} \text {AWITH } \mathbf{x} \leftarrow \mathbf{X}, \mathbf{x}^{\prime} \leftarrow \mathbf{x}\right)
$$

of $I^{R}$ asserts that, in this case, we can arrive at the values of $\mathbf{x}$ in the current state by starting in a state in which the values of $\mathbf{x}$ equal the current values of $\mathbf{X}$ and executing a sequence of $R$ steps. This means that $\bar{P} \Rightarrow P$ is true if, starting in a state satisfying $P$ and executing a sequence of $R$ steps, we reach a state in which $P$ is true. This is true iff, starting in a state satisfying $P$ and repeatedly executing single $R$ steps, we keep reaching states satisfying $P$. In other words, if $P \wedge R \Rightarrow P^{\prime}$ is true in any state satisfying $\mathcal{R}$ of a behavior of $S \otimes S^{R}$, then $\bar{P} \Rightarrow P$ is true.
$\mathcal{L}$ true: A similar argument based on the conjunct

$$
\mathcal{L} \Rightarrow\left([L]_{\mathrm{x}}^{+} \text {AWITH } \mathrm{x}^{\prime} \leftarrow \mathbf{X}\right)
$$

of $I^{R}$ shows that if $L \wedge P^{\prime} \Rightarrow P$ is true in any state satisfying $\mathcal{L}$ in a behavior of $S \otimes S^{R}$, then $\bar{P} \Rightarrow P$ is true.

Neither $\mathcal{R}$ nor $\mathcal{L}$ true: The conjunct $\neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\mathbf{X}=\mathbf{x})$ of $I^{R}$ shows that $\bar{P} \equiv P$ is true for any state satisfying $\neg(\mathcal{R} \vee \mathcal{L})$ in a behavior of $S \otimes S^{R}$

Let's review what we have shown. We can deduce (7.10) from (7.11) and (7.12). If (7.13) is true, then we can choose $S^{R}$ of Theorem 7.1 to make (7.11) true for a single subaction $A$ of $E$. We can deduce (7.12) from (7.14a) and (7.14b). We can deduce (7.14a) from (7.15). And finally, we can deduce (7.14b) from the conditions obtained above for proving $\bar{P} \Rightarrow P$, substituting $\mathbb{E}\langle A\rangle_{\mathbf{x}}$ for $P$. Putting all this together, we have shown that the program $S^{R}$ of Theorem 7.1 can be chosen to make (7.10) true, for a single subaction $A$ of $E$, if the following two conditions are satisfied:

$$
\begin{align*}
\models S \Rightarrow \square & {\left[\wedge\left(R \cdot\langle A\rangle_{\mathbf{x}} \Rightarrow\langle A\rangle_{\mathbf{x}} \cdot R\right) \wedge\left(\langle A\rangle_{\mathbf{x}} \cdot L \Rightarrow L \cdot\langle A\rangle_{\mathbf{x}}\right)\right.}  \tag{7.16}\\
& \wedge \mathbb{E}\langle A\rangle_{\mathbf{x}} \wedge R \Rightarrow\left(\mathbb{E}\langle A\rangle_{\mathbf{x}}\right)^{\prime} \\
& \left.\wedge L \wedge\left(\mathbb{E}\langle A\rangle_{\mathbf{x}}\right)^{\prime} \Rightarrow \mathbb{E}\langle A\rangle_{\mathbf{x}}\right]_{\mathbf{x}} \\
\models S^{R} \Rightarrow & \square\left(\mathbb{E} \overline{\langle A\rangle_{\mathbf{x}}} \Rightarrow \overline{\mathbb{E}\langle A\rangle_{\mathbf{x}}}\right)
\end{align*}
$$

### 7.1.5.2 Fairness of Subactions of $M^{R}$

Deducing fairness properties of subactions of $M^{R}$ from fairness properties of actions of $S$ is more complicated than for subactions of $E^{R}$ because an $M^{R}$ step is the result of executing multiple actions of $S$ as a single step. The simplest and probably most common case is when we want the reduced program to satisfy fairness of the $M^{R}$ action itself. So, we begin by examining this case.

Action $M^{R}$ is the action obtained by executing the entire operation consisting of a sequence of $R$ steps, followed by a $C$ step, followed by a complete sequence of $L$ steps, with the variables $\mathbf{X}$ substituted for the variables $\mathbf{x}$. For our example program of Figure 7.1, where the values of variables $\mathbf{X}$ in state $s$ were defined to be the values of $\mathbf{x}$ in state $\phi(s)$, condition $\phi 3$ implies that $M^{R}$ equals $\bar{C}$. This means that in any behavior of $S \otimes S^{R}$, a $C$ step is an $M^{R}$ step. It suggests that we should be able to deduce fairness of the $M^{R}$ action of $S^{R}$ from fairness of the $C$ action of $S$.

Now suppose $A$ is a subaction of $C$ and $A^{R}$ is the action obtained by executing the entire operation consisting of a sequence of $R$ steps, followed by an $A$ step, followed by a complete sequence of $L$ steps, with the variables $\mathbf{X}$ substituted for the variables $\mathbf{x}$. The same argument shows that $A^{R}$ equals $\bar{A}$, and that in any behavior of $S \otimes S^{R}$, an $A$ step is an $A^{R}$ step. Moreover, any $A^{R}$ step is also an $M^{R}$ step, so $A^{R}$ is a subaction of $M^{R}$. So, it is reasonable to consider deriving fairness of a subaction $A^{R}$ of $M^{R}$ when $A^{R}$ is obtained in this way from a subaction $A$ of $C$. Since our goal is not to obtain the most general results, we consider only this case.

First, we must define $A^{R}$ precisely for a subaction $A$ of $C$. An $A^{R}$ step is obtained by combining a sequence of $R$ steps followed by an $A$ step followed by a sequence of $L$ steps into a single step, and then substituting $\mathbf{X}$ for $\mathbf{x}$. The definitions of $R, C$, and $L$ in terms of $\mathcal{R}$ and $\mathcal{L}$ and assumptions M1-M4 imply that $A^{R}$ equals $\overline{A^{\rho}}$ where $A^{\rho}$ is defined by

$$
\begin{equation*}
A^{\rho} \triangleq \neg(\mathcal{R} \vee \mathcal{L}) \wedge\left([R]_{\mathbf{x}}^{+} \cdot A \cdot[L]_{\mathbf{x}}^{+}\right) \wedge \neg(\mathcal{R} \vee \mathcal{L})^{\prime} \tag{7.17}
\end{equation*}
$$

We want condition (7.10) to be true for this choice of $A$ and $A^{R}$. As before, we do this by making (7.11) and (7.12) true, starting with (7.11). In a behavior satisfying $S \otimes S^{R}$, every $A$ step is an $A^{R}$ step. However, (7.11) requires every $\langle A\rangle_{\mathbf{x}}$ step to be an $\left\langle A^{R}\right\rangle_{\mathbf{X}}$ step. This is not true for $A$ an arbitrary subaction of $C$. It's not even necessarily true for $A=C$, for the following reason.

Recall that Figure 7.4 shows two behaviors that satisfy $S$, the bottom one being the reduced version of the top one. The action labels describe the
changes of the values of the variables $\mathbf{x}$. The top behavior satisfies $S \otimes S^{R}$, where the values of variables $\mathbf{X}$ in a state $s_{i}$ of that behavior are the values of $\mathbf{x}$ in the corresponding state $\phi\left(s_{i}\right)$ of the bottom sequence. The step $s_{43} \rightarrow s_{44}$ of the top behavior is a $\bar{C}$ step iff $u_{42} \rightarrow u_{46}$ is a $C$ step. If one of the variables $\mathbf{x}$ has different values in states $s_{43}$ and $s_{44}$, there is no reason why its value should differ in states $u_{42}$ and $u_{46}$. Step $s_{43} \rightarrow s_{44}$ would be a $\langle C\rangle_{\mathbf{x}}$ step but not a $\langle\bar{C}\rangle_{\mathbf{x}}$ step if the values of all the variables $\mathbf{x}$ are the same in states $u_{42}$ and $u_{46}$. To be able to deduce (7.11) when $A$ is $C$ and $A^{R}$ is $M^{R}$, we need the assumption that if $s_{43} \rightarrow s_{44}$ is a $\langle C\rangle_{\mathbf{x}}$ step, then $\mathrm{x}^{\prime} \neq \mathrm{x}$ is true of step $u_{42} \rightarrow u_{46}$.

Since every $A$ step in a behavior of $S \otimes S^{R}$ is an $A^{R}$ step, we can deduce that every $\langle A\rangle_{\mathbf{x}}$ step is an $\left\langle A^{R}\right\rangle_{\mathbf{X}}$ step from this assumption:

$$
\models S \Rightarrow \square\left[\left(\langle A\rangle_{\mathbf{x}}\right)^{\rho} \Rightarrow\left(\mathbf{x}^{\prime} \neq \mathbf{x}\right)\right]_{\mathbf{x}}
$$

There is seldom any reason for a program's next-state action to allow stuttering steps, and modifying it to disallow stuttering steps does not change the program. An $A$ step of the program will usually be an $\langle A\rangle_{\mathbf{x}}$ step; and if it isn't, $A$ can be replaced by $\langle A\rangle_{\mathbf{x}}$. So for simplicity, we strengthen this assumption to:

$$
\begin{equation*}
\models S \Rightarrow \square\left[A^{\rho} \Rightarrow\left(\mathbf{x}^{\prime} \neq \mathbf{x}\right)\right]_{\mathbf{x}} \tag{7.18}
\end{equation*}
$$

We have shown that (7.18) implies that in a behavior of $S \otimes S^{R}$, every $\langle A\rangle_{\mathbf{x}}$ step is an $\left\langle A^{R}\right\rangle_{\mathbf{X}}$ step. In other words, we have shown that it implies:

$$
\begin{equation*}
\vDash S \otimes S^{R} \Rightarrow \square\left[\langle A\rangle_{\mathbf{x}} \Rightarrow\left\langle A^{R}\right\rangle_{\mathbf{x}}\right]_{\mathbf{x}, \mathbf{X}} \tag{7.19}
\end{equation*}
$$

This assertion implies (7.11).
The assumption (7.18) makes (7.11) true, so we now have to make (7.12) true. But we can't expect (7.12) to hold in general for the following reason. Since $A^{R}$ equals $\overline{A^{\rho}}$, we expect $\mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{X}}$ to imply $\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}$. By (7.17), $\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}$ equals $\mathbb{E}\left\langle\neg(\mathcal{R} \vee \mathcal{L}) \wedge[R]_{\mathbf{x}}^{+} \cdot A \cdot \ldots\right\rangle_{\mathbf{x}}$, which implies $\mathbb{E}(\neg(\mathcal{R} \vee \mathcal{L}) \wedge$ $(R \vee A)$ ) (since $\mathbb{E}(U \cdot V)$ implies $\mathbb{E}(U)$ for any actions $U$ and $V)$. We can therefore expect $\mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{X}}$ to imply $\mathbb{E}\langle A\rangle_{\mathbf{x}}$, as required by (7.12), only when there is no $R$ action.

A sequence of $R$ steps may have to occur between when $A^{\rho}$ becomes enabled and when $A$ becomes enabled, so fairness assumptions for $R$ as well as a fairness assumption for $A$ may be required to imply fairness of $A^{\rho}$. Instead of assuming a fairness condition on $L$ actions to ensure that operation $M$ completes after a $C$ step occurs, we simply assumed that the operation completes by adding the assumption $\square \diamond \neg \mathcal{L}$. Similarly, instead of assuming
a fairness condition on $R$ actions to ensure that the necessary enabling condition of $C$ occurs, we simply assume that the enabling condition eventually occurs.

As an example, suppose we want to deduce weak fairness of $A^{R}$ from strong fairness of $A$. (Because fairness of $A^{R}$ requires fairness of more than just $A$, there's no reason not to have different kinds of fairness for the two actions.) By (7.19) and the definition (4.12) of WF, to prove $\mathrm{WF}_{\mathbf{X}}\left(A^{R}\right)$ it suffices to prove $\diamond \square \mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{x}} \leadsto\langle A\rangle_{\mathbf{x}}$. Just as we split the proof of (7.12) into the two conditions of (7.14), we split the proof of $\diamond \square \mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{X}} \leadsto\langle A\rangle_{\mathbf{x}}$ into proving:

$$
\begin{align*}
& \text { (a) } \square\left(\mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{x}} \Rightarrow \overline{\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}}\right)  \tag{7.20}\\
& \text { (b) } \diamond \square \mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}} \leadsto\langle A\rangle_{\mathbf{x}}
\end{align*}
$$

This may seem wrong because we have $\overline{\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}}$ in (7.20a) and $\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}$ in (7.20b) when the two formulas should be equal. However, the following reasoning shows that they are equal. The definition of $A^{\rho}$ and conditions $\mathbb{E} 3$ and $\mathbb{E} 4$ of Section 5.4.4.2 imply that $\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}$ equals $\neg(\mathcal{R} \vee \mathcal{L}) \wedge \mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}$. The invariant $I^{R}$ implies that $\neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\mathbf{x}=\mathbf{X})$ and $\overline{\neg(\mathcal{R} \vee \mathcal{L})}$ are true, so $S \otimes S^{R}$ implies that $\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}$ always equals $\overline{\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}}$. We make $S^{R}$ implying (7.20a) one of our requirements for deducing that $\mathrm{WF}_{\mathbf{X}}\left(A^{R}\right)$ is satisfied. We now consider (7.20b).

By (3.32b) of Section 3.4.2.8 and the tautology $\models \neg\langle A\rangle_{\mathbf{x}} \equiv[\neg A]_{\mathbf{x}}$, to prove (7.20b) it suffices to prove:
$\diamond \square \mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}} \wedge \square[\neg A]_{\mathbf{x}} \leadsto\langle A\rangle_{\mathbf{x}}$
By the definition (4.22) of SF and transitivity of $\leadsto$, to deduce (7.21) from $\mathrm{SF}_{\mathbf{x}}(A)$, it suffices to prove that $S$ implies:

$$
\begin{equation*}
\diamond \square \mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}} \wedge \square[\neg A]_{\mathbf{x}} \leadsto \square \diamond \mathbb{E}\langle A\rangle_{\mathbf{x}} \tag{7.22}
\end{equation*}
$$

We have seen that to deduce $\mathrm{WF}_{\mathbf{X}}\left(A^{R}\right)$ from $\mathrm{SF}_{\mathbf{x}}(A)$, it suffices to show (7.18) and:

$$
\begin{align*}
& \text { (a) } \models S^{R} \Rightarrow \square\left(\mathbb{E}\left\langle A^{R}\right\rangle_{\mathbf{x}} \Rightarrow \overline{\mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}}}\right)  \tag{7.23}\\
& \text { (b) } \models S \Rightarrow\left(\diamond \square \mathbb{E}\left\langle A^{\rho}\right\rangle_{\mathbf{x}} \wedge \square[\neg A]_{\mathbf{x}} \leadsto \square \diamond \mathbb{E}\langle A\rangle_{\mathbf{x}}\right)
\end{align*}
$$

For the other three possible pairs of fairness conditions on $A^{R}$ and $A$, the same argument shows that we can deduce $\mathrm{SF}_{\mathbf{X}}\left(A^{R}\right)$ instead of $\mathrm{WF}_{\mathbf{X}}\left(A^{R}\right)$ by replacing $\diamond \square$ with $\square \diamond$ in (7.23b); and we can assume $\mathrm{WF}_{\mathbf{x}}(A)$ instead of $\mathrm{SF}_{\mathbf{x}}(A)$ by replacing $\square \diamond$ with $\diamond \square$ in (7.23b).

### 7.1.5.3 The Reduction Theorem with Fairness

We have described the assumption needed to infer that the reduced program satisfies a fairness condition on a single action $A^{R}$ if the original program satisfies a fairness condition on a single action $A$. We now combine this into a theorem for inferring that the reduced program satisfies the conjunction of countably many fairness conditions $A_{i}^{R}$. This is simple, except for one problem mentioned above for the case in which $A^{R}$ is a subaction of $E^{R}$.

Recall that to satisfy (7.11), we constrained the construction of the function $\phi$ illustrated in Figures $7.2-7.4$ so that if an $E$ step is an $A$ step in the original behavior, then the corresponding $E$ step in the reduced behavior is also an $A$ step. With multiple actions $A_{i}$, if the $E$ step in the original behavior is both an $A_{i}$ and an $A_{j}$ step for $j \neq i$, it might be impossible to make the $E$ step in the transformed behavior both an $A_{i}$ and an $A_{j}$ step.

However, to satisfy (7.11), it's not necessary for every $E$ step that's an $A$ step in the original behavior to remain an $A$ step in the reduced behavior. It's only necessary to ensure that if there are infinitely many $A$ steps in the original behavior, then infinitely many of them are $A$ steps in the reduced behavior. With countably many such actions $A_{i}$, it's possible to construct the reduced behavior so that for every $i$ for which there are infinitely many $A_{i}$ steps in the original behavior, there are infinitely many $A_{i}$ steps in the reduced behavior. This is done using Theorem 4.1 of Math V the same way it is used in the proof of Theorem 4.7 in the Appendix.

We can now put together the assumptions we derived above for deducing fairness of an action $A^{R}$ from fairness of an action $A$ for individual actions $A$ into a theorem for deducing fairness of a countable number of actions $A_{i}^{R}$ from fairness of actions $A_{i}$. The requirements for $A_{i}$ a subaction of $E$ (and $A_{i}^{R}$ a subaction of $E^{R}$ ) come from (7.16). The requirements for $A_{i}$ a subaction of $C$ (and $A_{i}^{R}$ a subaction of $M^{R}$ ) come from (7.18) and (7.23) plus the modification of (7.23) for additional fairness conditions of $A$ and $A^{R}$.

Theorem 7.4 With the definitions and assumptions (1) and (2) of Theorem 7.1, let $C \triangleq(\neg \mathcal{L}) \wedge M \wedge\left(\neg \mathcal{R}^{\prime}\right)$ and let

$$
\models F \Rightarrow \forall i \in I: \mathrm{YF}_{\mathbf{x}}^{i}\left(A_{i}\right) \quad F^{R} \triangleq \forall i \in I: \mathrm{ZF}_{\mathbf{X}}^{i}\left(A_{i}^{R}\right)
$$

where $I$ is a countable set and $\mathrm{YF}^{i}$ and $\mathrm{ZF}^{i}$ are WF or SF for each $i \in I$; and assume either:

- $A_{i}$ is a subaction of $E, A_{i}^{R} \triangleq \overline{A_{i}}, \mathrm{YF}^{i}$ equals $\mathrm{ZF}^{i}$,

$$
\begin{aligned}
\models S \Rightarrow \square & {\left[\wedge\left(R \cdot\left\langle A_{i}\right\rangle_{\mathbf{x}} \Rightarrow\left\langle A_{i}\right\rangle_{\mathbf{x}} \cdot R\right) \wedge\left(\left\langle A_{i}\right\rangle_{\mathbf{x}} \cdot L \Rightarrow L \cdot\left\langle A_{i}\right\rangle_{\mathbf{x}}\right)\right.} \\
& \wedge \mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}} \wedge R \Rightarrow\left(\mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}}\right)^{\prime} \\
& \left.\wedge L \wedge\left(\mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}}\right)^{\prime} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}}\right]_{\mathbf{x}}, \quad \text { and } \\
\models S^{R} \Rightarrow & \square\left(\mathbb{E}\left\langle\overline{\left.A_{i}\right\rangle_{\mathbf{x}}} \Rightarrow \overline{\mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}}}\right)\right.
\end{aligned}
$$

or

- $A_{i}$ is a subaction of $C$,

$$
\begin{aligned}
& A_{i}^{\rho} \triangleq \neg(\mathcal{R} \vee \mathcal{L}) \wedge\left([R]_{\mathbf{x}}^{+} \cdot A_{i} \cdot[L]_{\mathbf{x}}^{+}\right) \wedge \neg(\mathcal{R} \vee \mathcal{L})^{\prime}, \\
& A_{i}^{R} \triangleq \overline{A_{i}^{\rho}}, \\
& \models S \Rightarrow \square\left[A_{i}^{\rho} \Rightarrow\left(\mathbf{x}^{\prime} \neq \mathbf{x}\right)\right]_{\mathbf{x}}, \\
& \models S^{R} \Rightarrow \square\left(\mathbb{E}\left\langle A_{i}^{R}\right\rangle_{\mathbf{x}} \Rightarrow \overline{\mathbb{E}\left\langle A_{i}^{\rho}\right\rangle_{\mathbf{x}}}\right), \text { and } \\
& \models S \wedge F \Rightarrow\left(\operatorname{lQ}^{\mathrm{Z}} \mathbb{E}\left\langle A_{i}^{\rho}\right\rangle_{\mathbf{x}} \wedge \square\left[\neg A_{i}\right]_{\mathbf{x}} \leadsto \operatorname{\Delta Q}^{\mathrm{Y}} \mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}}\right)
\end{aligned}
$$

where for Q either Y or $\mathrm{Z}, \Delta^{\mathrm{Q}} \boxtimes^{\mathrm{Q}}$ is $\diamond \square$ if QF is WF, and it is $\square \diamond$ if QF is $\mathrm{SF} .^{3}$

Then $\vDash S \wedge F \wedge \square \diamond \neg \mathcal{L} \Rightarrow \exists \mathbf{X}: S^{R} \wedge \square I^{R} \wedge F^{R}$.

### 7.1.6 An Example: Making Critical Sections Atomic

A standard concurrent coding practice is to "protect" accesses to shared data by putting them in critical sections. Recall that Section 4.2.2.1 defined a critical section to be a piece of code in a process such that no two processes can be executing their critical sections at the same time. We can consider this coding practice to be an application of reduction in which the reduced program executes the entire critical section, including its waiting and exiting code, as a single action.

We assume that critical sections are implemented with the trivial mutual exclusion algorithm $L M$ described in Figure 4.6 of Section 4.2.6.1 that uses Dijkstra's $P$ and $V$ semaphore operations. (Correctness of a mutual exclusion algorithm can be expressed as the requirement that it implements $L M$ under a suitable refinement mapping.) We assume the program is described with pseudocode, using a semaphore variable sem and a variable $p c$ to describe the control state. The variable sem initially equals 0 and is accessed by a process $p$ only by $P_{p}$ and $V_{p}$ actions that execute the $P(s e m)$ and $V($ sem $)$ operations. These actions are written in TLA as follows, where the

[^31]UNCHANGED formulas assert that all program variables other than sem and $p c$ are left unchanged:

$$
\begin{aligned}
P_{p} \triangleq & \wedge p c(p)=\ldots \\
& \wedge(\operatorname{sem}=1) \wedge\left(s e m^{\prime}=0\right) \\
& \wedge p c^{\prime}=(p c \text { EXCEPT } p \mapsto \ldots) \\
& \wedge \text { UNCHANGED } \ldots \\
V_{p} \triangleq & \wedge p c(p)=\ldots \\
& \wedge \operatorname{sem}^{\prime}=1 \\
& \wedge p c^{\prime}=(p c \text { EXCEPT } p \mapsto \ldots) \\
& \wedge \text { UNCHANGED } \ldots
\end{aligned}
$$

The value of sem is therefore always either 0 or 1 . An execution of a critical section by process $p$ consists of a $P_{p}$ step, followed by steps satisfying actions $C S_{p, 1}, \ldots, C S_{p, k_{p}}$ that represent executions of statements in the critical section, followed by a $V_{p}$ step. The assumption that shared data is accessed only within a critical section means that if an action $E_{q}$ describes a statement of process $q$ outside a critical section (meaning not a $P_{q}, C S_{q, j}$, or $V_{q}$ action), then each action $C S_{p, i}$ commutes with $E_{q}$ if $p \neq q$.

We can reduce a program using critical sections in this way by making execution of each critical section a single step. This is done by a sequence of applications of our reduction theorems, each one reducing one critical section of a single process. When doing multiple reductions, it would get confusing if we introduced new variables for each reduction. We therefore consider the reduced version $S^{R}$ of a program $S$ to be the program $S^{R}$ described in our theorems, except with $\mathbf{x}$ substituted for $\mathbf{X}$. In our theorems, the $M^{R}$ that executes the operation described by action $M$ as a single step is defined to equal $M^{\rho}$ with $\mathbf{x} \leftarrow \mathbf{X}$. When we use the variables $\mathbf{x}$ instead of $\mathbf{X}$ for the reduced program, $M^{R}$ becomes $M^{\rho}$.

To apply the theorems to a critical section of a process $p$, we let $M_{p}$ equal $P_{p} \vee C S_{p, 1} \vee \ldots \vee C S_{p, k_{p}} \vee V_{p}$, so $M^{p}$ is replaced in the reduced program by $M_{p}^{\rho}$. We could let any of those actions be the action $C$, but it is most convenient to let $C$ be the $P_{p}$ action, so there is no action $R$ and action $L$ is $C S_{p, 1} \vee \ldots \vee C S_{p, k_{p}} \vee V_{p}$. By Theorem 7.2, it suffices to show that $V_{p}$ and each $C S_{p, i}$ left-commutes with every action of every process $q \neq p$. (Action $L$ trivially left-commutes with any action of process $p$ not a subaction of $M_{p}$.) The possible actions of process $q$ are $P_{q}, V_{q}, C S_{q, j}$ for some $j$, an action $E_{q}$ not in a critical section, and $M_{q}^{\rho}$ if the operation described by $M_{q}$ has already been reduced. Here is why $V_{p}$ and $C S_{p, i}$ commute with each of those actions of process $q \neq p$ :
$P_{q}: V_{p}$ left-commutes with $P_{q}$ because the mutual exclusion algorithm implies that $V_{p}$ is not enabled when a process $q \neq p$ is in its critical section, so $P_{q} \cdot V_{p}$ equals FALSE; $C S_{p, i}$ commutes with $P_{q}$ because it does not access sem or $p c(q)$ (meaning that it does not depend on or modify sem or $p c(q))$.
$V_{q}: V_{p}$ commutes with $V_{q}$ because any two $V(\mathrm{sem})$ operations commute; $C S_{p, i}$ commutes with $V_{p}$ because it does not access sem or $p c(q)$.
$C S_{q, j}: C S_{q, j} \cdot V_{p}$ and $C S_{q, j} \cdot C S_{p, i}$ both equal FALSE because a $C S_{q, j}$ step leaves process $q$ inside its critical section, which by the mutual exclusion algorithm implies process $q$ is outside its critical section so neither $C S_{p, i}$ nor $V_{p}$ is enabled.
$E_{q}: V_{p}$ commutes with $E_{q}$ because $E_{q}$ does not access sem or $p c(p)$; and $C S_{p, i}$ commutes with $E_{q}$ because of the assumption that actions describing a statement inside a critical section commute with all actions describing statements not in another process's critical section.
$M_{q}^{\rho}$ : Both $M_{q}^{\rho} \cdot V_{p}$ and $M_{q}^{\rho} \cdot C S_{p, i}$ equal FALSE because an $M_{q}^{\rho}$ step leaves sem $=1$, while the mutual exclusion algorithm implies that $V_{p}$ and $C S_{p, i}$ are enabled only when $s e m=0$.

This shows that $S$ implies $E \cdot L \Rightarrow L \cdot E$, so since there is no $R$ action, we can apply Theorem 7.1. There is still the formula $\square \diamond \neg \mathcal{L}$ to deal with. If the program has fairness assumptions, then we expect $\square \diamond \neg \mathcal{L}$ to be implied by fairness assumptions of the $L$ actions. If not, then by Theorem 7.3 we can verify safety properties by showing that, after executing process $p$ 's $P_{p}$ statement, it is always possible for execution of the critical section to complete. It's hard to imagine an application of mutual exclusion that would allow a behavior in which it is impossible for some process ever to exit its critical section.

We now consider deducing fairness properties of the reduced program. First, let action $A$ describe a statement outside any critical section. If the statement is in process $p$, then $A^{\rho}$ equals $A$ so fairness of $A^{\rho}$ is equivalent to fairness of $A$. If $A$ is an action of a process other than $p$, the argument above shows that $L$ commutes with $\langle A\rangle_{\mathbf{x}}$. If $\langle A\rangle_{\mathbf{x}}$ is a subaction of the next-state action of $S$, then an $L \wedge\left(\mathbb{E}\langle A\rangle_{\mathbf{x}}\right)^{\prime}$ step ends in a state in which an $\langle A\rangle_{\mathbf{x}}$ step can occur, which by commutativity of $L$ and $\langle A\rangle_{\mathbf{x}}$ implies it begins in a state in which an $\langle A\rangle_{\mathbf{x}}$ step can occur, so $S$ implies $\square\left(L \wedge\left(\mathbb{E}\langle A\rangle_{\mathbf{x}}\right)^{\prime} \Rightarrow\right.$ $\left.\mathbb{E}\langle A\rangle_{\mathbf{x}}\right)$. We expect $\square\left(\mathbb{E} \overline{\left\langle A_{i}\right\rangle_{\mathbf{x}}} \Rightarrow \overline{\mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}}}\right)$ to be true, since substitution has been found to distribute over $\mathbb{E}$ for most actions. (However, there is
little experience with the substitution $\mathbf{x} \leftarrow \mathbf{X}$ that occurs in reduction.) If this formula is true, then by Theorem 7.4 we can deduce fairness of $A^{\rho}$ from fairness of $A$.

We expect the most common fairness property for a subaction of $M_{p}^{\rho}$ to be fairness of $M_{p}^{\rho}$ itself. In this case $C$ is $P_{p}$, and we expect to deduce a fairness condition of $M_{p}^{\rho}$ from the same fairness condition of the $P_{p}$ action. There is no $R$ action, so the definitions of $P_{p}$ and $M_{p}^{\rho}$ imply $M_{p}^{\rho} \Rightarrow\left(\mathbf{x}^{\prime} \neq \mathbf{x}\right)$ and $\mathbb{E}\left\langle M_{p}^{\rho}\right\rangle_{\mathbf{x}} \Rightarrow \mathbb{E}\left\langle P_{p}\right\rangle_{\mathbf{x}}$. (In the unlikely case that process $p$ does nothing but repeatedly execute the critical section, so $M_{p}^{\rho}$ leaves $p c(p)$ unchanged, we need to add the assumption that $M_{p}^{\rho}$ changes some other variable.) The only remaining requirement to deduce from Theorem 7.4 that fairness of $P_{p}$ implies fairness of $M_{p}^{\rho}$ is:

$$
\models S^{R} \Rightarrow \square\left(\mathbb{E}\left\langle M^{R}\right\rangle_{\mathbf{x}} \Rightarrow \overline{\mathbb{E}\left\langle M^{\rho}\right\rangle_{\mathbf{x}}}\right)
$$

Since $\left\langle M^{R}\right\rangle_{\mathbf{x}}$ equals $\overline{\left\langle M^{\rho}\right\rangle_{\mathbf{x}}}$, this is true if substitution distributes over $\mathbb{E}$ for the action $\left\langle M^{\rho}\right\rangle_{\mathbf{x}}$.

We have described the mathematics underlying the use of mutual exclusion to implement atomic operations. We have ignored the question of what that achieves. We use mutual exclusion to view execution of the critical section as a single step, but is that a correct view? The answer lies in condition R3 of Section 7.1.1.2, which tells us when we can deduce that the original program satisfies a property that the reduced program satisfies. The only part of the invariant $I^{R}$ that seems useful in condition R3 is the conjunct $\neg(\mathcal{R} \vee \mathcal{L}) \Rightarrow(\mathbf{X}=\mathbf{x})$, which asserts that the variables of the original program and the reduced one have equal values when no process is executing its critical section.

### 7.1.7 Another Example: Pipelining

Here is a sketch of a simple example of reduction that is interesting in part because each operation being reduced contains actions performed by two different processes. The example is a very abstract view of one stage in a pipelined computation - a view that tells us nothing about what is being computed.

The program $S$ performs a sequence of computations. Each computation presumably obtains some input, does some computation, and then produces some output-but that is irrelevant. What concerns us is that the computations are pipelined as follows so they can be performed concurrently by two processes. Process 1 performs the first part of the computation to
obtain a partial result that it appends to the end of a FIFO queue. Process 2 removes the partial result from the head of the queue and completes the computation. Process 1 can therefore get ahead of process 2 , performing its part of the $i^{\text {th }}$ computation while process 2 is still performing its part of the $j^{\text {th }}$ computation, for $i>j$. The reduced program $S^{R}$ replaces these two processes with a single process that performs each computation as a single atomic action. The property we want to prove by reduction presumably involves how the computed values are used after they are computed, when they have the same values in the original and reduced programs, so condition R3 is satisfied.

We describe steps of process 1 by an action $C m p 1 \vee S e n d$, where that process's part of a computation consists of a finite sequence of $C m p 1$ steps followed by a single Send step that appends the partial result to the tail of the queue. Steps of process 2 are described by an action Rcv $\vee C m p 2$, where that process's part of the computation consists of a single Rcv step that removes the partial result from the head of the queue followed by a finite sequence of $C m p 2$ steps. The contents of the queue are described by the variable qBar, which is accessed only by the Send and Rcv actions. We assume that the two processes communicate only through the FIFO qBar, an assumption expressed by these conditions: $C m p 1$ commutes with the process 2 actions $R c v$ and $C m p 2$, and $C m p 2$ commutes with the process 1 actions $C m p 1$ and Send. Since $q B a r$ is the only shared variable accessed by $R c v$ and Send, it doesn't matter in which order these two actions are executed in a state where the queue is nonempty. Thus, we have:

$$
\begin{equation*}
\models(q B a r \neq\langle \rangle) \Rightarrow(\text { Send } \cdot R c v \equiv \text { Rcv } \cdot \text { Send }) \tag{7.24}
\end{equation*}
$$

The program may contain other processes that can interact in some way with processes 1 and 2 . For example, process 1 may obtain its input from a third process and process 2 may send its output to a fourth process.

The program's next-state action is $M \vee O$, where $M$ describes processes 1 and 2 and $O$ describes any other processes. We rewrite $M$ in the form $\exists n \in \mathbb{N}^{+}: M_{n}$, where $\mathbb{N}^{+}$is the set of positive integers and $M_{n}$ is an action whose steps describe a complete execution of the $n^{\text {th }}$ computation. To do this, we assume state functions snum and rnum whose values are the numbers of Send and Rcv actions, respectively, that have been executed. Initially, snum $=$ rnum $=0$. The Send action increments snum by 1 and the $R c v$ action increments rnum by 1 . We can then define:

$$
\begin{align*}
M_{n} \triangleq & \vee(\text { snum }=n-1) \wedge(C m p 1 \vee S \text { end })  \tag{7.25}\\
& \vee((\text { rnum }=n-1) \wedge R c v) \vee((\text { rnum }=n) \wedge C m p 2)
\end{align*}
$$

We recursively define the $n^{\text {th }}$ reduction of the program to be the one obtained by reducing the operations $M_{1}, \ldots, M_{n}$ in that order. To define the $n^{\text {th }}$ reduction, define:

$$
\begin{aligned}
& C m p 1_{n} \triangleq(\text { snum }=n-1) \wedge C m p 1 \\
& \text { Send }_{n} \triangleq(\text { snum }=n-1) \wedge S e n d \\
& R c v_{n} \triangleq(\text { rnum }=n-1) \wedge R c v \\
& C m p 2_{n} \triangleq(\text { rnum }=n) \wedge C m p 2
\end{aligned}
$$

so $M_{n}$ equals $C m p 1_{n} \vee \operatorname{Send}_{n} \vee R c v_{n} \vee C m p 2_{n}$. The actions $R, C$, and $L$ for the $n^{\text {th }}$ reduction are:

$$
R_{n} \triangleq C m p 1_{n} \quad C_{n} \triangleq \operatorname{Send}_{n} \quad L_{n} \triangleq R c v_{n} \vee C m p 2_{n}
$$

Again, with multiple reductions we let the reduced program have the same variables as the original program, so the $n^{\text {th }}$ reduction replaces the action $M_{n}$ with $M_{n}^{\rho}$.

The remaining action $E$ for this reduction is the disjunction of these actions: the action $O$ describing the other processes, the already reduced actions $M_{k}^{\rho}$ for $k<n$, and the subactions of $M_{k}$ for $k>n$. To apply Theorem 7.1, we must show that $R_{n}$ right-commutes with these actions and $L_{n}$ left-commutes with them.

That $R_{n}$ right-commutes and $L_{n}$ left-commutes with $O$ must be assumed. The commutativity relations hold for $M_{k}^{\rho}$ with $k<n$ because an $R_{n}$ step is enabled only after an $M_{k}^{\rho}$ step, which implies $R_{n} \cdot M_{k}^{\rho}$ equals FALSE (so $R_{n}$ right commutes with $M_{k}^{\rho}$ ), and which also implies that $L_{n}$ cannot be enabled immediately after an $M_{k}^{\rho}$ step, so $M_{k}^{\rho} \cdot L_{n}$ also equals FALSE.

What remains to be shown is that $C m p 1_{n}$ (the action $R_{n}$ ) right commutes with $M_{k}$, and that $R c v_{n}$ and $C m p 2_{n}$ (whose disjunction equals $L_{n}$ ) left commutes with $M_{k}$, for $k>n$. For that, we have to show that each of the four actions whose disjunction equals $M_{k}$ satisfy those commutativity conditions. We will use the commutativity relations we assumed above: that $C m p 1$ commutes with $C m p 2$ and $R c v$, and that $C m p 2$ commutes with Send. The assumption that Cmp 2 commutes with Send implies that $C m p 2_{i}$ commutes with $\operatorname{Send}_{j}$ for all $i$ and $j$. This follows from the definitions of $C m p 2_{i}$ and $S e n d_{j}$, because Cmp2 does not depend on or modify snum and Send $_{j}$ does not depend on or modify rnum. Similarly, $\operatorname{Cmp} 1_{i}$ commutes with $R c v_{j}$ and $C m p 2_{j}$ for all $i$ and $j$. These assumptions are called the commutativity assumptions in the following proof sketches of the required commutativity relations. Recall that we are assuming $k>n$.
$C m p 1_{n}$ right-commutes with $C m p 1_{k}$ and $S_{n d}$
$C m p 1_{n} \cdot C m p 1_{k}$ and $C m p 1_{n} \cdot \operatorname{Send}_{k}$ equal FALSE because snum $=n-1$ after a $C m p 1_{n}$ step; $C m p 1_{k}$ and $\operatorname{Send}_{k}$ are enabled iff snum $=k-1$; and $k>n$.
$C m p 1_{n}$ right-commutes with $R c v_{k}$ and $C m p 2_{k}$
By the commutativity assumptions.
$R c v_{n}$ left-commutes with $C m p 1_{k}$
By the commutativity assumptions.
$R c v_{n}$ left-commutes with $\operatorname{Send}_{k}$
A $S e n d_{k}$ step is enabled only if snum $=k-1$; the step leaves rnum unchanged; and $R c v_{n}$ is enabled only if rnum $=n-1$. Therefore, Send $_{k} \cdot R c v_{n}$ enabled implies snum $=k-1$ and rnum $=n-1$, so $k>n$ implies snum $>$ rnum which implies $q B a r \neq\langle \rangle$. By (7.24), this implies Send $_{k} \cdot$ Rcv $_{n} \equiv$ Rcv $_{n} \cdot$ Send $_{k}$.
$R c v_{n}$ left-commutes with $R c v_{k}$ and $C m p 2_{k}$
$R c v_{k} \cdot R c v_{n}$ and $C m p 2_{k} \cdot R c v_{n}$ equal false because a $R c v_{k}$ or $C m p 2_{k}$ step ends in a state with rnum $=k$ which by $k>n$ implies rnum $\neq$ $n-1$, so $R c v_{n}$ is not enabled in that state.
$C m p 2_{n}$ left-commutes with $C m p 1_{k}$ and $S_{e n d}^{k}$
By the commutativity assumptions.
$C m p 2_{n}$ left-commutes with $R c v_{k}$ and $C m p 2_{k}$
A $R c v_{k}$ or $C m p 2_{k}$ step ends with rnum $=k$, and $C m p 2_{n}$ is enabled only if rnum $=n$, which is false because $k>n$. Therefore a $\operatorname{Cmp} 2_{n}$ step cannot follow a $R c v_{k}$ or $C m p 2_{k}$ step, so $R c v_{k} \cdot C m p 2_{n}$ and $C m p 2_{k}$. $C m p 2_{n}$ equal FALSE.

This handles the commutativity assumptions of Theorem 7.1. We still have the hypothesis $\square \diamond \neg \mathcal{L}$ in the theorem's conclusion to deal with. By Theorem 7.3, to use reduction for verifying safety properties, we don't need that hypothesis. We only have to show that any finite behavior satisfying the safety property $S$ can be extended to a behavior that completes each $M_{n}$ operation in which the $C_{n}$ action has occurred. This means showing that Process 2 cannot deadlock. This should be easy to show unless process 2 may have to wait for another process to do something-for example, until another process is ready to receive process 2's output.

For reasoning about liveness, we would expect the hypothesis $\square \diamond \neg \mathcal{L}$ to be satisfied by adding fairness conditions to process 2 actions, and perhaps to
other processes, to ensure that the operation will complete once process 1's Send action occurs. The obvious fairness condition we want the reduced program to satisfy is fairness of $M^{\rho}$. If an $M_{n}^{\rho}$ action is enabled, then no $M_{i}^{\rho}$ action with $i \neq n$ can be enabled until an $M_{n}^{\rho}$ step occurs. This implies that (weak or strong) fairness of $M^{\rho}$ is equivalent to fairness of $M_{n}^{\rho}$ for all $n$. For each $n$, ensuring fairness of $M_{n}^{\rho}$ is the second case in Theorem 7.4, with $A_{i}$ equal to $C_{n}$, which equals $\operatorname{Send}_{n}$. The assumption $\models S \wedge F \Rightarrow \ldots$ in that case of the theorem will have to be implied by fairness conditions on subactions of $C m p 1$.

### 7.2 Decomposing and Composing Programs

We think of a program as consisting of multiple components. Most often those components are processes. However, a process of an abstract program need not correspond to a process (or thread) in a coding language. As we saw in Section 1.5, Euclid's algorithm can be viewed as a multiprocess program. In general, any disjunct of a program's next-state action can be thought of as a process, and we may be able to write the next-state action in more than one way as the disjunction of subactions. We now use the term component instead of process for what is described by a disjunct of the program's next-state action.

In this section, we describe a program as the conjunction of separate programs, each describing one of the program's components. There are two reasons for doing this. The first is that we have the program and want to decompose the problem of verifying its correctness into the simpler tasks of verifying correctness of each of its components. We call this procedure decomposition and consider it in Section 7.2.1. The second reason is because the program is implemented using existing components whose correctness has been verified. We want to deduce correctness of the program from correctness of the components, without knowing how the components are implemented. This procedure is called composition and is considered in Section 7.2.2.

There is little reason to decompose a program if we are proving its correctness. Decomposition structures the proof in three parts: (1) showing that the program is equivalent to the conjunction of programs describing the components, (2) showing that each of those programs satisfies a property, and (3) showing that the conjunction of those properties implies correctness of the original program. Such a proof can be rewritten as an ordinary correctness proof of the original algorithm by a simple rearrangement of the
steps of those three parts. But math provides many ways to structure a proof, and deciding in advance to structure it by decomposition might rule out better proofs.

The one good reason to decompose the verification of a program in this way is that it may make it easier to use a tool to verify correctness. For example, a model checker might be able to verify correctness of individual components but not correctness of the complete program. Decomposition would allow using model checking to perform part of the verification, and then using the results presented here to prove that correctness of the components implies correctness of the entire program. This approach has been applied to a nontrivial example [24], but I don't know of any case in which it has been used in industry.

Composition is useful if an engineer wants to verify correctness of a program that describes a system built using an existing component whose behavior is specified by an abstract program. Up until now, we have described a program by a formula that is satisfied by behaviors in which the program to be implemented, which I will here call the actual program, and its environment are both acting correctly. There was no need for the mathematical description to separate the actual program and its environment, since it makes no difference if an execution is incorrect because the programmer didn't understand what the code would do or what the environment would do. However, if a program is implemented using a component purchased elsewhere, it is important to know if an incorrect behavior is due to an incorrect implementation of the actual program or of the component, which is part of the environment.

For composition, we therefore describe a program with two formulas, formula $M$ describing the correct behavior of the actual program and a formula $E$ describing correct behavior of its environment. These formulas are combined into a single formula, written $E \stackrel{\rightharpoonup}{\square} M$, that can be thought of as being true of a behavior iff $M$ is true as long as $E$ is (so $M$ is always true if $E$ is always true). Formula $E \xrightarrow{\square} M$ is what is called a rely/guarantee description of the program [22].

Currently, implementing actual programs with precisely specified existing components seems likely to arise in practice only for components that are traditional programs that perform a computation and stop; and where execution of the component can be considered to be a single step of the complete program. In that case, there is no need for TLA. As explained in Appendix Section A.5, the safety property of the component can be specified by a Hoare triple; and termination is the only required liveness property. Composition in TLA is needed only if the existing component interacts with
its environment in a more complex way that must be described with a more general abstract program. Such reusable, precisely specified components do not seem to exist now. Perhaps someday they will.

The results presented here come from a single paper [2]. The reader is referred to that paper for the proofs. To make reading it easier, much of the notation used here - including the identifiers in formulas - is taken from that paper.

### 7.2.1 Decomposing Programs

### 7.2.1.1 Writing a Program as a Conjunction

As an example, we take Euclid's algorithm, described in Section 1.5. Instead of $x$ and $y$, let's name the variables $a$ and $b$. Also, instead of having the algorithm compute the GCD of two particular numbers, we'll let it nondeterministically choose the initial values of $a$ and $b$ and compute their GCD.

To write the algorithm in TLA, let's first define formulas that describe the initial values of each of the variables, how they are changed in the nextstate action, and fairness of the actions that change them, where $\mathbb{N}^{+}$is the set of positive integers. Here are those formulas for the variable $a$ :

$$
\begin{aligned}
& \text { Init }_{a} \triangleq a \in \mathbb{N}^{+} \\
& \text {Next }_{a} \triangleq(a>b) \wedge\left(a^{\prime}=a-b\right) \wedge\left(b^{\prime}=b\right) \\
& L_{a} \triangleq \mathrm{WF}_{\langle a\rangle}\left(\text { Next }_{a}\right)
\end{aligned}
$$

The formulas $\mathrm{Init}_{b}, \mathrm{Next}_{b}$, and $L_{b}$ are obtained from these formulas by interchanging $a$ and $b$. Note that $L_{a}$ is equivalent to $\mathrm{WF}_{\langle a, b\rangle}\left(\right.$ Next $\left._{a}\right)$ because Next ${ }_{a}$ implies $b^{\prime}=b$, and similarly, $L_{b}$ is equivalent to $\mathrm{WF}_{\langle a, b\rangle}\left(\right.$ Next $\left._{b}\right)$.

We can describe Euclid's algorithm with the following TLA formula $M$ :

$$
\begin{aligned}
& M \triangleq \text { Init }_{M} \wedge \square\left[\text { Next }_{M}\right]_{\langle a, b\rangle} \\
& \text { Init }_{M} \triangleq \text { Init }_{a} \wedge \text { Init }_{b} \\
& \text { Next }_{M} \triangleq \operatorname{Next}_{a} \vee \text { Next }_{b} \\
& L_{M} \triangleq L_{a} \wedge L_{b}
\end{aligned}
$$

Formula $M$ is equivalent to the conjunction of $M_{a}$ and $M_{b}$, defined by:

$$
\begin{aligned}
& M_{a} \triangleq \text { Init }_{a} \wedge \square\left[\text { Next }_{a}\right]_{a} \wedge L_{a} \\
& M_{b} \triangleq \text { Init }_{b} \wedge \square\left[\text { Next }_{b}\right]_{b} \wedge L_{b}
\end{aligned}
$$

The equivalence of $M$ and $M_{a} \wedge M_{b}$ follows by simple logic from:

$$
\models \square\left[\operatorname{Next}_{a}\right]_{a} \wedge \square\left[\text { Next }_{b}\right]_{b} \equiv \square\left[\text { Next }_{a} \vee \operatorname{Next}_{b}\right]_{\langle a, b\rangle}
$$

This result follows from the equivalence of $\square(F \wedge G)$ and $\square F \wedge \square G$, for any formulas $F$ and $G$, and from

$$
\left[\text { Next }_{a}\right]_{a} \wedge\left[\text { Next }_{b}\right]_{b} \equiv\left[\text { Next }_{a} \vee \text { Next }_{b}\right]_{\langle a, b\rangle}
$$

which follows from the definition of $[\ldots]$..., the equivalence of $\left(a^{\prime}=a\right) \wedge\left(b^{\prime}=\right.$ $b$ ) and $\langle a, b\rangle^{\prime}=\langle a, b\rangle$, and:

$$
\begin{equation*}
\models \text { Next }_{a} \Rightarrow\left(b^{\prime}=b\right) \quad \models \text { Next }_{b} \Rightarrow\left(a^{\prime}=a\right) \tag{7.26}
\end{equation*}
$$

That $M$ is equivalent to $M_{a} \wedge M_{b}$ depends only on (7.26), not on any other properties of Next ${ }_{a}$ and $N_{a x t}$, and not on the definitions of Init $_{a}$, Init $_{b}$, $L_{a}$, or $L_{b}$. Moreover, it remains true if each variable $a$ and $b$ is replaced by a tuple of variables, as long as those two tuples have no variable in common and (7.26) is satisfied. In other words, if a program consists of two components, each modifying different variables than the other, then the program can be decomposed as the conjunction of two programs, each describing one of the components.

The following theorem generalizes this example from two to $n$ components. It replaces $M_{a}$ and $M_{b}$ by processes $M_{i}$ for $i \in 1 \ldots n$, replaces $a$ and $b$ by the lists $m_{i}$ of variables modified by each component $i$, and replaces (7.26) by the requirement that for each $i$, the next-state action Next ${ }_{i}$ of $M_{i}$ implies $\left\langle m_{j}\right\rangle^{\prime}=\left\langle m_{j}\right\rangle$ for $j \neq i{ }^{4}$

Theorem 7.5 If $m_{1}, \ldots, m_{n}$ are each lists of variables, with all the variables in all the lists distinct, $N \triangleq 1 \ldots n$, and

$$
\begin{aligned}
& m \triangleq m_{1}, \ldots, m_{n} \\
& M_{i} \triangleq \text { Init }_{i} \wedge \square\left[\text { Next }_{i}\right]_{\left\langle m_{i}\right\rangle} \wedge L_{i} \\
& M \triangleq \forall i \in N: M_{i} \\
& \models M \Rightarrow \square\left[\forall i, j \in N: \operatorname{Next}_{i} \wedge(i \neq j) \Rightarrow\left(\left\langle m_{j}\right\rangle^{\prime}=\left\langle m_{j}\right\rangle\right)\right]_{m}
\end{aligned}
$$

then

$$
\models M \equiv\left(\forall i \in N: \text { Init }_{i}\right) \wedge \square\left[\exists i \in N: \operatorname{Next}_{i}\right]_{\langle m\rangle} \wedge\left(\forall i \in N: L_{i}\right)
$$

We can further generalize this theorem to allow hiding of variables local to components. Suppose that for each component $i$, we might want to hide

[^32]a sublist $y_{i}$ of the variable list $m_{i}$, where the variables $y_{i}$ do not appear in any $M_{j}$ with $j \neq i$. We can then define $M$ by
$$
M \triangleq \forall i \in N:\left(\exists y_{i}: M_{i}\right)
$$
where if $y_{i}$ is the empty tuple, then $\exists y_{i}: M_{i}$ equals $M_{i}$. We must modify the hypothesis $\vDash M \Rightarrow \square[\ldots]_{m}$ by replacing $m_{j}$ with the variables of $m_{j}$ not in $y_{j}$, and make this the conclusion:
\[

$$
\begin{aligned}
\models M \equiv & \exists y_{1}, \ldots, y_{n}: \\
& \quad\left(\forall i \in N: \text { Init }_{i}\right) \wedge \square\left[\exists i \in N: \widehat{\operatorname{Next}_{i}}\right]_{\langle m\rangle} \wedge\left(\forall i \in N: L_{i}\right)
\end{aligned}
$$
\]

where $\widehat{\operatorname{Next}_{i}} \triangleq \operatorname{Next}_{i} \wedge \forall j \in N \backslash\{i\}: y_{j}^{\prime}=y_{j}$.
Another generalization is to require only that different components modify different parts of the state, not necessarily different variables. For example, suppose the components are processes and process $i$ modifies $p c(i)$, where the value of the variable $p c$ is always a function whose domain is the set $N$. In the hypothesis $\models M \Rightarrow \square[\ldots]_{m}$, we can replace the expression $\left\langle m_{j}\right\rangle^{\prime}=\left\langle m_{j}\right\rangle$ by a state predicate $\nu_{j}$, where the predicates $\nu_{i}$ must satisfy only the additional hypothesis:

$$
\models M \Rightarrow \square\left[\left(\forall i \in N: \nu_{i}\right) \Rightarrow\left(m^{\prime}=m\right)\right]_{\langle m\rangle}
$$

For the example in which process $i$ modifies $p c(i)$, we can define $\nu_{i}$ so it implies $(\exists S: p c \in(N \rightarrow S)) \wedge\left(p c^{\prime}(i)=p c(i)\right)$.

For simplicity, we consider only decomposing programs as described by Theorem 7.5. The rest of what we say about program decomposition can be generalized to these more general ways to decompose programs.

### 7.2.1.2 Decomposing Proofs

We now consider decomposing the verification that a program is correct into the verification that its components are correct. Let's start with a program with two variables $c$ and $d$ and two components, each component modifying one of the variables. Let's suppose we have decomposed the program into the conjunction $M_{c}^{l} \wedge M_{d}^{l}$, and we have decomposed its correctness property into $M_{c} \wedge M_{d}$, where $M_{c}$ and $M_{d}$ are correctness conditions for the two components. We have to verify:

$$
\begin{equation*}
\vDash M_{c}^{l} \wedge M_{d}^{l} \Rightarrow M_{c} \wedge M_{d} \tag{7.27}
\end{equation*}
$$

and we'd like to do this by verifying that $M_{c}^{l}$ satisfies $M_{c}$ and that $M_{d}^{l}$ satisfies $M_{d}$. We can obviously do that if we can verify

$$
\models M_{c}^{l} \Rightarrow M_{c} \quad \text { and } \quad \models M_{d}^{l} \Rightarrow M_{d}
$$

However, those conditions are unlikely to be true. The component program $M_{c}^{l}$ is unlikely to satisfy $M_{c}$ when used as a component of an arbitrary program. Its correctness will depend upon some property of its environment $M_{d}^{l}$. Similarly, correctness of $M_{d}^{l}$ will depend upon some property of $M_{c}^{l}$.

We can obviously reduce verification of (7.27) to verifying

$$
\models M_{c}^{l} \wedge M_{d}^{l} \Rightarrow M_{c} \quad \text { and } \quad \models M_{c}^{l} \wedge M_{d}^{l} \Rightarrow M_{d}
$$

but that doesn't reduce the amount of work involved. However, suppose that correctness of $M_{c}^{l}$ doesn't depend on its environment being the component $M_{d}^{l}$, but just requires its environment to satisfy the correctness condition $M_{d}$ of that component, and similarly correctness of $M_{d}^{l}$ just requires that the other component satisfies $M_{c}$. We would then like to reduce verification of (7.27) to verifying:

$$
\begin{equation*}
\vDash M_{d} \wedge M_{c}^{l} \Rightarrow M_{c} \quad \text { and } \quad \models M_{c} \wedge M_{d}^{l} \Rightarrow M_{d} \tag{7.28}
\end{equation*}
$$

This would reduce the amount of work because $M_{c}$ and $M_{d}$ are probably significantly simpler than $M_{c}^{l}$ and $M_{d}^{l}$. Can we do that?

Let's consider the following trivial example, where each component initializes its variable to 0 and keeps setting its variable's value to the value of the other component's variable.

$$
\begin{gather*}
M_{c}^{l} \triangleq(c=0) \wedge \square\left[\left(c^{\prime}=d\right) \wedge\left(d^{\prime}=d\right)\right]_{c}  \tag{7.29}\\
\wedge \mathrm{WF}_{c}\left(\left(c^{\prime}=d\right) \wedge\left(d^{\prime}=d\right)\right) \\
M_{d}^{l} \triangleq(d=0) \wedge \square\left[\left(d^{\prime}=c\right) \wedge\left(c^{\prime}=c\right)\right]_{d} \\
\wedge \operatorname{WF}_{d}\left(\left(d^{\prime}=c\right) \wedge\left(c^{\prime}=c\right)\right)
\end{gather*}
$$

We take as the correctness condition of each component that its variable always equals 0 :

$$
M_{c} \triangleq \square(c=0) \quad \text { and } \quad M_{d} \triangleq \square(d=0)
$$

Condition (7.28) is satisfied because each component's variable keeps setting its variable to 0 (that is, it can take nothing but stuttering steps) if the other component's variable always equals 0 . As we would hope, the correctness condition (7.27) is also satisfied because the program consisting of those two components keeps both $c$ and $d$ always equal to 0 .

Now let's replace $M_{c}$ and $M_{d}$ by the properties asserting that $c$ and $d$ eventually equal 1 :

$$
M_{c} \triangleq \diamond(c=1) \quad M_{d} \triangleq \diamond(d=1)
$$

while keeping $M_{c}^{l}$ and $M_{d}^{l}$ the same. Condition (7.28) is still satisfied because each component eventually sets its variable to 1 if the other component sets its variable to 1 . However, (7.27) is not satisfied. Changing the correctness conditions doesn't change the behavior of the program, which is to take nothing but stuttering steps.

We might ask why we can't deduce (7.27) from (7.28) in this example. However, the real question is why we can deduce it in the first example. Deducing (7.27) from (7.28) is deducing, from the assumption that correctness of each component implies correctness of the other, that both components are correct. This is circular reasoning, and letting $M_{c}=M_{d}=$ FALSE shows that it allows us to deduce that any program implies FALSE, from which we can deduce that the program satisfies any property.

So, why does (7.28) imply (7.27) in the first case? Why can we deduce that both components leave their variables equal to 0 from the assumption that each component leaves its variable equal to 0 if the other process leaves its variable equal to 0 ? The reason is that neither process can set its variable to a value other than 0 until the other one does. Stated more generally, we can deduce that both components in a two-component program satisfy their correctness properties if neither component can violate its correctness property until after the other does. So we want to replace (7.28) by:

$$
\begin{align*}
& \vDash \forall k \in \mathbb{N}:  \tag{7.30}\\
& \quad\left(M_{d} \text { true through state } k-1\right) \\
& \quad \wedge\left(M_{c}^{l} \text { true through state } k\right) \Rightarrow\left(M_{c} \text { true through state } k\right)
\end{align*}
$$

plus the same condition with $c$ and $d$ interchanged, where $F$ true through state -1 is taken to be true for any property $F$.

To express (7.30) precisely, we have to say what it means for a property $F$ to be true through state $k$. If $F$ is a safety property, it means that $F$ is true of the finite behavior $\sigma(0) \rightarrow \ldots \rightarrow \sigma(k)$, which means it's true of the (infinite) behavior obtained by repeating the state $\sigma(k)$ forever. It follows from Theorems 4.4 and 4.5 that any property $F$ equals $\mathcal{C}(F) \wedge L$ where $L$ is a liveness property such that $\langle\mathcal{C}(F), L\rangle$ is machine closed. By the definition of machine closure (in Section 4.2.2.2), any finite behavior that satisfies $\mathcal{C}(F)$ can be completed to a behavior satisfying $\mathcal{C}(F) \wedge L$, which equals $F$. Therefore, the only way a behavior can fail to satisfy $F$ through state $k$ is for it not to satisfy $\mathcal{C}(F)$ through state $k$, so $F$ is true through state $k$ means that $\mathcal{C}(F)$ is true through state $k$. We should therefore replace $M_{d}, M_{c}^{l}$, and $M_{c}$ by $\mathcal{C}\left(M_{d}\right), \mathcal{C}\left(M_{c}^{l}\right)$, and $\mathcal{C}\left(M_{c}\right)$ in (7.30). For a safety property, true through state $k$ means true if all states $i$ with $i>k$ equal state $k$, so we
can rewrite the resulting condition as:

$$
\begin{align*}
& =\forall k \in \mathbb{N}:  \tag{7.31}\\
& \quad(\text { every state after state } k \text { equals state } k) \Rightarrow \\
& \quad\left(\left(\mathcal{C}\left(M_{d}\right) \text { true through state } k-1\right) \wedge \mathcal{C}\left(M_{c}^{l}\right) \Rightarrow \mathcal{C}\left(M_{c}\right)\right)
\end{align*}
$$

Next, let $v$ be the tuple of all variables in these formulas. We can then replace the assertion "every state $\ldots$ state $k$ " in (7.31) with " $v$ " $=v$ from state $k$ on". By predicate logic, if $k$ does not appear in $R$ or $S$, then

$$
(\forall k: P \Rightarrow(Q \wedge R \Rightarrow S)) \equiv((\exists k: P \wedge Q) \wedge R \Rightarrow S)
$$

We can therefore rewrite (7.31) as follows, abbreviating "true through state" as "tts":

$$
\begin{align*}
& \left(\exists k \in \mathbb{N}:\left(v^{\prime}=v \text { from state } k \text { on }\right) \wedge\left(\mathcal{C}\left(M_{d}\right) \text { tts } k-1\right)\right)  \tag{7.32}\\
& \quad \wedge \mathcal{C}\left(M_{c}^{l}\right) \Rightarrow \mathcal{C}\left(M_{c}\right)
\end{align*}
$$

If we define $F_{+v}$ to equal

$$
\exists k \in \mathbb{N}:\left(v^{\prime}=v \text { from state } k \text { on }\right) \wedge(\mathcal{C}(F) \text { tts } k-1)
$$

we can then write (7.32) and the condition obtained from it by interchanging $c$ and $d$ as:

$$
\begin{align*}
& \vDash \mathcal{C}\left(M_{d}\right)_{+v} \wedge \mathcal{C}\left(M_{c}^{l}\right) \Rightarrow \mathcal{C}\left(M_{c}\right)  \tag{7.33}\\
& \vDash \mathcal{C}\left(M_{c}\right)_{+v} \wedge \mathcal{C}\left(M_{d}^{l}\right) \Rightarrow \mathcal{C}\left(M_{d}\right)
\end{align*}
$$

From (7.33), we can infer:

$$
\begin{equation*}
\vDash \mathcal{C}\left(M_{c}^{l}\right) \wedge \mathcal{C}\left(M_{d}^{l}\right) \Rightarrow \mathcal{C}\left(M_{c}\right) \wedge \mathcal{C}\left(M_{d}\right) \tag{7.34}
\end{equation*}
$$

The theorems to be stated require a slightly weaker definition of $F_{+v}$, which makes the conditions (7.33) stronger (so they still imply (7.34)). Let $F_{+v}^{o l d}$ be the formula that we have been calling $F_{+v}$. We now define $F_{+v}$ to equal $F_{+v}^{o l d} \vee F$. With this definition, (7.33) implies its two conditions also hold with the " $+v$ " removed. If $F$ is a safety property, then $F_{v}$ is a safety property but $F_{+v}^{\text {old }}$ usually isn't. In fact, if $F$ is a safety property then $F_{+v}$ equals $\mathcal{C}\left(F_{+v}^{\text {old }}\right)$. In practice, the change should seldom make a difference in (7.34) because we don't expect liveness properties to be useful for proving safety properties, so we wouldn't expect $F \wedge G \Rightarrow H$ to be true for safety properties $G$ and $H$ without $\mathcal{C}(F) \wedge G \Rightarrow H$ also being true.

The formula $F_{+v}$ has been defined semantically. However, to verify (7.33) directly, we have to write $\mathcal{C}(F)_{+v}$ as a formula for a given formula $F$. It's
easy to write $\mathcal{C}(F)$ if $F$ has the usual form Init $\wedge \square[\text { Next }]_{w} \wedge L$, where $w$ is the tuple of variables in the formulas and $L$ is the conjunction of fairness properties of subactions of Next. In that case, the definition of machine closure (Section 4.2.2.2) and Theorem 4.7 (Section 4.2.7) imply $\mathcal{C}(F)$ equals Init $\wedge \square[N e x t]_{w}$. We can then write $F_{+v}$ as follows:

$$
\begin{aligned}
& F_{+v} \triangleq \exists h: \widehat{\text { Init }} \wedge[\widehat{\text { Next }}]_{w \circ v \circ\langle h\rangle} \\
& \text { where } \widehat{\text { Init }} \triangleq(\text { Init } \wedge(h=0)) \vee(h=1) \\
& \widehat{\text { Next }} \triangleq \vee(h=0) \wedge \vee\left(h^{\prime}=0\right) \wedge[\text { Next }]_{w} \\
& \vee h^{\prime}=1 \\
& \vee(h=1) \wedge\left(h^{\prime}=h\right) \wedge\left(v^{\prime}=v\right)
\end{aligned}
$$

While writing $F_{+v}$ is easy enough, we usually don't have to for the same reason that we didn't have to use the $+v$ subscripts in (7.27). Our example has one feature that we didn't use in our generalization-namely, that no single program step can make both $M_{c}$ and $M_{d}$ false. Here's how to use that feature in general. For safety properties $F$ and $G$, define $F \perp G$ to be true of a behavior $\sigma$ iff for every $k \in \mathbb{N}$, if $F \wedge G$ is true of $\sigma(0) \rightarrow \ldots \rightarrow \sigma(k)$ then $F \vee G$ is true of $\sigma(0) \rightarrow \ldots \rightarrow \sigma(k+1)$. Understanding why the following theorem is true is a good test that you understand the definition of $F_{+v}$.

Theorem 7.6 If $F, G$, and $H$ are safety properties, $v$ is a tuple of variables containing all variables of $F$, and $\models H \Rightarrow(F \perp G)$, then $\vDash F \wedge H \Rightarrow G$ implies $\models F_{+v} \wedge H \Rightarrow G$.

For our example, in which $M_{c}$ and $M_{d}$ are safety properties, $\models \mathcal{C}\left(M_{c}^{l}\right) \Rightarrow$ $\left(M_{c} \perp M_{d}\right)$ and $\models \mathcal{C}\left(M_{d}^{l}\right) \Rightarrow\left(M_{c} \perp M_{d}\right)$ are true and allow us to remove $+v$ from the conditions (7.33). These properties are true because the example satisfies these two conditions:

- We can express correctness of the program as $M_{c} \wedge M_{d}$, where only a step of component $c$ can violate $M_{c}$ and only a step of component $d$ can violate $M_{d}$. This seems to be a requirement for decomposing verification of the program into verification of its components to make sense. For example, mutual exclusion can't be expressed as the conjunction of invariance properties that can each be violated by only one process. I therefore expect that attempting to decompose verification of a mutual exclusion algorithm in this way would complicate the task.
- No step is both a $c$ step and a $d$ step. This condition means that a step in a behavior of the program consists of a step of a single component.

It is the case if the components are processes in a program written in the kind of pseudocode we have been using, which is modeled after the most popular coding languages. I believe that all the engineers I have worked with find this to be the most natural way to describe concurrent programs.

We have obtained the assumptions we need to deduce (7.34). But we want to verify (7.27), which is (7.34) with the $\mathcal{C}$ operators removed. Since $F$ implies $\mathcal{C}(F)$ for any property $F$, we can remove the $\mathcal{C}_{\mathrm{s}}$ from the left-hand side of the implication (7.34). But we need additional assumptions to be able to infer that $M_{c}^{l} \wedge M_{d}^{l}$ implies the liveness parts of $M_{c}$ and $M_{d}$. Since we know that $M_{c}^{l} \wedge M_{d}^{l}$ implies $\mathcal{C}\left(M_{c}\right) \wedge \mathcal{C}\left(M_{d}\right)$, we can use the following assumptions to deduce (7.27).

$$
\begin{equation*}
\vDash \mathcal{C}\left(M_{d}\right) \wedge M_{c}^{l} \Rightarrow M_{c} \quad \text { and } \quad \models \mathcal{C}\left(M_{c}\right) \wedge M_{d}^{l} \Rightarrow M_{d} \tag{7.35}
\end{equation*}
$$

Condition (7.33) allows us to assume that other components satisfy their safety conditions when showing that a component satisfies its safety condition. However, (7.35) allows us to use the liveness property of only that component when showing that the component satisfies its liveness requirement. It would be circular reasoning to assume $M_{d}$ when verifying $M_{c}$ and assume $M_{c}$ when verifying $M_{d}$. However, we can do it for one of the components. For example, if we show that $\mathcal{C}\left(M_{c}\right) \wedge M_{d}^{l}$ implies $M_{d}$, we can then assume $M_{d}$ when showing that $M_{c}^{l}$ implies $M_{c}$. We can therefore replace $\mathcal{C}\left(M_{d}\right)$ by $M_{d}$ in (7.35), since $\mathcal{C}\left(M_{d}\right) \wedge M_{d}$ equals $M_{d}$. (But we then can't also replace $\mathcal{C}\left(M_{c}\right)$ by $M_{c}$.)

For any decomposition of a program into two components $M_{c}^{l}$ and $M_{d}^{l}$ with correctness properties $M_{c}$ and $M_{d}$, we have deduced (7.27) from (7.33) and (7.35). The following theorem, which is Theorem 1 of [2], generalizes this to a program with $n$ components $M_{i}^{l}$, each with correctness property $M_{i}$. The theorem is first stated, then explained.

Theorem 7.7 (Decomposition Theorem) If for all $i \in 1 \ldots n$ :

1. $\models \forall j \in 1 \ldots n: \mathcal{C}\left(M_{j}\right) \Rightarrow E_{i}$
2. (a) $\models \mathcal{C}\left(E_{i}\right)_{+v} \wedge \mathcal{C}\left(M_{i}^{l}\right) \Rightarrow \mathcal{C}\left(M_{i}\right)$
(b) $\models E_{i} \wedge M_{i}^{l} \wedge\left(\forall j \in 1 \ldots(i-1): M_{j}\right) \Rightarrow M_{i}$
then $\vDash\left(\forall i \in 1 \ldots n: M_{i}^{l}\right) \Rightarrow\left(\forall i \in 1 \ldots n: M_{i}\right)$

The theorem's conclusion is the obvious generalization of (7.27). There are two hypotheses for each component $i$. Let's first ignore hypothesis 1 and take $E_{i}$ to be the conjunction of all the $\mathcal{C}\left(M_{j}\right)$ for $j \neq i$. Hypothesis 2(a) for component $M_{i}^{l}$ then generalizes the first condition of (7.33) for component $M_{c}^{l}$, replacing the correctness condition $\mathcal{C}\left(M_{d}\right)$ of the other component with the conjunction $\mathcal{C}\left(M_{j}\right)$ of all the other components. Hypothesis $2(\mathrm{~b})$ makes the similar generalization of (7.35), where allowing the use of all $M_{j}$ with $j<i$ in the proof of $M_{i}$ generalizes the observation we made about being able to weaken one of the conditions of (7.35). Hypothesis 1 generalizes what we did for two components in two ways:

- It allows $E_{i}$ to be the conjunction of all formulas $\mathcal{C}\left(M_{j}\right)$, including $j=i$. This can obviously be done for hypothesis $2(\mathrm{~b})$. It might seem to turn hypothesis $2(\mathrm{a})$ into a tautology by conjoining the right-hand side $\mathcal{C}\left(M_{i}\right)$ of the implication to the left-hand side, resulting in circular reasoning. However, the subscript $+v$ turns it from circular reasoning into induction on the number of steps in a finite behavior.
- Instead of using the conjunction of the closures of all the components' correctness properties in hypothesis 2 , it allows $E_{i}$ to be any property implied by that conjunction that is strong enough to satisfy hypothesis 2 . I expect $E_{i}$ will always be a safety property, but it's conceivable that it might not be.

The theorem does not make any assumption about $v$. That's because if $w$ is the tuple of all variables appearing in the formulas (including in $v$ ), then $F_{+w}$ implies $F_{+v}$. Thus, if hypothesis 2(a) is satisfied for any state function $v$, then it's satisfied with $v$ equal to the tuple of all variables in the formulas. Letting $v$ equal that tuple produces the weakest (hence easiest to satisfy) hypothesis.

### 7.2.2 Composing Components

In Section 7.2.1, we decomposed a given program as the conjunction of components. We now assume we are given a collection of components and define the program to be the conjunction of those components. As a tiny example, assume we want to write a program that satisfies the property $\square(c=0) \wedge \square(d=0)$, and we want to do it by conjoining a $c$ component that implements $\square(c=0)$ and a $d$ component that implements $\square(d=0)$. We find that someone has written a program $M_{x}^{l}$ that satisfies $\square(x=0)$
when run in an environment that satisfies $\square(y=0)$. So, we decide to write our program as $M_{c}^{l} \wedge M_{d}^{l}$ where:

$$
\begin{aligned}
& M_{c}^{l} \triangleq\left(M_{x}^{l} \text { WITH } x \leftarrow c, y \leftarrow d\right) \\
& M_{d}^{l} \triangleq\left(M_{x}^{l} \text { wITH } x \leftarrow d, y \leftarrow c\right)
\end{aligned}
$$

This silly example captures the most important aspect of specifying components: No real device will satisfy a specification such as $\square(c=0)$ when executed in an arbitrary environment. For example, a process will not be able to compute the GCD of two numbers if other processes can at any time arbitrarily change the values of its variables.

We want to deduce that $M_{c}^{l} \wedge M_{d}^{l}$ implies $\square(c=0) \wedge \square(d=0)$ from the properties that components $c$ and $d$ satisfy, without knowing what $M_{c}^{l}$ and $M_{d}^{l}$ are. The property that the $c$ component satisfies is that if its environment satisfies $\square(d=0)$ then the component satisfies $\square(c=0)$; and $d$ satisfies the same condition with $d$ and $c$ interchanged. The obvious way to express these two properties is $\square(d=0) \Rightarrow \square(c=0)$ and $\square(c=0) \Rightarrow \square(d=0)$, but those two properties obviously don't imply $\square(c=0) \wedge \square(d=0)$. We need to find the right way to express mathematically the condition that a component satisfies the property $M$ if its environment satisfies the property $E$. We do this by assuming that the condition is expressed by a formula $E \xrightarrow{\triangleright} M$ and figuring out what the definition of $\nrightarrow$ should be, given the assumption that the definition should make this true:

$$
\begin{align*}
& \models \square(d=0) \xrightarrow{\square} \square \square(c=0) \text { and } \quad \models \square(c=0) \xrightarrow{\square} \square(d=0)  \tag{7.36}\\
& \quad \text { implies } \quad \models \square(c=0) \wedge \square(d=0)
\end{align*}
$$

We first ask when we can deduce this:

$$
\begin{equation*}
\models E_{1} \xrightarrow{\square} M_{1} \quad \text { and } \quad \models E_{2} \xrightarrow{\leftrightarrows} M_{2} \quad \text { implies } \quad \models M_{1} \wedge M_{2} \tag{7.37}
\end{equation*}
$$

The answer lies in Theorem 7.7. Since (7.37) doesn't mention the programs $M_{1}^{l}$ and $M_{2}^{l}$, it should be true if we let those programs equal true. Substituting TRUE for them, the conclusion of Theorem 7.7 for $n=2$ is $M_{1} \wedge M_{2}$. We define $\stackrel{ \pm}{ }$ so that hypotheses 2(a) and 2(b) are equivalent to $E_{i} \stackrel{ }{ }{ }^{\triangleright} M_{i}$. The definition is:

$$
E \pm M \triangleq\left(\mathcal{C}(E)_{+v} \Rightarrow \mathcal{C}(M)\right) \wedge(E \Rightarrow M)
$$

where $v$ is the tuple of all variables in $E$ and $M$. The theorem then implies that (7.37) is true if hypothesis 1 is satisfied, that hypothesis asserting:

$$
\begin{equation*}
\vDash \mathcal{C}\left(M_{1}\right) \wedge \mathcal{C}\left(M_{2}\right) \Rightarrow E_{1} \quad \text { and } \quad \vDash \mathcal{C}\left(M_{1}\right) \wedge \mathcal{C}\left(M_{2}\right) \Rightarrow E_{2} \tag{7.38}
\end{equation*}
$$

These conditions are true for our example, so (7.36) is true.
The conclusion of Theorem 7.7 is $\vDash M_{1} \wedge M_{2}$, which asserts that the composition of the components satisfies $M_{1}$ and $M_{2}$ assuming nothing about its environment. We need a more general theorem whose conclusion is $\vDash E \stackrel{\downarrow}{\triangleright} M_{1} \wedge M_{2}$, asserting that the composition satisfies $M_{1} \wedge M_{2}$ if its environment satisfies $E$. There is actually a stronger result, asserting that the composition satisfies $\models E \xrightarrow{\square} M$ for any property $M$ implied by $E \wedge M_{1} \wedge M_{2}$. Here is the theorem, generalized from two to $n$ components. It is Theorem 3 of [2].

## Theorem 7.8 (Composition Theorem) If

1. $\vDash \forall i \in 1 \ldots n: \mathcal{C}(E) \wedge\left(\forall j \in 1 \ldots n: \mathcal{C}\left(M_{j}\right)\right) \Rightarrow E_{i}$
2. (a) $\vDash \mathcal{C}(E)_{+v} \wedge\left(\forall j \in 1 \ldots n: \mathcal{C}\left(M_{j}\right)\right) \Rightarrow \mathcal{C}(M)$
(b) $\vDash E \wedge\left(\forall j \in 1 \ldots n: M_{j}\right) \Rightarrow M$
then $\models\left(\forall j \in 1 \ldots n: E_{j} \xrightarrow{ \pm} M_{j}\right) \Rightarrow(E \pm \xrightarrow{\rightarrow} M)$
It's instructive to compare Theorems 7.7 and 7.8. They both make no assumption about $v$, since letting it equal the tuple of all variables in the formulas yields the weakest hypothesis 2(a). Hypothesis 1 differs only in Theorem 7.8 having the additional conjunct $\mathcal{C}(E)$. This conjunct (which weakens the hypothesis) is expected because, if $M$ is the conjunction of the $M_{i}$, then the $M$ in the conclusion of Theorem 7.7 is replaced in Theorem 7.8 by $E \xrightarrow{ \pm} M$.

As we observed for Theorem 7.7, hypothesis 1 of Theorem 7.8 pretty much requires the $E_{i}$ to be safety properties. However, when applying Theorem 7.8, we can choose to make them safety properties by moving the liveness property of $E_{i}$ into the liveness property of $M_{i}$. More precisely, suppose we write $E_{i}$ as $E_{i}^{S} \wedge E_{i}^{L}$, where $E_{i}^{S}$ is a safety property and $E_{i}^{L}$ a liveness property such that $\left\langle E_{i}^{S}, E_{i}^{L}\right\rangle$ is machine closed; and we similarly write $M_{i}$ as $M_{i}^{S} \wedge M_{i}^{L}$. We can then replace $E_{i}$ by $E_{i}^{S}$ and $M_{i}$ by $M_{i}^{S} \wedge\left(E_{i}^{L} \Rightarrow M_{i}^{L}\right) .{ }^{5}$ This replaces the property $E_{i} \xrightarrow{ \pm} M_{i}$ by the stronger property:
(7.39) $E_{i}^{S} \stackrel{ }{\square}\left(M_{i}^{S} \wedge\left(E_{i}^{L} \Rightarrow M_{i}^{L}\right)\right)$

It is stronger because if the environment doesn't satisfy its liveness property $E_{i}^{L}$, then $E_{i} \xrightarrow{\square} M_{i}$ is satisfied no matter what the component does; but in

[^33]that case, (7.39) still requires the component to satisfy its safety property $M_{i}^{S}$ if the environment satisfies its safety property $E_{i}^{S}$. The two formulas should be equivalent in practice because machine closure of $\left\langle E_{i}^{S}, E_{i}^{L}\right\rangle$ implies that, as long as the environment satisfies its safety property, the component can't know that the environment's entire infinite behavior will violate its liveness property.

Theorem 7.8 has been explained in terms of $M_{i}$ being the property satisfied by a component whose description $M_{i}^{l}$ we don't know, with $M$ a property we want the composition of the components to satisfy. It can also be applied by letting $M_{i}$ be the actual component $M_{i}^{l}$ and letting $M$ be the composition $\forall i \in 1 \ldots n: M_{i}^{l}$ of those components. The theorem then tells us under what environment assumption $E$ the composition will behave properly if each $M_{i}^{l}$ behaves properly under the environment assumption $E_{i}$. However, there is a problem when using it in this way. To explain the problem, we return to our two components $c$ and $d$ whose composition satisfies $\square(c=0) \wedge \square(d=0)$.

The definitions $M_{c}^{l}$ and $M_{d}^{l}$ in (7.29) were written for components $c$ and $d$ intended to be composed with one another. They were not written to describe a component that satisfies its desired property only if the environment satisfies its property. We now want to define them and their environment assumptions $E_{c}$ and $E_{d}$ so that:

$$
\begin{aligned}
& \models\left(E_{c} \pm M_{c}^{l}\right) \Rightarrow \square(c=0) \\
& \models\left(E_{d} \leftrightarrows M_{d}^{l}\right) \Rightarrow \square(d=0)
\end{aligned}
$$

The definition of $M_{c}^{l}$ asserts that the value of $d$ cannot change when the value of $c$ changes (because of the conjunct $d^{\prime}=d$ in the next-state relation) and $d$ cannot change when $c$ doesn't change (because of the subscript $\langle c, d\rangle$ ). That's a property of its environment. If we want $d$ to satisfy that property, we should state it in $E_{c}$, not inside the definition of $M_{c}^{l}$. So, the definition of $M_{c}^{l}$ should be

$$
M_{c}^{l} \triangleq(c=0) \wedge \square\left[c^{\prime}=d\right]_{c} \wedge \mathrm{WF}_{c}\left(c^{\prime}=d\right)
$$

and the definition of $M_{d}^{l}$ should be similarly changed.
If you recall how we decomposed programs in Section 7.2.1.1, expressed in Theorem 7.5, you will realize that the conjuncts $d^{\prime}=d$ and $c^{\prime}=c$ in the original definitions of $M_{c}^{l}$ and $M_{d}^{l}$ were there so that the next-state action of the conjunction of $M_{c}^{l}$ and $M_{d}^{l}$ would be the disjunction of their next-state
actions. With these new definitions, the next-state action of $M_{c}^{l} \wedge M_{d}^{l}$ equals

$$
\begin{aligned}
& {\left[\vee\left(c^{\prime}=d\right) \wedge\left(d^{\prime}=d\right)\right.} \\
& \vee\left(d^{\prime}=c\right) \wedge\left(c^{\prime}=c\right) \\
& \left.\vee\left(c^{\prime}=d\right) \wedge\left(d^{\prime}=c\right)\right]_{\langle c, d\rangle}
\end{aligned}
$$

The additional disjunct $\left(c^{\prime}=d\right) \wedge\left(d^{\prime}=c\right)$ describes a step that is performed jointly by the two components. If we want the composition of the two components to allow such steps, then there is no problem. However, components are often processes, and in all the examples we've considered, each step is a step of exactly one process. Program descriptions in which each step is performed by a single component are called interleaving descriptions. ${ }^{6}$

Suppose we want to consider only interleaving program descriptions. We would take the approach used in Theorem 7.5 that for each $i$, there is a list $m_{i}$ of variables that can be modified only by component $M_{i}^{l}$. It would be nice to let $E_{i}$ assert that any step that changes a variable other than one of the variables of $m_{i}$ must leave all the variables of $m_{i}$ unchanged. However, this is impossible because there are infinitely many variables other than the ones in $m_{i}$, and a formula $E_{i}$ can mention only finitely many of them.

Instead, we modify Theorem 7.8 so its conclusion is:

$$
\begin{equation*}
\vDash G \wedge\left(\forall j \in 1 \ldots n: E_{j} \nrightarrow M_{j}\right) \Rightarrow(E \pm G \wedge M) \tag{7.40}
\end{equation*}
$$

for a property $G$. We can then apply the theorem with $M_{i}$ equal to $M_{i}^{l}, M$ equal to $\forall i \in 1 \ldots n: M_{i}^{l}$, and $G$ the property asserting that if $i \neq j$, then a step can't change both $\left\langle m_{i}\right\rangle$ and $\left\langle m_{j}\right\rangle$. Formula $G \wedge M$ is the interleaving description that is presumably what we intended the composition of the components $M_{i}^{l}$ to mean.

In the same way as we could generalize Theorem 7.5, we can replace $\left\langle m_{j}\right\rangle^{\prime}=\left\langle m_{j}\right\rangle$ in the definition of $G$ by a step predicate $\nu_{j}$ and have $G$ assert that every step must satisfy $\nu_{i} \vee \nu_{j}$ for $i \neq j$.

You can write the theorem whose conclusion is (7.40) by yourself. All you have to do is apply Theorem 7.8 substituting $n+1$ for $n$, letting $E_{n+1}$ equal true, letting $M_{n+1}$ equal $G$, and replacing $M$ with $G \wedge M$. The hypotheses of Theorem 7.8 after making these substitutions are the hypotheses of the theorem.

[^34]
## Appendix A

## Miscellany

## A. 1 Ordinary Math Summary

This is a summary of all the ordinary math introduced in the main text of the book. Each subsection indicates in [square brackets] the sections where the operators it describes were introduced. Section A.1.5 introduces an operator not described earlier that is used in the appendix.

## A.1.1 Arithmetic [Math I]

Ordinary Operators,,$+- *$ (multiplication), / (real-number division), $>, \geq,<, \leq$.

The Operator \% For integers $m$ and $n$, if $n>0$ then $m \% n$ is the unique integer $r$ satisfying $0 \leq r<n$ and $m=d * n+r$, for some integer $d$.
A.1.2 Propositional Logic [Sections 2.4 and 2.9.2]

Booleans true and false
Operators For any Boolean values $A$ and $B$ :
$\neg A \quad$ Equals true iff $A$ equals false.
$A \wedge B \quad$ Equals true iff both $A$ and $B$ equal true.
$A \vee B \quad$ Equals true iff $A$ or $B$ or both equal true.
$A \Rightarrow B \quad$ Equals false iff $A$ equals true and $B$ Equals false.
$A \equiv B \quad$ Equals true iff $A$ equals $B$.

Conjunction/Disjunction Lists An aligned list of formulas $A_{1}, \ldots, A_{n}$ "bulleted" by $\wedge$ like this:
$\wedge A_{1}$
$\vdots$
$\wedge A_{n}$
equals $\left(A_{1}\right) \wedge \ldots \wedge\left(A_{n}\right)$. The analogous notation is also used for $\vee$.

## A.1.3 Predicate Logic [Section 2.7, Math IX]

$\forall v: F \quad$ Equals true iff $F$ equals true for all values of the variable $v$.
$\exists v: F \quad$ Equals true iff $F$ equals true for some value of the variable $v$.
$\forall v \in S: F$ Equals $\forall v:(v \in S) \Rightarrow F$.
$\exists v \in S: F$ Equals $\exists v:(v \in S) \wedge F$.
$=F \quad$ A metaformula that is true iff formula $F$ is true for any assignment of values to its variables.
$\exists$ Introduction Rule $\vDash(F$ with $v \leftarrow \exp ) \Rightarrow(\exists v: F)$
$\exists$ Elimination Rule $\vDash F \Rightarrow G$ implies $\vDash(\exists v: F) \Rightarrow(\exists v: G)$

## A.1.4 Sets [Section 2.5, Math II, Math V, Math VI, Math XI]

$v \in S$ Equals true iff $v$ is an element of the set $S$.
$\left\{\exp _{1}, \ldots, \exp _{n}\right\} \quad$ The set for which $v \in S$ equals TRUE iff $v$ equals one (or more) of the expressions $\exp _{i}$.

## Sets of Numbers

$\mathbb{R} \quad$ The set of all real numbers.
II The set of all integers.
$\mathbb{N} \quad$ The set of all non-negative integers (natural numbers).
$m \ldots n$ The set of all integers $i$ satisfying $m \leq i \leq n$.
\#( $S$ ) The number of elements in $S$, if $S$ is a finite set.
$S \subseteq T$ Equals true iff every element of set $S$ is an element of set $T$.
$S \cap T$ The set of all elements in both $S$ and $T$.
$S \cup T$ The set of all elements in $S$ or $T$ or both.
$S \backslash T$ The set of all elements in $S$ that are not elements of $T$.
$\{v \in S: F\} \quad$ The set of all values of the variable $v$ for which $(v \in S) \wedge F$ equals TRUE.
$\{\exp : v \in S\}$ The set of all values of exp obtained by substituting an element of $S$ for $v$.

Countable Set A set $S$ is countable iff there is a mapping $M$ such that this formula equals true: $\forall s \in S: \exists n \in \mathbb{N}: M(n)=s$.

## A.1.5 The choose Operator

Mathematicians often define something in terms of its properties. For example, they might define $\sqrt{r}$ for a real number $r$ to be the positive real number such that $(\sqrt{r})^{2}=r$. We can express such a definition using an operator invented by the mathematician David Hilbert in the 1920s. I didn't learn about this operator until some 25 years after I completed my studies; I suspect it's still unknown to most mathematicians. Hilbert called it $\varepsilon$, but I think it's better to call it choose. We can use this operator to define the square root as follows:

$$
\sqrt{r} \triangleq \operatorname{CHOOSE} s \in \mathbb{R}:(s \geq 0) \wedge\left(s^{2}=r\right)
$$

The choose operator is much like $\exists$ in that choose $v \in S: F$ is defined to equal choose $v:(v \in S) \wedge F$, where the scope of the bound variable $v$ does not include $S$. The expression choose $v: F$ is defined to equal a value $e$ that makes $F$ true when $e$ is substituted for $v$. If there is no such $e$, then the value of the expression is unspecified. If there is more than one such value $e$, then the expression can equal any one of those values. For example, define the mapping $A S q r t$ by:

$$
\operatorname{ASqrt}(r) \triangleq \operatorname{CHOOSE} s \in \mathbb{R}: s^{2}=r
$$

Then $A S q r t(4)$ might equal 2 and $A S q r t(9)$ might equal -3 . Since this is math, $\models A \operatorname{Sqrt}(4)=A \operatorname{Sqrt}(4)$ is true. The value of $A \operatorname{Sqrt}(4)$ may be 2 or -2 . But whichever value it equals, like every mathematical expression with no free variable, it always equals the same value.

Formally, choose is defined by the following rules:
(A.1) (a) $\vDash(\exists v: F) \Rightarrow(F$ with $v \leftarrow($ ChOOSE $v: F))$
(b) $\vDash(\forall v: F \equiv G) \Rightarrow(($ Choose $v: F)=($ choose $v: G))$

If there is more than one value of $x$ for which $F$ equals True, then choose $x$ : $F$ can equal any of those values. But it always equals the same value.

No matter how often I repeat that the Choose operator always chooses the same value, there are engineers who think that Choose is nondeterministic, possibly choosing a different value each time it's evaluated; and they try to use it to describe nondeterminism in a program. I've also heard computer scientists talk about "nondeterministic functions". ${ }^{1}$ There's no such thing. There's no nondeterminism in mathematics. Nondeterminism is important in concurrent programs, and Section 3.3 show's that it's easy to describe mathematically. Adding nondeterminism to math for describing nondeterminism in a program makes as much sense as adding water to math for describing fluid dynamics.

An expression choose $v: F$ is most often used when there is only a single choice of $v$ that makes $F$ true, as in the definition of $\sqrt{r}$ above. Sometimes, it appears within an expression whose value doesn't depend on which value of $v$ satisfying $F$ is chosen.

## A.1.6 Functions [Section 2.8.2, Math II]

A function $f$ is a mapping that is a value such that $f(e)$ is defined only on its domain, which is a set.
$\operatorname{domain}(f) \quad$ The domain of $f$, if $f$ is a function.
$v \in S \mapsto \exp$ The function $f$ with domain $S$ such that $f(v)=\exp$ for all values of the variable $v$ in the set $S$.
$D \rightarrow S$ The set of all functions $f$ with domain $D$ such that $\forall v \in D: f(v) \in S$ equals true.
$f$ EXCEPT $\exp _{1} \mapsto \exp _{2}$ If $f$ is a function, this equals the function: $v \in \operatorname{DOMAIN}(f) \mapsto \operatorname{IF} v=\exp _{1}$ THEN $\exp _{2} \operatorname{ELSE} f(v)$

## A.1.7 Sequences [Section 2.8.3, Math VII]

A finite ordinal sequence $\sigma$ of length $n$, also called an $n$-tuple, is a function $\sigma$ with domain $1 \ldots n$. We can write such a function $\sigma$ as $\langle\sigma(1), \ldots, \sigma(n)\rangle$. An infinite ordinal sequence is a function with domain the set of all positive integers.

[^35]A finite cardinal sequence $\sigma$ of length $n$ is a function $\sigma$ with domain $0 \ldots(n-1)$. We can write such a function $\sigma$ as $\sigma(1) \rightarrow \ldots \rightarrow \sigma(n-1)$, if $n>0$. An infinite cardinal sequence is a function with domain the set $\mathbb{N}$ of all natural numbers.

Except for Accept, all the following operators that take sequences as arguments are defined for both ordinal and cardinal sequences.
$\operatorname{Len}(\sigma)$ The length of the sequence $\sigma$.
$\sigma \circ \tau$ The concatenation of the finite sequence $\sigma$ and the finite or infinite sequence $\tau$, where the sequences are both ordinal or both cardinal.
$\operatorname{Head}(\sigma)$ The first element $(\sigma(1)$ or $\sigma(0))$ of the nonempty (positive-length) sequence $\sigma$.
$\operatorname{Tail}(\sigma)$ The sequence obtained by removing the first element of the nonempty sequence $\sigma$.
$\operatorname{Append}(\sigma, \exp )$ The sequence $\sigma \circ\langle\exp \rangle$ for an ordinal sequence $\sigma$.
$\operatorname{Seq}(S)$ The set of all ordinal sequences $\sigma$ such that $\sigma(i) \in S$ for all $i \in$ DOMAIN $(\sigma)$.
$S_{1} \times \ldots \times S_{n} \quad$ The set of all $n$-tuples $\sigma$ such that $\sigma(i) \in S_{i}$ for all $i$ in $1 \ldots n$, for any integer $n>1$.

## A.1.8 Notation [Section 2.9.1, Chapter 5 introduction]

IF $P$ then $\exp _{1}$ ELSE exp ${ }_{2}$
Equals $\exp _{1}$ if $P$ equals true and $\exp _{2}$ if $P$ equals false .
$E$ WITH $v_{1} \leftarrow \exp _{1}, \ldots, v_{m} \leftarrow \exp _{m}$
The expression obtained by simultaneously substituting every expression $\exp _{i}$ for the variable $v_{i}$ in expression $E$.

## A.1.9 Recursive Definitions [Math IV, Math XI]

Recursive function definitions are defined using the Choose operator introduced in Section A.1.5 above. For example, the recursive definition of the factorial function! in Math IV is an abbreviation for

```
! \triangleq Choose f :
 f=(n\in\mathbb{N}\mapsto IF n=0 THEN 1 ELSE }n*f(n-1)
```

In general, any recursive definition with no definition parameters can be expressed this way in terms of choose. Such a definition has the form $g \triangleq M(g)$ for some mapping $M$. This definition is an abbreviation for

$$
g \triangleq \operatorname{CHOOSE} f: f=M(f)
$$

The rule (A.1a) implies $\models(\exists f: M(f)) \Rightarrow(g=M(g))$.
Sometimes we want to write a recursive definition of a mapping that takes an argument and isn't a function. For example here is a definition of the operator $\#$, where $\#(S)$ is defined in Math II to equal the number of elements in $S$, for any finite set $S$. This operator can't be a function because its domain would have to be the collection of all finite sets, which is too big to be a set. (The one-to-one correspondence $S \leftrightarrow\{S\}$ implies that the collection of finite sets is as big as the collection of all sets.) However, it's intuitively clear that the following recursive definition of \# defines $\#(S)$ for any finite set $S$ :

$$
\begin{aligned}
& \#(S) \triangleq \text { IF } S=\{ \} \text { THEN } 0 \\
& \text { ELSE } 1+\#(S \backslash\{\text { Choose } e: e \in S\})
\end{aligned}
$$

In general, a recursive definition of a mapping $M$ has the form:
$(\mathrm{A} .2) M(v) \triangleq \operatorname{Def}(v, M)$
where Def is called a higher-order mapping because it takes a mapping as its second argument. Allowing recursive definitions of mappings in ZF without introducing logical inconsistency is tricky. A method of doing this by translating a recursive definition to a non-recursive one was apparently first given in this century [16]. That work essentially showed that for any value $v$ such that the recursive computation of $M(v)$ defined by (A.2) terminates, $M(v)$ equals $\operatorname{Def}(v, M)$.

## A. 2 Structured Proofs

To understand structured proofs, we need to understand what a completely rigorous proof would be. We therefore pretend that our proofs appear in a completely rigorous book of ordinary math, written for a reader who knows ZF. The book consists of a sequence of global definitions, theorems, and the proofs of some of the theorems. (Theorems without proofs are axioms.) A proof is either a terminal proof (corresponding to a paragraph proof in an informal proof) or a sequence of proof steps, each with a proof. Mathglish
can appear only in comments, which would not be needed by sufficiently brilliant mathematicians (or computers).

A context consists of a collection of definitions, formulas that can be assumed to be true, and variable declarations. Every definition, theorem, proof, and proof step occurs in a context. The context of a global definition or a theorem consists of all previous global definitions and theorems. A proof step and a proof also have associated with it a formula called its current goal. The contexts and current goals of proofs and proof steps are described below. We state here only that the context and current goal of the first step of a proof are the same as for the proof.

The statement of a theorem or proof step asserts a formula. That formula should be provable using the formulas and definitions of the context of the theorem or step. A theorem's context contains no declarations, so the formula it asserts can have no free variables. ${ }^{2}$ (The assertion of a theorem stated informally with free variables is stated formally with those variables universally quantified with $\forall$.)

The statement of a theorem and of most proof steps has the form
(A.3) Assume: $F_{1}, \ldots, F_{n}$

Prove: $G$
where $G$ is a formula called the statement's goal and each $F_{i}$ is an assumption that is either a formula or a NEW declaration. (When $n=0$, so there is no assumption, the statement is written simply as $G$.) If there is no NEW declaration, statement (A.3) asserts the formula

$$
\begin{equation*}
F_{1} \wedge \ldots \wedge F_{n} \Rightarrow G . \tag{A.4}
\end{equation*}
$$

By propositional logic, $(P \wedge Q) \Rightarrow R$ is equivalent to $P \Rightarrow(Q \Rightarrow R)$, so (A.4) is equivalent to:
(A.5) $\quad F_{1} \Rightarrow\left(F_{2} \Rightarrow\left(\ldots \Rightarrow\left(F_{n} \Rightarrow G\right) \ldots\right)\right)$

A New declaration has the form NEW $v \in S$ for a variable $v$ and an expression $S$. For every such new assumption $F_{i}$ in (A.3), the " $F_{i} \Rightarrow$ " in (A.5) is replaced by " $\forall v \in S:$ ". For example, the statement

Assume: $P$, New $v \in S, Q$
Prove: $G$

[^36]asserts the formula $P \Rightarrow(\forall v \in S:(Q \Rightarrow G))$. The scope of the bound variable $v$ is the assumption $Q$ and the goal $G$; it does not include $P$ or $S$. The Safe Scoping Rule implies that no variable named $v$ is declared in the context of the theorem or step.

The context of the proof of (A.3) contains everything in the context of that statement, plus the additional formulas assumed to be true consisting of all the assumptions $F_{i}$ that are formulas and all the assumptions $v \in S$ from assumptions NEW $v \in S$, plus declarations of all the variables introduced by NEW assumptions. The scope of such a declaration consists of all subsequent assumptions in the Assume clause, the goal $G$, and the proof of the statement. The current goal of the proof of (A.3) is $G$.

If (A.3) is a proof step, then the context of the next proof step (if there is one) contains everything in that step plus the formula (A.5) asserted by (A.3).

There are two abbreviations for a step of the form (A.3). The statement CASE $P$ is an abbreviation for $P \Rightarrow G$ (an Assume/Prove statement with no assumptions), where $G$ is the step's current goal. The other abbreviation is Q.E.D., which must be the statement of the last step of a proof. It is an abbreviation for the formula that is the step's current goal.

A definition step makes one or more definitions that are local to the current proof. It consists of Define followed by one or more definitions. Such a step has no proof. The context of the next step is the same as the definition step's context with those definitions added to it. The goal of the next step is the same as that of the definition step.

The only other kind of step is a suffices step whose statement is:
(A.6) Suffices: Assume: $F_{1}, \ldots, F_{n}$

Prove: $\quad G$
(If there are no assumptions $F_{i}$, then the "Assume:" and "Prove:" are omitted.) Suppose that the current goal of this statement is $H$. Statement (A.6) asserts that to prove $H$, it suffices to prove $G$ under the additional assumptions $F_{1}, \ldots F_{n}$. In other words, the statement asserts the formula $A \Rightarrow H$ where $A$ is the assertion made by the Assume/Prove. The context of the proof of (A.6) is the same as for the statement:

## Assume: A Prove: H

The context of the following step consists of the context of the Suffices step with the added assumptions $F_{i}$. This means that $F_{i}$ is assumed true if it is a formula, and if it is NEW $v \in S$ then the context contains the
declaration of $v$ and the assumption that $v \in S$ is true. The current goal of the following step is $G$.

Finally, there is a terminal proof. It specifies which formulas and definitions in the proof's context are used to prove its current goal. A formula in the context that comes from a previous theorem or step is identified by its name. Steps are named like sections in this book, so the $4^{\text {th }}$ step of the proof of the $5^{\text {th }}$ step of the proof of the $2^{\text {nd }}$ step of a theorem is step 2.5.4. (It can be abbreviated as $\langle 3\rangle 4$, meaning it is step 4 of a depth- 3 proof.) The other formulas in a context come from Assume clause assumptions, and for our purpose there is no need to consider how they are identified. Definitions are identified by the name of the defined symbol, so definition steps need no number.

Of course, this is not a completely formal book. Our proofs contain many formulas written in Mathglish, and the terminal proofs attempt to explain why the current goal follows from the assertions and definitions in the current context. But you should now understand what that context is and what the proof has to prove.

## A. 3 Why Not All Mappings Are Sets

Section 2.8.2 states that a function is a special kind of mapping that is assumed to be a value - meaning that it's a set, although we don't know what its elements are. This raises the question of why we can't simply assume that all mappings are sets. The answer is provided by the following theorem, whose proof is due to Stephan Merz. It asserts that there has to be a mapping that is not a set. Although we could assume that some mappings other than functions are sets, the theorem means that we can't assume all mappings are sets. For simplicity, we let functions be the only mappings that we assume to be sets.

Theorem There exists a mapping that is not a set.

1. Suffices: Assume: Every mapping is a set.

Prove: false
Proof: Obvious.
Define $M$ to be the mapping such that $M(S)=S$ if $S$ is a set that is a mapping.
2. $M(S)(U)=S(U)$ for every mapping $S$ and every set $U$.

Proof: Since we are assuming that every mapping $S$ is a set, $M$ is a mapping on the collection of all mappings, and by definition $M(S)=S$ for every mapping $S$, so $M(S)(U)=S(U)$ for every set $U$.

Define Russell to be the mapping on the collection of all sets that are mappings such that Russell $(S) \triangleq$ choose $U: U \neq M(S)(S)$.
3. Russell is a mapping such that Russell $(S) \neq M(S)(S)$ for all sets $S$ that are mappings.
Proof: The value of any syntactically correct formula is a set, even if its elements are unspecified. Therefore, $M(S)(S)$ is a set, and for any set $T$ there exists a set $U$ such that $U \neq T$. Thus, Russell is a mapping such that $\operatorname{Russell}(S) \neq M(S)(S)$ for every mapping $S$.
4. Russell $(S) \neq S(S)$ for all sets $S$ that are mappings.

Proof: Substituting $S$ for $U$ in step 2 shows $S(S)$ equals $M(S)(S)$, which by step 3 is unequal to $\operatorname{Russell}(S)$.
5. Q.E.D.

Proof: Since Russell is a mapping, and all mappings are assumed to be sets, substituting Russell for $S$ in step 4 proves Russell(Russell) $\neq$ Russell(Russell), which equals FALSE.

## A. 4 How Not to Write $x^{\prime \prime \prime}$

Here is an amusing paradox. It's illegal to prime a primed expression, so it's illegal to write $x^{\prime \prime}$ or $x^{\prime \prime \prime}$ if $x$ is a variable. However, consider this definition:
(A.7) $F(n) \triangleq$ IF $n=0$ THEN $x$ ELSE $F(n-1)^{\prime}$

It apparently defines $F(3)$ to equal $x^{\prime \prime \prime}$. It doesn't. To see why not, let's simplify things by defining $F$ to be a function with domain $\mathbb{N}$ :

$$
F \triangleq \text { Choose } f: f=\left(n \in \mathbb{N} \mapsto \text { IF } n=0 \text { THEN } x \text { ELSE } f(n-1)^{\prime}\right)
$$

In this definition $f$ and $n$ are bound constants, so $f(n-1)$ is a constant expression; and exp ${ }^{\prime}=\exp$ for any constant expression $\exp$. Therefore, this definition of $F$ is equivalent to

$$
F \triangleq \text { choose } f: f=(n \in \mathbb{N} \mapsto \text { IF } n=0 \text { THEN } x \text { ELSE } f(n-1))
$$

which defines $f(n)$ to equal $x$ for all $n \in \mathbb{N}$.

If we defined $F$ as a mapping by (A.7), using the meaning of that definition described in [16], we would see that $F(n)$ equals an expression (choose $f: \ldots$ ) ( $n$ ) where the primed expression in "..." is a constant. Again, we would obtain $F(n)=x$ for all $n \in \mathbb{N}$.

This example illustrates why we should not write a recursive definition that contains an expression that isn't a constant or a state expression. There's no problem applying a recursively defined mapping to a step expression. It should also be all right to apply one to a temporal logic formula, though I can't imagine why we would want to do that. Recursively defined mappings are used to define the meaning of temporal logic operators, but those are mappings of ordinary math whose definitions contain no primes or temporal operators.

## A. 5 Hoare Logic

Hoare logic is a science of traditional programs developed by C. A. R. (Tony) Hoare [21]. Programs are described in a coding language, and the logic's goal is to prove properties of concrete programs. However, Hoare intended it also to be applied to abstract programs written in code and used in verifying a concrete program.

In Hoare logic, a program is viewed as a relation between the initial and the final states of its execution. A formula of the logic has the form $\{P\} S\{Q\}$, where $S$ is a program (written in code) and $P$ and $Q$ are state predicates. This formula asserts that if program $S$ is executed starting in a state in which $P$ is true and the execution terminates, then $Q$ is true in the final state of the execution. The formula $\{P\} S\{Q\}$ is called a Hoare triple, $P$ is called its precondition, and $Q$ is called its postcondition. Hoare logic provides a way of showing that a program $S$ satisfies a Hoare triple.

The following is the Hoare logic rule for a program consisting of the single assignment statement $x:=\exp$, where $x$ is a variable and $\exp$ is an expression:
(A.8) $\models(P$ with $x \leftarrow \exp ) \Rightarrow Q$ implies $\{P\} x:=\exp \{Q\}$

There are also rules for deriving a Hoare triple for a program from Hoare triples of its components. Here are three such rules:
(A.9) $\{P\} S\{R\}$ and $\{R\} T\{Q\}$ imply $\{P\} S ; T\{Q\}$
(A.10) $\{P \wedge R\} S\{Q\}$ and $\{P \wedge \neg R\} T\{Q\}$ imply
$\{P\}$ if $R$ then $S$ else $T$ end if $\{Q\}$

$$
\begin{gathered}
\text { (A.11) } \models P \Rightarrow I \text { and }\{I \wedge R\} S\{I\} \text { and } \models I \wedge \neg R \Rightarrow Q \text { imply } \\
\{P\} \text { while } R \text { do } S \text { end while }\{Q\}
\end{gathered}
$$

Such rules decompose the proof of a Hoare triple for any program to proofs of Hoare triples for elementary statements of the language, such as assignment statements.

It was quickly realized that pre- and postconditions are not adequate to describe what a program should do. For example, suppose $S$ is a program to sort an array $x$ of numbers. The obvious Hoare triple for it to satisfy has a precondition asserting that $x$ is an array of numbers and a postcondition asserting that $x$ is sorted. But this Hoare triple is true of a program that simply sets all the elements of the array $x$ to 0 . A postcondition needs to be able to state a relation between the final values of the variables and their initial values. Various ways were proposed for doing this, one of them being to allow formulas $P$ and $Q$ to contain constants whose values are the same in the initial and final states. For example, the precondition for a sorting program could assert that the constant $x 0$ equals $x$, and the postcondition could assert that the elements of the array $x$ are a sorted permutation of the elements of $x 0$.

Viewing a program as a relation between initial and final states means that it can be described mathematically as a formula of the Logic of Actions. If we represent the program $S$ as an LA formula, then $\{P\} S\{Q\}$ is the assertion $\vDash P \wedge S \Rightarrow Q^{\prime}$; and the Hoare logic rules follow from rules of LA. For example, when programs are described in LA, $S ; T$ is $S \cdot T$, where "." is the action composition operator defined in Section 3.4.1.4. The Hoare Logic rule (A.9) is equivalent to this LA rule:

$$
\models P \wedge S \Rightarrow R^{\prime} \text { and } \models R \wedge T \Rightarrow Q^{\prime} \text { imply } \models P \wedge(S \cdot T) \Rightarrow Q^{\prime}
$$

The program if $R$ then $S$ else $T$ end if is represented by the LA formula ( $R \wedge S) \vee(\neg R \wedge T)$, and rule (A.10) becomes the propositional-logic tautology:

$$
\begin{gathered}
\vDash\left(P \wedge R \wedge S \Rightarrow Q^{\prime}\right) \wedge\left(P \wedge \neg R \wedge S \Rightarrow Q^{\prime}\right) \Rightarrow \\
\left(P \wedge((R \wedge S) \vee(\neg R \wedge S)) \Rightarrow Q^{\prime}\right)
\end{gathered}
$$

Hoare's rule (A.8) for assignment statements is obtained from LA by representing the statement $x:=\exp$ as $\left(x^{\prime}=\exp \right) \wedge\left(\left(v_{\tilde{x}}\right)^{\prime}=v_{\tilde{x}}\right)$, where $v_{\tilde{x}}$ is the tuple of all program variables other than $x$. It is valid because $\vDash P \wedge\left(x^{\prime}=\exp \right) \wedge\left(\left(v_{\tilde{x}}\right)^{\prime}=v_{\tilde{x}}\right) \Rightarrow Q^{\prime}$ equals $\vDash(P$ with $x \leftarrow \exp ) \Rightarrow Q$ if $v_{\tilde{x}}$ is a tuple containing all variables other than $x$ that appear in $P$ or $\exp$.

Rule (A.11) is a bit tricky because, when executed in a state in which $R$ equals FALSE, the while statement leaves all variables unchanged. We can represent that while statement by

$$
\left((R \wedge S)^{+} \wedge \neg R^{\prime}\right) \vee\left(\neg R \wedge\left(v^{\prime}=v\right)\right)
$$

where $v$ is the tuple of all program variables and $(\ldots)^{+}$is defined in Section 3.4.1.4. With this representation of the while statement, (A.11) can be derived from the following rule of LA, where $I$ is any state predicate and $A$ any action:

$$
\begin{equation*}
\models I \wedge A \Rightarrow I^{\prime} \text { implies } \vDash I \wedge A^{+} \Rightarrow I^{\prime} \tag{A.12}
\end{equation*}
$$

The LA definition of a Hoare triple implies that the validity of rule (A.11) is proved by the following theorem:

Theorem A. 1 Assume: $1 . \models P \Rightarrow I$
2. $\vDash I \wedge R \wedge S \Rightarrow I^{\prime}$
3. $\vDash I \wedge \neg R \Rightarrow Q$
4. $v$ is the tuple of all variables occurring in $Q$.

Prove: $\quad \models P \wedge\left((R \wedge S)^{+} \wedge \neg R^{\prime}\right) \vee\left(\neg R \wedge\left(v^{\prime}=v\right)\right) \Rightarrow Q^{\prime}$

1. Suffices: Assume: $P \wedge\left((R \wedge S)^{+} \wedge \neg R^{\prime}\right) \vee\left(\neg R \wedge\left(v^{\prime}=v\right)\right)$

Prove: $Q^{\prime}$
Proof: Because assumptions $1-3$ have the form $\vDash \ldots$, proving that they imply a formula $F \Rightarrow G$ proves that they imply $\models(F \Rightarrow G)$, and $F \Rightarrow G$ is proved by assuming $F$ and proving $G$.
2. Case: $P \wedge(R \wedge S)^{+} \wedge \neg R^{\prime}$
2.1. $I \wedge(R \wedge S)^{+} \Rightarrow I^{\prime}$

Proof: By assumption 2 and (A.12), with $R \wedge S$ substituted for $A$.
2.2. $P \wedge(R \wedge S)^{+} \Rightarrow I^{\prime}$

Proof: By 2.1 and assumption 1.
2.3. $I^{\prime}$

Proof: By 2.2 and the step 2 case assumption
2.4. $\neg R^{\prime}$

Proof: By the step 2 case assumption

### 2.5. Q.E.D.

Proof: By 2.3, 2.4, and assumption 3 (since $\models F$ implies $\models F^{\prime}$ for any state predicate $F$ ).
3. CASE: $P \wedge \neg R \wedge\left(v^{\prime}=v\right)$

Proof: By assumptions 1 and $3, P \wedge \neg R$ implies $Q$, which by $v^{\prime}=v$ and assumption 4 implies $Q^{\prime}$.
4. Q.E.D.

Proof: By the step 1 assumption, steps 2 and 3 cover all possibilities.

## A. 6 Another Way to Look at Safety and Liveness

This section provides a different view of safety and liveness based on viewing behavior predicates as sets of behaviors. This view was first recognized by Gordon Plotkin. I find that it helps me understand safety and liveness. To understand it, we first need some more math.

## A.6.1 Metric Spaces

A metric space $M$ is a set with a distance function $\delta$ that assigns a nonnegative real number $\delta(p, q)$, called the distance between $p$ and $q$, to all elements $p$ and $q$ of $M$. The function $\delta$ must satisfy these conditions for all elements $p, q$, and $r$ of $M$ :

M1. $\delta(p, q)=0$ iff $p=q$.
M2. $\delta(p, q)=\delta(q, p)$
M3. $\delta(p, q) \leq \delta(p, r)+\delta(r, q)$
Do you see why these conditions imply $\delta(p, q) \geq 0$ for all $p$ and $q$ in $M$ ?
The set $\mathbb{R}$ of real numbers is a metric space with $\delta(p, q)$ equal to $|p-q|$, where $|r|$ is the absolute value of the number $r$, defined by

$$
|r| \triangleq \text { IF } r \geq 0 \text { THEN } r \text { ELSE }-r
$$

An infinite plane, represented as in analytic geometry by the set $\mathbb{R} \times \mathbb{R}$ of pairs of real numbers, is a metric space with $\delta\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)$ defined to equal $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$. I find that thinking of a metric space $M$ as the set of points in a plane is a good way to visualize the concepts presented here.

For a metric space $M$, the distance $\widehat{\delta}(p, S)$ from $p \in M$ to a nonempty subset $S$ of $M$ is defined to be the largest number $r$ such that $r \leq \delta(p, q)$
for all $q \in S .{ }^{3}$ For example, if $S$ is the set of all points $\langle x, y\rangle$ in the plane such that $x<3$, then $\widehat{\delta}(\langle 4,7\rangle, S)$ equals 1 because $\widehat{\delta}(\langle 4,7\rangle, S)>1$ for all $q$ in $S$ and there are elements $q$ of $S$ such that $\delta(\langle 4,7\rangle, q)$ is arbitrarily close to 1 .

For any metric spaces $M$ and subset $S$ of $M$, if $p \in S$ then $\widehat{\delta}(p, S)=0$ because condition M1 implies $\delta(p, p)=0$. In general, $\widehat{\delta}(p, S)=0$ for $p \in M$ iff for every $e>0$ there exists $q \in S$ such that $\delta(p, q)<e$.

The closure operation $\mathcal{C}$ on subsets of a metric space $M$ is defined by letting $\mathcal{C}(S)$ be the set $\{p \in M: \widehat{\delta}(p, S)=0\}$ of all elements $M$ that are a distance 0 from $S$. For example, if $M$ is the plane, let $O D$ and $C D$ be the open and closed disks of radius 1 centered at the origin, defined by:

$$
\begin{aligned}
& O D \triangleq\{p \in M: \delta(p,\langle 0,0\rangle)<1\} \\
& C D \triangleq\{p \in M: \delta(p,\langle 0,0\rangle) \leq 1\}
\end{aligned}
$$

Both $\mathcal{C}(O D)$ and $\mathcal{C}(C D)$ equal $C D$.
Theorem A. 2 For any subset $S$ of a metric space, $S \subseteq \mathcal{C}(S)$ and $\mathcal{C}(S)=$ $\mathcal{C}(\mathcal{C}(S))$.

Proof: The definition of $\mathcal{C}$ and property M1 imply $S \subseteq \mathcal{C}(S)$ for any set $S$, which implies $\mathcal{C}(S) \subseteq \mathcal{C}(\mathcal{C}(S))$ for any $S$. Therefore, to show $\mathcal{C}(S)=\mathcal{C}(\mathcal{C}(S))$, it suffices to assume $p \in \mathcal{C}(\mathcal{C}(S))$ and show $p \in \mathcal{C}(S)$. By definition of $\mathcal{C}$ and $\widehat{\delta}$, we do this by assuming $e>0$ and showing there exists $q \in S$ with $\delta(q, p)<e$. Because $p \in \mathcal{C}(\mathcal{C}(S))$, there exists $u \in \mathcal{C}(S)$ with $\delta(p, u)<e / 2$; and $u \in \mathcal{C}(S)$ implies there exists $q \in S$ with $\delta(q, u)<e / 2$. By M2 and M3, this implies $\delta(p, q)<e$. End Proof

As you will have guessed by its name, the operator $\mathcal{C}$ on behavior predicates is a special case of the closure operator $\mathcal{C}$ on metric spaces. But for now, forget about behavior predicates and just think about metric spaces.

A set $S$ that, like $C D$, equals its closure is said to be closed. The following result shows that for any set $S$, its closure $\mathcal{C}(S)$ is the smallest closed set that contains $S$.

Theorem A. 3 For any subsets $S$ and $T$ of a metric space, if $T$ is a closed set and $S \subseteq T$ then $\mathcal{C}(S) \subseteq T$.

Proof: It follows from the definition of $\mathcal{C}$ that $S \subseteq T$ implies $\mathcal{C}(S) \subseteq \mathcal{C}(T)$, and the definition of a closed set implies $T=\mathcal{C}(T)$. End Proof

[^37]For any subset $S$ of a metric space $M$, the boundary of $S$ is defined to be the set of all $p \in M$ with $\widehat{\delta}(p, S)=0$ and $\widehat{\delta}(p, M \backslash S)=0$. The boundary of both disks $O D$ and $C D$ is $\{p \in M: \delta(p,\langle 0,0\rangle)=1\}$, the circle of radius 1 centered at the origin. For any metric space $M$ and $S \subseteq M$, any element $p$ of $M$ with $\widehat{\delta}(p, S)=0$ that is not in $S$ must be in $M \backslash S$ and therefore must satisfy $\hat{\delta}(p, M \backslash S)=0$. This shows that the closure of any set $S$ is the union of $S$ and the boundary of $S$.

A subset $S$ of a metric space $M$ is said to be dense iff $\mathcal{C}(S)=M$. A dense set is one that, for any element $p$ of $M$, contains $p$ or elements of $M$ arbitrarily close to $p$. As an example, let's call a finite-digit real number one that can be written in decimal notation with a finite number of digits-for example, 123.5432. The set of all pairs of finite-digit numbers is dense in the plane because any real number can be approximated arbitrarily closely with a finite-digit number. Thus, for any pair of real numbers $\langle x, y\rangle$ and any $e>0$, we can find a pair of finite-digit numbers $\langle p, q\rangle$ within a distance $e$ of $\langle x, y\rangle$ by choosing $p$ and $q$ such that $|x-p|$ and $|y-q|$ are both less than $e / \sqrt{2}$.

Theorem A. 4 Any subset $S$ of a metric space equals $\mathcal{C}(S) \cap D$ for a dense set $D$.

Proof: Let $M$ be the metric space and let $D$ equal $S \cup(M \backslash \mathcal{C}(S))$. The set $D$ consists of all elements of $M$ except those elements in the boundary of $S$ that are not in $S$. It follows from this that $\mathcal{C}(S) \cap D=S$. Since elements in the boundary of $S$ are a distance 0 from $S$, which is a subset of $D$, they are a distance 0 from $D$. Therefore all elements in $M$ are a distance 0 from $D$, so $D$ is dense. End Proof

What we're interested in is not the distance function $\delta$, but the closure operator $\mathcal{C}$. Imagine that the plane was an infinite sheet of rubber that was then stretched and shrunk unevenly in some way. Define the distance between two points on the original plane to be the distance between them after the plane was deformed. For example, if the plane was stretched to make everything twice as far apart in the $y$ direction but the same distance apart in the $x$ direction, then $\delta\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)$ would equal $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(2 *\left(y_{1}-y_{2}\right)\right)^{2}}$. As long as the stretching and shrinking is continuous, meaning that the rubber sheet is not torn, the boundary of a set $S$ in the plane after it is deformed is the set obtained by deforming the boundary of $S$. This implies that the new distance function produces the same closure operator as the ordinary distance function on the plane.

Topology is the study of properties of objects that depend only on a closure operation, which need not be generated by a metric space. But we are interested in a closure operator that is generated by a particular kind of metric space, and it helps me to think in terms of its distance function.

## A.6.2 The Metric Space of Behaviors

Safey and liveness will be explained by viewing behaviors as elements of a metric space. In particular, we will see that:

- The operator $\mathcal{C}$ on behavior predicates corresponds to the closure operator $\mathcal{C}$ on sets of behaviors.
- Safety predicates correspond to closed sets of behaviors.
- Liveness predicates correspond to dense sets of behaviors.

Doing this poses two problems. The first is that mathematicians describe metric spaces as sets, and the collection of all behaviors isn't a set. I believe that all the results about metric spaces that we need would remain true if metric spaces were arbitrary collections rather than sets, but I haven't checked this. So for the rest of this section, we assume that the collection of all behaviors is a set, which we call $\mathbb{B}$. For example, we can let a behavior here mean an infinite sequence of states in which each variable satisfies some type invariant. Since our purpose is an intuitive understanding of safety and liveness, there's no need to be very rigorous.

The second problem is that we are relating properties, which are temporallogic formulas, to sets of behaviors. Recall that the meaning $\llbracket F \rrbracket$ of a property $F$ is a Boolean-valued mapping on behaviors. There's a standard way of identifying predicates on a set with subsets of that set: we identify the predicate $P$ with the subset consisting of all elements $e$ such that $P(e)$ equals true. (This is the basis of Venn diagrams, which you have probably seen.) We can therefore identify the property $F$ with the subset $\overline{\bar{F}}$ of $\mathbb{B}$ defined by:

$$
\overline{\bar{F}} \triangleq\{b \in \mathbb{B}: \llbracket F \rrbracket(b)\}
$$

Under this identification, the propositional logic operators $\wedge, \vee, \Rightarrow$, and $\equiv$ correspond to the set-theoretic operators $\cap, \cup \subseteq$, and $=$. That is, for any properties $F$ and $G$ :

$$
\begin{array}{ll}
\models \overline{\overline{F \vee G}}=\overline{\bar{F}} \cup \overline{\bar{G}} & \models \overline{\overline{F \Rightarrow G}}=(\overline{\bar{F}} \subseteq \overline{\bar{G}}) \\
\models \overline{\overline{F \Rightarrow G}}=(\overline{\bar{F}} \subseteq \overline{\bar{G}}) & \models \overline{\overline{F \equiv G}}=(\overline{\bar{F}}=\overline{\bar{G}})
\end{array}
$$

We're interested in the closure operator on sets of behaviors, which can be the same for many different distance functions. The property of the distance function that provides the closure operator we want is that behaviors with a long prefix in common are close together. More precisely, for two different behaviors $\sigma$ and $\tau$, define $o(\sigma, \tau)$ to be the largest $n$ such that $\sigma$ and $\tau$ have the same prefix of length $n-1$-that is, the largest value $n$ such that $\forall i \in 0 \ldots(n-1): \sigma(i)=\tau(i)$. Thus, $o(\sigma, \tau)$ equals 1 iff $\sigma(0)=\tau(0)$ and $\sigma(1) \neq \tau(1)$. (There is no such $n$ iff $\sigma=\tau$, in which case we let $o(\sigma, \tau)=\infty$, where $\infty>i$ for all $i \in \mathbb{N}$.) We get the right closure operator on sets of behaviors if $\delta$ satisfies this property:

For any $e>0$, there is an $n \in \mathbb{N}$ such that $o(\sigma, \tau)>n$ implies $\delta(\sigma, \tau)<e$, for any behaviors $\sigma$ and $\tau$.

The simplest choice of $\delta$ satisfying this and the properties of a distance function for a metric space is $\delta(\sigma, \tau) \triangleq 1 /(1+o(\sigma, \tau))$ for $\sigma \neq \tau$. (Of course, $\delta(\sigma, \tau)=0$ if $\sigma=\tau$.)

With the correspondence between the operator $\mathcal{C}$ on behavior predicates and the closure operator on this metric space, Theorems 4.3 and 4.4 of Section 4.1.3 are immediate consequences of Theorems A.2-A. 4 of Section A.6.1. I find it more elegant to deduce the results about behavior predicates from the corresponding results about metric spaces than to prove them directly. But that might be because I was educated as a mathematician. Whichever you prefer, I hope that having an alternative way of thinking about safety and liveness helps you understand those concepts.

## Appendix B

## Proofs

Most of the proofs here are structured proofs. To understand them, you should first read Appendix Section A.2.

## B. 1 Invariance Proof of Increment

Figure 3.5 in Section 3.4.1.1 defines the initial predicate Init and next-state action Next for the RTLA formula describing a program having the inductive invariant Inv. As described in Section 3.4.1.3, to prove the invariance of Inv we had to prove the two conditions of (3.10). As with most programs, the proof of the first condition is simple. Here, we describe the proof of the second condition, which is:

Theorem Next $\wedge I n v \Rightarrow I n v{ }^{\prime}$
If the program were described in TLA instead of RTLA, the disjunct Stutter would be removed from the definition of Next; and Next in the theorem would be replaced by $[N e x t]_{v}$, where $v$ is the tuple $\langle x, t, p c\rangle$ of variables. The proof of the theorem would be essentially the same, the only difference being that the action Stutter would be replaced everywhere by its second conjunct, which is $v^{\prime}=v$.

The proof of the theorem is decomposed hierarchically. The first two levels are determined by the logical structure of the theorem. There are two standard ways to decompose the proof of a formula of the form $F \Rightarrow G$ :

- Write $F$ in the form $F_{1} \vee \ldots \vee F_{m}$ and prove $F_{i} \Rightarrow G$ for all $i$.
- Write $G$ in the form $G_{1} \wedge \ldots \wedge G_{n}$ and prove $F \Rightarrow G_{j}$ for all $j$.

In this case, we can do both, proving $F \Rightarrow G$ by proving $F_{i} \Rightarrow G_{j}$ for all $i$ and $j$, performing the two decompositions in either order. We can do the first decomposition by writing Next as a disjunction (since $(P \vee Q \vee \ldots) \wedge$ Inv equals $(P \wedge I n v) \vee(Q \wedge I n v) \vee \ldots)$, and we can do the second decomposition because $I n v$ is defined to be the conjunction of three formulas. We do the first decomposition first.

Expanding the definitions of Next and PgmStep, using this rule of predicate logic:

$$
\vDash(\exists v \in S: F \vee G) \equiv(\exists v \in S: F) \vee(\exists v \in S: G)
$$

we see that Next is equivalent to:

$$
\begin{aligned}
& (\forall p \in \text { Procs : aStep }(p) \wedge \text { Inv }) \vee(\forall p \in \operatorname{Procs}: b \operatorname{Step}(p) \wedge \operatorname{Inv}) \\
& \quad \vee(\text { Stutter } \wedge \text { Inv })
\end{aligned}
$$

Writing each $\forall$ assertion as an Assume/Prove, the top level of the proof is:

1. Assume: New $p \in \operatorname{Procs}, a \operatorname{Step}(p)$, Inv

Prove: $I n v^{\prime}$
2. Assume: New $p \in \operatorname{Procs}, b \operatorname{Step}(p)$, Inv

Prove: $I n v^{\prime}$
3. Assume: Stutter, Inv

Prove: Inv
Proof: By the definitions of Stutter, Inv, TypeOK, and NumberDone, since a stutter Stutter step leaves the three variables unchanged, which by definition of $I n v$ implies that the value of $I n v$ is unchanged.
4. Q.E.D.

Proof: By steps 1-3 and the definition of Next.
Steps 3 and 4 are simple enough that there is no need to decompose their proofs. You should try to understand why these steps, and the others whose proofs are given here, follow from the facts and definitions mentioned in their proofs. To help you, a little bit of explanation has been added to some of the proofs.

We now have to prove steps 1 and 2. They can both be decomposed using the definition of $I n v$ as a conjunction. We consider the proof of step 1. Here is the first level of its decomposition.

### 1.1. TypeOK ${ }^{\prime}$

1.2. $\forall i \in$ Procs : $\left(p c^{\prime}(i)=b\right) \Rightarrow\left(t^{\prime}(i) \leq\right.$ NumberDone $\left.{ }^{\prime}\right)$
1.3. $x^{\prime} \leq$ NumberDone ${ }^{\prime}$

### 1.4. Q.E.D.

Proof: By steps 1.1-1.3 and the definition of Inv.
Step 1.2 is the most difficult one to prove, so we examine its proof. The standard way to prove a formula of this form is to assume $i \in$ Procs and $p c^{\prime}(i)=b$ and prove $t^{\prime}(i) \leq$ NumberDone ${ }^{\prime}$. So, the first step of the proof should be a SuFfices step asserting that it suffices to make those assumptions and prove $t^{\prime}(i) \leq$ NumberDone ${ }^{\prime}$. Thus far, we have used only the logical structure of the formulas, without thinking about what the formulas mean. We can go no further that way. To write the rest of the proof of step 1.2 , we have to ask ourselves why an $\operatorname{aStep}(p)$ step starting in a state with Inv true produces a state with $t^{\prime}(i) \leq$ NumberDone true.

When I asked myself that question, I realized that the answer depends on whether or not $i$ is the process $p$ executing the step. That suggested proving the two cases $i \neq p$ and $i=p$ separately, asserting them as CASE statements. In figuring out how to write those two proofs, I found that both of them required proving NumberDone ${ }^{\prime}=$ NumberDone. Moreover, this was true for the same reason in both cases - namely, that an aStep step of any process leaves NumberDone unchanged. Therefore, I could prove it once in a single step that precedes the two Case statements. This produced the following level-3 proof:

### 1.2.1. Suffices: Assume: new $i \in \operatorname{Procs}, p^{\prime}(i)=b$ <br> Prove: $t^{\prime}(i) \leq$ NumberDone ${ }^{\prime}$

Proof: Obvious.
1.2.2. NumberDone ${ }^{\prime}=$ NumberDone
1.2.3. CASE: $i=p$
1.2.4. CASE: $i \neq p$
1.2.5. Q.E.D.

Proof: By steps 1.2.3 and 1.2.4.

This leaves three steps to prove. Here is the proof of step 1.2.4, which I think is the most interesting one.
1.2.4.1. $\left(t^{\prime}(i)=t(i)\right) \wedge\left(p c^{\prime}(i)=p c(i)\right)$

Proof: By step 1 (which implies $a \operatorname{Step}(p)$ and Inv), the step 1.2.4 case assumption, and the definitions of aStep, Inv, and TypeOK, which together imply that the values of $t(i)$ and $p c(i)$ are unchanged. (The definition of TypeOK is needed because type correctness is required to deduce this.)

### 1.2.4.2. $p c(i)=b$

Proof: By step 1.2.4.1 and the step 1.2.1 assumption $p c^{\prime}(i)=b$.
1.2.4.3. $t(i) \leq$ NumberDone

Proof: By step 1.2.4.2, the step 1 assumption (which implies Inv), and the second conjunct in the definition of Inv.

### 1.2.4.4. Q.E.D.

Proof: Steps 1.2.4.1, 1.2.4.3, and 1.2 .2 imply $t^{\prime}(i) \leq$ NumberDone ${ }^{\prime}$, which is the current goal (introduced in step 1.2.1).

The purpose of this example is to illustrate the science of proving correctness of concurrent programs. The program and its proof are very simple. ${ }^{1}$ The example shows how proving that a program satisfies a property can be hierarchically decomposed into proving simple mathematical assertions whose proofs require no understanding of why the program works or what it's supposed to do. How this can be done for real abstract programs is an engineering problem that is outside the scope of this book.

## B. 2 Proof of Theorem 4.3

Theorem 4.3 If $F$ is a property, then $\mathcal{C}(F)$ is a safety property such that $\vDash F \Rightarrow \mathcal{C}(F)$ and, for any safety property $G$, if $\models F \Rightarrow G$ then $\vDash \mathcal{C}(F) \Rightarrow G$.

Proof: Let $F$ be a property. Extend the definition of $\downarrow$ in Section 3.5.3 in the obvious way to finite behaviors $\rho$ so that $\hbar \rho$ equals $\rho$ with stuttering

[^38]steps removed.

1. Assume: $F$ is a property

Prove: $\mathcal{C}(F)$ is a property
1.1. Suffices: Assume: $\sigma$ is a behavior

Prove: $\quad \sigma$ satisfies $\mathcal{C}(F)$ iff $দ \sigma$ does
Proof: By definition of a property, it suffices to show that $\mathcal{C}(F)$ is SI . By definition of SI , it suffices to assume $\sigma$ is a behavior and show $\sigma$ satisfies $\mathcal{C}(F)$ iff $\ddagger \sigma$ does.
1.2. Assume: $\sigma$ satisfies $\mathcal{C}(F)$

Prove: $\quad \ddagger \sigma$ satisfies $\mathcal{C}(F)$
Proof: By definition of $\mathcal{C}$, it suffices to assume $\rho$ is a nonempty finite prefix of $\bigsqcup \sigma$ and show it is a prefix of a behavior satisfying $F$. Since $\rho$ is a prefix of $\hbar \sigma$, it equals $\hbar \tau$ for some prefix $\tau$ of $\sigma$, so $\sigma$ satisfies $F$ implies $\tau \circ \nu$ satisfies $F$ for some behavior $\nu$. Since $F$ is SI and $\rho$ is obtained from $\tau$ by removing stuttering steps, $\rho \circ \nu$ also satisfies $F$, so $\rho$ is a prefix of a behavior satisfying $F$.
1.3. Assume: $\downarrow \sigma$ satisfies $\mathcal{C}(F)$

Prove: $\quad \sigma$ satisfies $\mathcal{C}(F)$
Proof: By definition of $\mathcal{C}$, it suffices to show that any finite nonempty prefix $\rho$ of $\sigma$ satisfies $F$, which means showing that $\rho$ is the prefix of a behavior satisfying $F$. Since $\hbar \rho$ is a prefix of $\hbar \sigma$, by hypothesis there is a behavior $\tau$ such that $(\nvdash \rho) \circ \tau$ satisfies $F$. Since $F$ is SI and $\rho \circ \tau$ differs from ( $\bigsqcup \rho) \circ \tau$ only by stuttering steps, $\rho \circ \tau$ too satisfies $F$. Thus $\rho$ is the prefix of a behavior satisfying $F$.
1.4. Q.E.D.

Proof: By steps 1.1-1.3.
2. $\mathcal{C}(F)$ is a safety predicate.
2.1. Suffices: Assume: $\rho$ is a prefix of a behavior that satisfies $\mathcal{C}(F)$.

Prove: $\quad \rho^{\uparrow}$ satisfies $\mathcal{C}(F)$
Proof: By definition of safety.
2.2. Let $\sigma$ be a behavior such that $\rho \circ \sigma$ satisfies $F$, and let $\phi(n)$ be the sequence of states consisting of $n$ "copies" of the final state of $\rho$, for any $n \in \mathbb{N}$, and let $\tau(n)$ equal $\rho \circ \phi(n) \circ \sigma$. Then $\tau(n)$ satisfies $F$ for all $n \in \mathbb{N}$.
Proof: A behavior $\sigma$ such that $\rho \circ \sigma$ satisfies $F$ exists by the step 2.1 assumption and the definition of $\mathcal{C}$. That $\tau(n)$ satisfies $F$ follows from:
(i) $\mathfrak{\natural} \tau(n)$ equals $\natural(\rho \circ \sigma)$ by definition of $\phi(n)$ and $\tau(n)$, (ii) $\rho \circ \sigma$ satisfies $F$, and (iii) $F$ is SI .
2.3. Every finite prefix of $\rho^{\uparrow}$ is a finite prefix of $\tau(n)$, for some $n$.

Proof: By the definitions of $\tau(n)$ and of $\rho^{\uparrow}$.

### 2.4. Q.E.D.

Proof: By steps 2.2 and 2.3, every finite prefix of $\rho^{\uparrow}$ is a prefix of a behavior satisfying $F$. By definition of $\mathcal{C}$, this implies $\rho$ satisfies $\mathcal{C}(F)$, which by step 2.1 is what we had to prove.
3. Assume: $G$ a safety property and $\models F \Rightarrow G$

Prove: $\quad=\mathcal{C}(F) \Rightarrow G$
Proof: It suffices to assume $\sigma$ is a behavior satisfying $\mathcal{C}(F)$ and prove it satisfies $G$. Since $G$ is a safety property, it suffices to show that any finite prefix $\rho$ of $\sigma$ satisfies $G$. By definition of $\mathcal{C}, \rho$ is a prefix of a behavior satisfying $F$, and therefore by hypothesis satisfying $G$. Since $G$ is a safety property, this implies $\rho$ satisfies $G$.
4. Q.E.D.

Proof: Steps 1-3 are the assertions of the theorem.

## B. 3 Proof of Theorem 4.4

Theorem 4.4 Every property $F$ is equivalent to $\mathcal{C}(F) \wedge L$ for a liveness property $L$.

Define $L \triangleq F \vee \neg \mathcal{C}(F)$

1. $F$ is equivalent to $\mathcal{C}(F) \wedge L$.

Proof: By $\models(F \Rightarrow \mathcal{C}(F))$ (from Theorem 4.3) and propositional logic.
2. $L$ is a liveness property.
2.1. Suffices: Assume: $\rho$ is a finite behavior.

Prove: $\rho$ is a prefix of a behavior $\tau$ satisfying $L$.
Proof: By definition of liveness, since $L$ is a property because the operators of propositional logic preserve stuttering insensitivity, and $\mathcal{C}(F)$ is a property by Theorem 4.3.
2.2. Case: $\rho$ is the prefix of a behavior $\tau$ satisfying $F$.

Proof: By definition of $L$, if $\tau$ satisfies $F$ then it satisfies $L$.
2.3. CASE: $\rho$ is not the prefix of any behavior satisfying $F$.

Proof: By definition of $\mathcal{C}(F)$, if $\rho$ were the prefix of a behavior satisfying $\mathcal{C}(F)$, then it would be the prefix of a behavior satisfying $F$. The CASE assumption therefore implies that any behavior $\tau$ having $\rho$ as a prefix does not satisfy $\mathcal{C}(F)$, so it satisfies $\neg \mathcal{C}(F)$ and therefore satisfies $L$ by definition of $L$.
2.4. Q.E.D.

Proof: Steps 2.2 and 2.3 cover all possibilities.
3. Q.E.D.

Proof: By steps 1 and 2.

## B. 4 Proof of Theorem 4.5

Theorem 4.5 Assume: $S$ a safety property and $L$ a liveness property.
Prove: $\langle S, L\rangle$ is machine closed iff $\mathcal{C}(S \wedge L) \equiv S$.

1. Assume: $\langle S, L\rangle$ is machine closed.

Prove: $\mathcal{C}(S \wedge L) \equiv S$
1.1. $\mathcal{C}(S \wedge L) \Rightarrow S$

Proof: Theorem 4.3 implies $\models S \Rightarrow \mathcal{C}(S)$, so $\models S \wedge L \Rightarrow \mathcal{C}(S)$. That theorem also implies $\mathcal{C}(S)$ is a safety property and therefore $\vDash \mathcal{C}(S \wedge L) \Rightarrow \mathcal{C}(S)$. Since $S$ is a safety property, it equals $\mathcal{C}(S)$, so $\vDash \mathcal{C}(S \wedge L) \Rightarrow \mathcal{C}(S)$ implies $\mathcal{C}(S \wedge L) \Rightarrow S$.
1.2. $S \Rightarrow \mathcal{C}(S \wedge L)$

Proof: It suffices to assume a behavior $\sigma$ satisfies $S$ and prove $\sigma$ satisfies $\mathcal{C}(S \wedge L)$. By definition of machine closure, every finite prefix of $\sigma$ can be completed to a behavior of $S \wedge L$. By definition of $\mathcal{C}$, this implies $\sigma$ satisfies $\mathcal{C}(S \wedge L)$.
1.3. Q.E.D.

Proof: By steps 1.1 and 1.2.
2. Assume: $\mathcal{C}(S \wedge L) \equiv S$

Prove: $\langle S, L\rangle$ is machine closed.
Proof: By definition of machine closure, it suffices to assume $\rho$ is a finite behavior satisfying $S$ and prove $\rho$ can be completed to a behavior satisfying $S \wedge L$. By definition of what it means for a finite behavior to satisfy a property, $\rho^{\uparrow}$ satisfies $S$. Since $S \equiv \mathcal{C}(S \wedge L)$, behavior $\rho^{\uparrow}$ satisfies $\mathcal{C}(S \wedge L)$. By definition of $\mathcal{C}$, this implies every prefix of $\rho^{\uparrow}$ can
be completed to a behavior satisfying $S \wedge L$, and $\rho$ is a prefix of $\rho^{\uparrow}$.
3. Q.E.D.

Proof: By steps 1 and 2.

## B. 5 Proof of Theorem 4.6

Theorem 4.6 Assume: $\models(E \mathcal{U} P) \equiv(\diamond P \wedge E \mathcal{U} P) \vee(\neg \diamond P \wedge \square E)$

$$
\text { Prove: } \quad=((E \mathcal{U} P) \leadsto P) \equiv(\square E \leadsto P) .
$$

1. Suffices: $\vDash((E \mathcal{U} P) \Rightarrow \diamond P) \equiv(\square E \Rightarrow \diamond P)$

Proof: $F \sim G$ is defined to equal $\square(F \Rightarrow \diamond G)$.
2. $\vDash((E \mathcal{U} P) \Rightarrow \diamond P) \equiv \wedge(\diamond P \wedge E \mathcal{U} P) \Rightarrow \diamond P$

$$
\wedge(\neg \diamond P \wedge \square E) \Rightarrow \diamond P
$$

Proof: By the theorem's assumption and the propositional logic tautology $\models((F \vee G) \Rightarrow H) \equiv(F \Rightarrow H) \wedge(G \Rightarrow H)$.
3. Q.E.D.

Proof: $\models \diamond P \wedge E \mathcal{U} P \Rightarrow \diamond P$ is a propositional logic tautology, which by step 2 implies $\models((E \mathcal{U} P) \Rightarrow \diamond P) \equiv(\neg \diamond P \wedge \square E \Rightarrow \diamond P)$, which with the propositional logic tautology $\models(\neg \diamond P \wedge \square E \Rightarrow \diamond P) \equiv(\square E \Rightarrow \diamond P)$ proves the step 1 goal.

## B. 6 Proof of Theorem 4.7

Theorem 4.7 Let Init be a state predicate, Next an action, and $v$ a tuple of all variables occurring in Init and Next. If $A_{i}$ is a subaction of Next for all $i$ in a countable set $I$, then the pair

$$
\left\langle\text { Init } \wedge \square[\text { Next }]_{v}, \forall i \in I: \mathrm{XF}_{v}^{i}\left(A_{i}\right)\right\rangle
$$

is machine closed, where each $\mathrm{XF}_{v}^{i}$ may be either WF or SF .
Define $S \triangleq$ Init $\wedge \square[N e x t]_{v}$

1. Suffices: Assume: $\rho$ is a finite behavior satisfying $S$.

Prove: There exists a behavior $\sigma$ having $\rho$ as a prefix that satisfies $S$ and $\mathrm{SF}_{v}\left(A_{i}\right)$, for all $i \in I$.
Proof: By definition of machine closure, it suffices to show that any finite behavior $\rho$ satisfying $S$ is the prefix of a behavior $\sigma$ satisfying
$S \wedge \forall i \in I: \mathrm{XF}_{v}^{i}\left(A_{i}\right)$. Since $\mathrm{SF}_{v}\left(A_{i}\right)$ implies $\mathrm{WF}_{v}\left(A_{i}\right)$, it suffices to show that $\sigma$ satisfies $\mathrm{SF}_{v}\left(A_{i}\right)$ for all $i \in I$.
2. Choose $f \in(\mathbb{N} \rightarrow I)$ such that each $i \in I$ equals $f(n)$ for infinitely many $n \in \mathbb{N}$. Define $\tau_{j}$ for each $j \in \mathbb{N}$ as follows. Let $\tau_{0}=\rho$, and for $j>0$, define $\tau_{j}$ such that:
if $\tau_{j-1}$ is a prefix of a finite behavior $\mu$ satisfying $S$ and ending in a state in which $\left\langle A_{f(j-1)}\right\rangle_{v}$ is enabled.
then $\tau_{j}$ equals the finite behavior obtained by appending to $\mu$ a state that makes the last step of $\tau_{j}$ an $\left\langle A_{f(j-1)}\right\rangle_{v}$ step.
else $\tau_{j}$ is obtained from $\tau_{j-1}$ by adding a stuttering step.
For all $j \in \mathbb{N}, \tau_{j}$ is a prefix of and shorter than $\tau_{j+1}$, and $\tau_{j}$ satisfies $S$.
Proof: Theorem 4.1 of Math V shows the existence of $f$. By construction each $\tau_{j}$ is a prefix of and shorter than $\tau_{j+1}$. We must just show that $\tau_{j}$ satisfies $S$. The proof is by induction. It is true for $j=0$ since $\tau_{0}$ equals $\rho$, which satisfies $S$ by the step 1 assumption. So we complete the proof by assuming $j>0$ and $\tau_{j-1}$ satisfies $S$ and proving as follows that $\tau_{j}$ satisfies $S$.

If the if condition in the definition of $\tau_{j}$ is true, then $\tau_{j}$ satisfies $S$ because $\tau_{j-1}$ does and $\tau_{j}$ is obtained by appending to $\tau_{j-1}$ an $\left\langle A_{f(j-1)}\right\rangle_{v}$ step, which is a Next step by the hypothesis that $\models A_{i} \Rightarrow$ Next for all $i \in I$. If the if condition is false, then $\tau_{j}$ satisfies $S$ because $S$ is stuttering insensitive, $\tau_{j-1}$ satisfies $S$, and $\tau_{j}$ is obtained by adding a stuttering step to $\tau_{j-1}$.
3. Let $\sigma$ be the behavior having every $\tau_{j}$ as a prefix. Then $\sigma$ is a behavior satisfying $S$ having the prefix $\rho$.
Proof: The behavior $\sigma$ exists (and is unique) because each $\tau_{j}$ is a prefix of and shorter than $\tau_{j+1}$. Since $\rho$ equals $\tau_{0}$, it is a prefix of $\sigma$. Step 2 asserts that every prefix $\tau_{j}$ of $\sigma$ satisfies $S$. By definition of $S$, this implies $\sigma$ satisfies $S$.
4. $\sigma$ satisfies $\mathrm{SF}_{i}(A)$ for all $i \in I$.

Proof: Step 2 asserts that for any $i \in I$, there are infinitely many $j \in \mathbb{N}$ such that $i=f(j-1)$. If the if condition in the definition of $\tau_{j}$ is true for all of those values of $j$, then $\sigma$ contains an $\left\langle A_{i}\right\rangle_{v}$ step for each of those values of $j$, so $\sigma$ satisfies $\square \diamond\left\langle A_{i}\right\rangle_{v}$. If the if condition is false for any such $j$, then $\tau_{j-1}$ cannot be extended to any finite behavior containing an $\left\langle A_{i}\right\rangle_{v}$ step. Hence, $\square \neg \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ is true for the suffix of $\sigma$ obtained
by removing the prefix $\tau_{j-1}$ ．Therefore，$\sigma$ satisfies $\diamond \square \neg \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ ，which equals $\neg \square \diamond \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ ．By（4．14），in either case $\sigma$ satisfies $\operatorname{SF}_{v}\left(A_{i}\right)$ ．

5．Q．E．D．
Proof：The theorem follows from steps 1,3 ，and 4.

## B． 7 Proof of Theorem 4.8

Theorem 4．8 Let $A_{i}$ be an action for each $i \in I$ ，let $Q \triangleq \exists i \in I: A_{i}$ ， and let XF be either WF or SF．Then

$$
\begin{aligned}
& \models\left(\forall i \in I: \square\left(\mathbb{E}\left\langle A_{i}\right\rangle_{v} \wedge \square\left[\neg A_{i}\right]_{v} \Rightarrow\right.\right. \\
& \left.\square[\neg Q]_{v} \wedge \square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)\right) \\
& \quad \Rightarrow \quad\left(\mathrm{XF}_{v}(Q) \equiv \forall i \in I: \mathrm{XF}_{v}\left(A_{i}\right)\right)
\end{aligned}
$$

Define $\boldsymbol{Q}^{\circ}$ to equal $\diamond \square$ if XF is WF ，and $\square \diamond$ if XF is SF ．
1．Suffices：Assume：$\forall i \in I: \square\left(\mathbb{E}\left\langle A_{i}\right\rangle_{v} \wedge \square\left[\neg A_{i}\right]_{v} \Rightarrow\right.$

$$
\left.\square[\neg Q]_{v} \wedge \square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)\right)
$$

Prove：$\quad \mathrm{XF}_{v}(Q) \equiv \forall i \in I: \mathrm{XF}_{v}\left(A_{i}\right)$
Proof：Obvious．
2． $\mathrm{XF}_{v}(Q) \Rightarrow \forall i \in I: \mathrm{XF}_{v}\left(A_{i}\right)$
 Prove：false
Proof：By（4．14）and（4．23），since $F \Rightarrow G$ is equivalent to $F \wedge \neg G \Rightarrow$ FALSE and $\neg \square \diamond\left\langle A_{i}\right\rangle_{v}$ equals $\diamond \square\left[\neg A_{i}\right]_{v}$ ．
2．2．$\diamond\left(\square[\neg Q]_{v} \wedge \square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)\right)$
Proof：$⿴ 囗 ⿰ 丿 ㇄ 心 ⿴ 囗 十 \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ implies $\square \diamond \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ ，and $\square \diamond \mathbb{E}\left\langle A_{i}\right\rangle_{v} \wedge \diamond \square\left[\neg A_{i}\right]_{v}$ implies $\diamond\left(\mathbb{E}\left\langle A_{i}\right\rangle_{v} \wedge \square\left[\neg A_{i}\right]_{v}\right)$ by temporal reasoning．Therefore，the step 2.1 assumption implies $\diamond\left(\mathbb{E}\left\langle A_{i}\right\rangle_{v} \wedge \square\left[\neg A_{i}\right]_{v}\right)$ ，which by the step 1 assumption implies 2．2．
2．3．$\diamond \square[\neg Q]_{v} \wedge \diamond \square\left(\mathbb{E}\langle Q\rangle_{v} \equiv \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)$
Proof：By step 2．2，because $\diamond(\square F \wedge \square G)$ equals $\diamond \square F \wedge \diamond \square G$ for any $F$ and $G$ ，and $\square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)$ implies $\square\left(\mathbb{E}\langle Q\rangle_{v} \equiv \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)$ because the definition of $Q$ implies $\models A_{i} \Rightarrow Q$ ，which by the definition of $\mathbb{E}$ in Section 4．2．1 implies $\models \mathbb{E}\left\langle A_{i}\right\rangle_{v} \Rightarrow \mathbb{E}\langle Q\rangle_{v}$ ．
2．4．$\square \diamond\langle Q\rangle_{v}$
 Therefore step 2.3 and the step 2.1 assumption $\boldsymbol{Q}^{\boldsymbol{U}} \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ imply

《⿴囗 $\mathbb{E}\langle Q\rangle_{v}$ ．By definition of XF，the step 2.1 assumption $\mathrm{XF}_{v}(Q)$ and $⿴ 囗 \mathbb{E}\langle Q\rangle_{v}$ imply $\square \diamond\langle Q\rangle_{v}$ ．

## 2．5．Q．E．D．

Proof：Since $\diamond \square[\neg Q]_{v}$ is equivalent to $\neg \square \diamond\langle Q\rangle_{v}$ ，steps 2.3 and 2.4 imply false，the goal introduced in step 2．1．

3．$\left(\forall i \in I: \mathrm{XF}_{v}\left(A_{i}\right)\right) \Rightarrow \mathrm{XF}_{v}(Q)$
3．1．Suffices：Assume：$\left(\forall i \in I: \mathrm{XF}_{v}\left(A_{i}\right)\right) \wedge \operatorname{lo}^{\boldsymbol{v}} \mathbb{E}\langle Q\rangle_{v}$
Prove：$\square \diamond\langle Q\rangle_{v}$
Proof：By（4．14）and（4．23）．
3．2． $\mathbb{E}\langle\mathrm{Q}\rangle_{v} \Rightarrow \diamond\langle\mathrm{Q}\rangle_{v}$
3．2．1．Suffices：Assume：$(i \in I) \wedge \mathbb{E}\left\langle A_{i}\right\rangle_{v}$
Prove：$\diamond\langle Q\rangle_{v}$
Proof：By predicate logic（the $\exists$ Elimination rule），since $Q$ equals $\exists i \in I: A_{i}$ ，so $\mathbb{E}\langle Q\rangle_{v}$ equals $\exists i \in I: \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ by rule $\mathbb{E} 2$ of Sec－ tion 5．4．4．2．

## 3．2．2．CASE：$\diamond\left\langle A_{i}\right\rangle_{v}$

Proof：$\diamond\langle Q\rangle_{v}$ follows from the case assumption and $\models A_{i} \Rightarrow Q$ ．
3．2．3．CASE：$\square\left[\neg A_{i}\right]_{v}$
Proof：Assumption $\mathbb{E}\left\langle A_{i}\right\rangle_{v}$ from step 3．2．1，the case assumption， and the step 1 assumption imply $\square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \mathbb{E}\left\langle A_{i}\right\rangle_{v}\right)$ ．This，the temporal logic tautology $\left.\models \square(F \Rightarrow G) \Rightarrow\left(⿴_{\square}\right) F \Rightarrow G\right)$ ，and the step 3.1 assumption $\mathbb{Z} \mathbb{E}\langle Q\rangle_{v}$ imply $\mathbb{Q}^{2} \mathbb{E}\left\langle A_{i}\right\rangle_{v}$ ．Since $i \in I$ by the step 3．2．1 assumption，the step 3.1 assumption implies $\mathrm{XF}_{v}\left(A_{i}\right)$ ， which by $\mathbb{E}\left\langle A_{i}\right\rangle_{v}$ and the definition of XF implies $\diamond\left\langle A_{i}\right\rangle_{v}$ ，which by $\models A_{i} \Rightarrow Q$ implies $\diamond\langle Q\rangle_{v}$ ．

## 3．3．Q．E．D．

Proof：All assumptions in effect at step 3.2 are $\square$ formulas so，as ex－ plained in Section 4．2．4，we can deduce $\square\left(\mathbb{E}\langle Q\rangle_{v} \Rightarrow \diamond\langle Q\rangle_{v}\right)$ from 3．2．
This and the temporal logic tautology

$$
\vDash \square(F \Rightarrow \diamond G) \Rightarrow(\text { 四 } \vee F \Rightarrow \square \diamond G)
$$

imply $⿴ 囗 十 \mathbb{E}\langle Q\rangle_{v} \Rightarrow \square \diamond Q$ ，which by the step 3.1 assumption $⿴ 囗 \mathbb{E}\langle Q\rangle_{v}$ implies the step 3.1 goal $\square \diamond Q$ ．

4．Q．E．D．
Proof：By steps 1－3．

## B. 8 Proof Sketch of Theorem 4.9

Theorem 4.9 Let $\mathbf{x}$ be the list $x_{1}, \ldots, x_{n}$ of variables and let $F$ be a property such that $F(\sigma)$ depends only on the values of the variables $\mathbf{x}$ in $\sigma$, for any behavior $\sigma$. There exists a formula $S$ equal to Init $\wedge \square[N e x t]_{\langle\mathbf{x}, y\rangle} \wedge$ $\mathrm{WF}_{\langle\mathbf{x}, y\rangle}($ Next $)$, where Init and Next are defined in terms of $F, y$ is a variable not among the variables $\mathbf{x}$, and the variables of $S$ are $\mathbf{x}$ and $y$, such that $\models F \Rightarrow \llbracket G \rrbracket$ iff $\models S \Rightarrow G$, for any property $G$. If $F$ is a safety property, then the conjunct $\mathrm{WF}_{\langle\mathbf{x}, y\rangle}(N e x t)$ is not needed.

Proof sketch: For any behavior $\sigma$, let $\left.\sigma\right|_{\mathbf{x}}$ be the infinite sequence of $n$ tuples of values such that $\left.\sigma\right|_{\mathbf{x}}(i)$ equals the value of $\langle\mathbf{x}\rangle$ in state $\sigma(i)$. The basic idea is to define $S$ so that the value of $y$ in any state $i$ of a behavior of $S$ always equals $\left(\left.\sigma\right|_{\mathbf{x}}\right)^{+i}$ for some behavior $\sigma$ satisfying $F$, and $\mathbf{x}$ always equals $y(0)$. (Remember that $\tau$ is the infinite sequence $\tau(0) \rightarrow \tau(1) \rightarrow \cdots$, and $\tau^{+i}$ equals $\tau(i) \rightarrow \tau(i+1) \rightarrow \cdots$.)

To do this, for any infinite sequence $\tau$ of $n$-tuples of values, we define $\widetilde{F}(\tau)$ to equal $F(\sigma)$ for any behavior $\sigma$ such that $\left.\sigma\right|_{\mathrm{x}}$ equals $\tau$. This uniquely defines $\widetilde{F}$ because, by hypothesis, the value of $F(\sigma)$ depends only on the values of the variables $\mathbf{x}$ in the behavior $\sigma$. Define IsTupleSeq to be the mapping such that IsTupleSeq $(\tau)$ is true iff $\tau$ is an infinite cardinal sequence of $n$-tuples of arbitrary values. We then define $S$ by letting:

$$
\begin{aligned}
\text { Init } \triangleq \exists \tau: & \wedge \text { IsTupleSeq }(\tau) \wedge \widetilde{F}(\tau) \\
& \wedge(y=\tau) \wedge(\langle\mathbf{x}\rangle=\tau(0)) \\
\text { Next } \triangleq\left(y^{\prime}=\right. & \operatorname{Tail}(y)) \wedge\left(\langle\mathbf{x}\rangle^{\prime}=y^{\prime}(0)\right)
\end{aligned}
$$

With this definition, $F(\sigma)$ equals TRUE for a behavior $\sigma$ iff there is a behavior satisfying $S$ in which the initial value of $y$ is $\left.\sigma\right|_{\mathbf{x}}$. Notice that $\sigma$ is a halting behavior iff $\tau$ ends with an infinite sequence of identical $n$-tuples. When $y$ equals that value $\operatorname{Tail}(y)=y$, so $\langle\operatorname{Next}\rangle_{\langle\mathbf{x}, y\rangle}$ equals FALSE and $S$ allows only stuttering steps from that point on.

Eliminating the conjunct $\mathrm{WF}_{\langle\mathbf{x}, y\rangle}($ Next ) allows $S$ to halt even if the behavior $y$ initially equals $\left.\sigma\right|_{\mathbf{x}}$ for a non-halting behavior $\sigma$ that satisfies $F$. That makes no difference if $F$ is a safety property, since in that case every finite prefix of $\sigma$ also satisfies $F$. End Proof Sketch

## B. 9 Proof of Formula (5.4)

For any variable $p$ and any state $s$, let $s_{p}$ be the value of $p$ in state $s$. For any $S$-behavior $\sigma$ :

$$
\begin{aligned}
\llbracket\left(z^{\prime}\right. & =x+y) \text { wITH } \ldots \rrbracket(\sigma) & & \\
& \equiv \llbracket w^{\prime}=u+v \rrbracket(\sigma) & & \text { By definition of wITH } \ldots . \\
& \equiv \sigma(1)_{w}=\sigma(0)_{u}+\sigma(0)_{v} & & \text { By definition of } \llbracket \ldots \rrbracket . \\
\llbracket z^{\prime} & =x+y \rrbracket(\widehat{f}(\sigma)) & & \\
& \equiv \widehat{f}(\sigma)(1)_{z}=\widehat{f}(\sigma)(0)_{x}+\widehat{f}(\sigma)(0)_{y} & & \text { By definition of } \llbracket \ldots \rrbracket . \\
& \equiv f(\sigma(1))_{z}=f(\sigma(0))_{x}+f(\sigma(0))_{y} & & \text { By definition of } \widehat{f} . \\
& \equiv \sigma(1)_{w}=\sigma(0)_{u}+\sigma(0)_{v} & & \text { By definition of } f .
\end{aligned}
$$

## B. 10 Proof of Theorem 6.2

Theorem 6.2 With the assumptions of Theorem 6.1, for all $i \in I$ let $B_{i}$ be a subaction of $A_{i}$ such that
$(*) T \wedge(i \neq j) \Rightarrow \square\left[\neg\left(B_{i} \wedge A_{j}\right)\right]_{v}$
for all $j$ in $I$; and let $B_{i}^{h} \triangleq\left\langle B_{i}\right\rangle_{v} \wedge\left(h^{\prime}=\exp _{i}\right)$. Then

$$
T \wedge\left(\forall i \in I: \mathrm{XF}_{v}^{i}\left(B_{i}\right)\right) \equiv \exists h: T^{h} \wedge\left(\forall i \in I: \mathrm{XF}_{v h}^{i}\left(B_{i}^{h}\right)\right)
$$

where each $\mathrm{XF}^{i}$ is either WF or SF.

1. Assume: $i \in I$

Prove: $\left\langle B_{i}^{h}\right\rangle_{v h} \equiv\left\langle B_{i} \wedge\left(h^{\prime}=\exp _{i}\right)\right\rangle_{v}$
1.1. $\left\langle B_{i}^{h}\right\rangle_{v h} \equiv B_{i} \wedge\left(v^{\prime} \neq v\right) \wedge\left(h^{\prime}=\exp _{i}\right) \wedge\left(v h^{\prime} \neq v h\right)$

Proof: By the definitions of $B_{i}^{h}, N e x t^{i}$, and $\langle\ldots\rangle_{\ldots}$.
1.2. $\left\langle B_{i}^{h}\right\rangle_{v h} \equiv B_{i} \wedge\left(v^{\prime} \neq v\right) \wedge\left(h^{\prime}=\exp _{i}\right)$

Proof: By step 1.1, since $v h=v \circ\langle h\rangle$ implies $\left(v^{\prime} \neq v\right) \wedge\left(v h^{\prime} \neq v h\right) \equiv$ $\left(v^{\prime} \neq v\right)$.
1.3. Q.E.D.

Proof: By step 1.2 and the definition of $\langle\ldots\rangle_{v}$.
2. Assume: $i \in I$

Prove: $\mathbb{E}\left\langle B_{i}^{h}\right\rangle_{v h} \equiv \mathbb{E}\left\langle B_{i}\right\rangle_{v}$
Proof: By step 1 because exp is assumed not to contain $h^{\prime}$, so rules $\mathbb{E} 3$ and $\mathbb{E} 5$ of Section 5.4.4.2 imply $\mathbb{E}\left\langle B_{i} \wedge\left(h^{\prime}=\exp _{i}\right)\right\rangle_{v}$ equals $\mathbb{E}\left\langle B_{i}\right\rangle_{v}$.

Define $\operatorname{la}^{i}$ to equal $\diamond \square$ if $\mathrm{XF}^{i}$ is WF and to equal $\square \diamond$ if $\mathrm{XF}^{i}$ is SF .
3. Assume: $T^{h} \wedge \forall i \in I: \mathrm{XF}_{v h}^{i}\left(B_{i}^{h}\right)$

Prove: $\quad T \wedge \forall i \in I: \mathrm{XF}_{v}^{i}\left(B_{i}\right)$
3.1. Suffices: Assume: $(i \in I)$

Prove: $\mathrm{XF}_{v}^{i}\left(B_{i}\right)$
Proof: By Theorem 6.1, $T^{h}$ implies $T$. Therefore, if suffices to prove $\forall i \in I: \mathrm{XF}_{v}^{i}\left(B_{i}\right)$ to prove step 3

### 3.2. Suffices: Assume: $\operatorname{Qa}^{i} \mathbb{E}\left\langle B_{i}\right\rangle_{v}$ <br> Prove: $\quad \square \diamond\left\langle B_{i}\right\rangle_{v}$

Proof: By (4.14) and (4.23)
3.3. $\operatorname{Qa}^{i} \mathbb{E}\left\langle B_{i}^{h}\right\rangle_{\text {vh }}$

Proof: By the step 3.2 assumption and step 2. (Since step 2 is not in the scope of any assumptions, it implies $\square\left(\mathbb{E}\left\langle B_{i}^{h}\right\rangle_{v h} \equiv \mathbb{E}\left\langle B_{i}\right\rangle_{v}\right)$.)
3.4. $\square \diamond\left\langle B_{i}^{h}\right\rangle_{v h}$

Proof: The step 3 assumption implies $\mathrm{XF}_{v h}^{i}\left(B_{i}^{h}\right)$, which by step 3.3, (4.14), and (4.23) implies $\square \diamond\left\langle B_{i}^{h}\right\rangle_{v h}$.
3.5. Q.E.D.

Proof: Step 3.4 and step 1 imply $\square \diamond\left\langle B_{i} \wedge\left(h^{\prime}=\exp _{i}\right)\right\rangle_{v}$, which implies the goal introduced in step 3.2.
4. Assume: $T \wedge \forall i \in I: \mathrm{XF}_{v}^{i}\left(B_{i}\right)$

Prove: $\exists h: T^{h} \wedge \forall i \in I: \mathrm{XF}_{v h}^{i}\left(B_{i}^{h}\right)$
4.1. Suffices: Assume: $T^{h} \wedge(i \in I)$

Prove: $\mathrm{XF}^{i}{ }_{v h}\left(B_{i}^{h}\right)$
Proof: Theorem 6.1 shows that $T$ implies $\exists h: T^{h}$. This implies that to prove $T \wedge F$ implies $\exists h:\left(T^{h} \wedge G\right)$ for any $F$ and $G$, it suffices to prove that $T \wedge F \wedge T^{h}$ implies $G$. Thus, the step 4 assumption shows that to prove the step 4 goal, it suffices to prove $T^{h}$ implies $\forall i \in I: \mathrm{XF}_{v h}^{i}\left(B_{i}^{h}\right)$, which is asserted by this step's Assume/Prove.
4.2. Suffices: Assume: $\operatorname{la}^{i} \mathbb{E}\left\langle B_{i}^{h}\right\rangle_{v h}$

Prove: $\square \diamond\left\langle B_{i}^{h}\right\rangle_{v h}$
Proof: By (4.14) and (4.23).
4.3. $\boldsymbol{Q}^{2}{ }^{i} \mathbb{E}\left\langle B_{i}\right\rangle_{v}$

Proof: By the step 4.2 assumption and step 2.
4.4. $\square \diamond\left\langle B_{i}\right\rangle_{v}$

Proof: The step 4 assumption implies $\mathrm{XF}_{v}^{i}\left(B_{i}\right)$, which by step 4.3, (4.14), and (4.23) implies $\square \diamond\left\langle B_{i}\right\rangle_{v}$.
4.5. Q.E.D.

Proof: By hypothesis, $B_{i}$ is a subaction of $A_{i}$. By hypothesis ( $*$ ) and the step 4 assumption (which implies $T$ ), $B_{i} \wedge A_{j}$ equals FALSE if $i \neq j$. Hence a $B_{i}$ step must be an $A_{i}^{h}$ step. By definition of $A_{i}^{h}$ and the step 4.1 assumption (which implies $T^{h}$ ), every $B_{i}$ step is a $B_{i} \wedge\left(h^{\prime}=\exp _{i}\right)$ step. Therefore, step 4.4 and step 1 imply $\square \diamond\left\langle B_{i}^{h}\right\rangle_{v h}$, which is the goal introduced by step 4.2.
5. Q.E.D.

Proof: Steps 3 and 4 imply that $T \wedge\left(\forall i \in I: \mathrm{XF}^{i}{ }_{v}\left(B_{i}\right)\right)$ is equivalent to $\exists h: T^{h} \wedge\left(\forall i \in I: \mathrm{XF}_{v h}^{i}\left(B_{i}^{h}\right)\right)$.

## B. 11 Proof Sketch of Theorem 6.3

Theorem 6.3 Let $T$ equal Init $\wedge \square[N e x t]_{\langle\mathbf{x}\rangle}$ where $\mathbf{x}$ is the list of all variables of $S$; let $F$ be a safety property such that $F(\sigma)$ depends only on the values of the variables $\mathbf{x}$ in $\sigma$, for any behavior $\sigma$; and let $h$ be a variable not one of the variables $\mathbf{x}$. We can add $h$ as a history variable to $T$ to obtain $T^{h}$ and define a state predicate $I_{F}$ in terms of $F$ such that $\models \llbracket T \rrbracket \Rightarrow F$ is true iff $I_{F}$ is an invariant of $T^{h}$.

Proof sketch: Define $T^{h}$ as follows:

$$
\begin{aligned}
T^{h} & \triangleq \text { Init }^{h} \wedge \square\left[\text { Next }^{h}\right]_{\langle\mathbf{x}, h\rangle} \\
\text { Init }^{h} & \triangleq \operatorname{Init} \wedge(h=\langle\mathbf{x}\rangle) \\
\text { Next }^{h} & \triangleq \operatorname{Next} \wedge\left(h^{\prime}=\operatorname{Append}\left(h,\langle\mathbf{x}\rangle^{\prime}\right)\right)
\end{aligned}
$$

Since $h$ is a history variable, so $\exists h: T^{h}$ is equivalent to $T$, to every behavior $\sigma$ satisfying $T$ there is a corresponding behavior satisfying $T^{h}$ that has the same values of the variables of $\mathbf{x}$ as $\sigma$. Since $F$ does not depend on $h$, this means that $\models \llbracket T \rrbracket \Rightarrow F$ iff $\models \llbracket T^{h} \rrbracket \Rightarrow F$.

We now define $\left.\rho\right|_{x}$ and $\widetilde{F}$ to be the same as in the proof of Theorem 4.9, except for finite behaviors $\rho$. We define $\left.\rho\right|_{\mathbf{x}}$ to be the finite cardinal sequence of $n$-tuples of the same length as $\rho$ such that $\left.\rho\right|_{\mathbf{x}}(i)$ equals the value of $\langle\mathbf{x}\rangle$ in state $\rho(i)$; and we define $\widetilde{F}$ to be the predicate on finite sequences of $n$-tuples of values such that $\widetilde{F}\left(\left.\rho\right|_{x}\right)$ equals $F(\rho)$ (which by definition equals $F\left(\rho^{\uparrow}\right)$ ). We then define $I_{F}$ to equal $\widetilde{F}(h)$.

Much as in the proof of Theorem 4.9, for any behavior $\tau$, a finite prefix $\rho$ of $\tau$ satisfies $F$ iff $\widetilde{F}\left(\left.\rho\right|_{\mathbf{x}}\right)$ is true, which is true iff $\widetilde{F}(h)$ is true of the last state of $\rho$. Every state of $\tau$ is the last state of some finite prefix of $\tau$, and the safety property $F$ is true of $\tau$ iff it is true of every finite prefix of $\tau$, so
$F$ is true of $\tau$ iff $I_{F}$ is true of every state of $\tau$. This proves that $I_{F}$ is an invariant of $T^{h}$ iff $T^{h}$ satisfies $F$; and $T$ satisfies $F$ iff $T^{h}$ does, because $F$ depends only on the variables x. End Proof Sketch

## B. 12 Proof Sketch of Theorem 6.6

Theorem 6.6 Let $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$ be lists of variables, all distinct from one another; let the variables of $T$ be $\mathbf{x}$ and $\mathbf{z}$ and the variables of $I S$ be $\mathbf{x}$ and $\mathbf{y}$; and let $T$ equal Init $\wedge \square[N e x t]_{\langle\mathbf{x}, \mathbf{z}\rangle} \wedge L$. Let the operator $\Phi$ map behaviors satisfying $T$ to behaviors satisfying $I S$ such that $\Phi(\sigma) \sim_{y} \sigma$. By adding history, stuttering, and prophecy variables to $T$, we can define a formula $T^{\mathbf{a}}$ such that $\exists \mathbf{a}: T^{\mathbf{a}}$ is equivalent to $T$ and a tuple $\exp$ of expressions defined in terms of $\Phi$ and the variables of $T^{\mathbf{a}}$ such that

$$
\models T^{\mathbf{a}} \Rightarrow(I S \text { wITн } \mathbf{y} \leftarrow \exp )
$$

Proof sketch: We first add an infinite stuttering insensitivity $t$ to $T$, defining $T^{t}$ to equal

$$
\begin{aligned}
& \wedge \text { Init } \wedge \square\left[\left(\text { Next } \wedge\left(v^{\prime} \neq v\right)\right) \vee\left(\left(t^{\prime} \neq t\right) \wedge\left(\langle\mathbf{x}, \mathbf{z}\rangle^{\prime}=\langle\mathbf{x}, \mathbf{z}\rangle\right)\right)\right]_{\langle\mathbf{x}, \mathbf{z}, t\rangle} \\
& \wedge L \wedge \square \diamond\left\langle t^{\prime} \neq t\right\rangle_{t}
\end{aligned}
$$

In addition to handling the weird case described in Section 6.3.5, this simplifies the proof by not having to consider terminating behaviors, since $T^{t}$ doesn't allow them.

Let $m$ be the number of variables in $\mathbf{x}, \mathbf{z}$, and $t$. We next define $T^{t h}$ by adding to $T^{t}$ a history variable $h$ whose value in any state is a cardinal sequence of $m$-tuples. The initial value of $h$ is the one-element sequence whose single element is the value of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in the initial state. Each step that does not leave $\langle\mathbf{x}, \mathbf{z}, t\rangle$ unchanged appends to $h$ the new value of $\langle\mathbf{x}, \mathbf{z}, t\rangle$. For a behavior $\sigma$ satisfying $T^{t h}$ that has no stuttering steps (steps leaving $\mathbf{x}, \mathbf{z}$, and $t$ unchanged), the value of variable $h$ always equals the sequence $h(0), \ldots, h(\operatorname{Len}(h)-1)$ of $m$-tuples such that each $h(i)$ equals the value of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in state $\sigma(i)$ for all $i<\operatorname{Len}(h)$.

We now add to $T^{t h}$ a prophecy variable $p$ that always makes an infinite sequence of prophecies. The value of $p$ in state $\sigma(i)$ of a behavior $\sigma$ satisfying $T^{t h p}$ is the infinite sequence of $m$-tuples such that in state $\sigma(i)$, the value of $p(0)$, the next prediction made by $p$, is the $m$-tuple that equals the next value of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ different from its current value. This is a generalized prophecy variable with predictions in the collection (not a set) of $m$-tuple of values.

It is defined by writing the next-state action Next ${ }^{\text {th }}$ as $\exists i: A_{i}$, where

$$
A_{i} \triangleq\left(i=\langle\mathbf{x}, \mathbf{z}, t\rangle^{\prime}\right) \wedge N e x t^{t h}
$$

and defining the next-state action Next ${ }^{t h p}$ of $T^{t h p}$ by

$$
N e x t^{t h p} \triangleq A_{p(0)} \wedge \operatorname{Next}^{\text {th }} \wedge\left(p^{\prime}=\operatorname{Tail}(p)\right)
$$

A Next ${ }^{\text {thp }}$ step removes the first element from $p$ and appends that element to the end of $h$. Therefore, the value of $h \circ p$ remains unchanged throughout any behavior that satisfies $T^{\text {thp }}$. The value of $h \circ p$ during a behavior $\sigma$ satisfying $T^{t h p}$ equals the sequence of values of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in the entire behavior $\sigma$, except that $\sigma$ may have additional (stuttering) steps that leave $\langle\mathbf{x}, \mathbf{z}, t\rangle$ unchanged.

In any state of a behavior satisfying $T^{t h p}$, the value of $(h \circ p)(\operatorname{Len}(h)-1)$ (the last element in the sequence $h$ of $m$-tuples of values) is the current value of $\langle\mathbf{x}, \mathbf{z}, t\rangle$. The variables $h$ and $p$, together with the mapping $\Phi$ contain all the information needed to define a refinement mapping under which $T^{\text {thp }}$ implements $I S$. To see how this is done, we need some notation.

For any behavior $\sigma$ and state expression exp, define $\left.\sigma\right|_{\exp }$ to be the infinite sequence of values such that $\left(\left.\sigma\right|_{\text {exp }}\right)(i)$ equals the value of $\exp$ in state $\sigma(i)$, for all $i \in \mathbb{N}$. Thus $\left.\sigma\right|_{\langle\mathbf{x}, \mathbf{z}, t\rangle}$ is the sequence of $m$-tuples of values of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in the states of $\sigma$. Define the mapping $\widetilde{\Phi}$ from $m$-tuples of values to behaviors so that $\widetilde{\Phi}(\rho)$ equals $\Phi(\sigma)$ for some behavior $\sigma$ such that $\left.\sigma\right|_{\langle\mathbf{x}, \mathbf{z}, t\rangle}=\rho$. (It doesn't matter what values the states of $\sigma$ assign to variables other than those in $\mathbf{x}, \mathbf{z}$, and $t$ since they don't affect whether or not $\sigma$ satisfies $T$.) We are assuming that $\Phi(\sigma)$ satisfies $I S$ and $\Phi(\sigma) \sim_{\mathbf{y}} \sigma$. Therefore, for any behavior satisfying $T^{t h p}$, for the value of $h \circ p$ in any state of that behavior, $\widetilde{\Phi}(h \circ p)$ satisfies $I S$ and $\widetilde{\Phi}(h \circ p) \sim_{\mathbf{y}} \sigma$ for some behavior $\sigma$ such that $\left.\sigma\right|_{\langle\mathbf{x}, \mathbf{z}\rangle}=h \circ p$.

To understand how to construct the needed refinement mapping, we consider a simpler version of the theorem that would be true if we were using RTLA rather than TLA, so we didn't have the complication introduced by stuttering insensitivity In that case, $\widetilde{\Phi}(h \circ p)$ would satisfy $\widetilde{\Phi}(h \circ p) \simeq_{\mathbf{y}} \sigma$ instead of $\widetilde{\Phi}(h \circ p) \sim_{\mathbf{y}} \sigma$. This means that the behavior $\Phi(\sigma)$ satisfying $I S$ is constructed from a behavior $\sigma$ with $\left.\sigma\right|_{\langle\mathbf{x}, \mathbf{z}, t\rangle}$ equal to $h \circ p$ by just changing the value of the variables $\mathbf{y}$ in each state of $\sigma$ (without adding or removing stuttering steps). For any state $s$, let $s_{\mathbf{y}}$ be the values of the variables $\mathbf{y}$ in that state. For $\sigma$ to satisfy $I S$, the values of $\mathbf{y}$ in any state $\sigma(i)$ of the behavior $\sigma$ should equal the values of $\Phi(\sigma)(i)_{\mathbf{y}}$, the values of $\mathbf{y}$ in the corre-
sponding state of $\Phi(\sigma) .{ }^{2}$ Remember that state number $i$ of $\sigma$ corresponds to the $m$-tuple $(h \circ p)(i)$ with $i=\operatorname{Len}(h)-1$. Therefore, the values assigned to $\mathbf{y}$ by the refinement mapping under which $T^{t h p}$ implements $I S$ should in each state equal the values of $\mathbf{y}$ in state number $\operatorname{Len}(h)-1$ of $\widetilde{\Phi}(h \circ p)$. In other words, we have:
(B.1) $\models T^{t h p} \Rightarrow\left(I S\right.$ with $\left.\mathbf{y} \leftarrow(\widetilde{\Phi}(h \circ p)(\operatorname{Len}(h)-1))_{\mathbf{y}}\right)$

Let's now return to the actual situation in which $\widetilde{\Phi}(h \circ p) \sim_{\mathbf{y}} \sigma$ (rather than $\left.\widetilde{\Phi}(h \circ p) \simeq_{\mathbf{y}} \sigma\right)$. The behavior $\widetilde{\Phi}(h \circ p)$ is constructed from the behavior $\sigma$, where $\left.\sigma\right|_{\langle\mathbf{x}, \mathbf{z}, t\rangle}$ equals the value of $h \circ p$ in every state of $\sigma$, by possibly adding stuttering steps to $\sigma$ and then modifying the values of $\mathbf{y}$ in its states. (There are no stuttering steps to remove from $\sigma$ because we defined $T^{t}$ and the history variable $h$ so that $h$ is a sequence of $m$-tuples no two successive elements of which are equal.)

To fix (B.1) to handle these stuttering steps, we have to add a stuttering variable $s$ to $T^{\text {thp }}$ to obtain the program $T^{\text {thps }}$ that adds to the behavior $\sigma$ satisfying $T^{t h p}$ the stuttering steps needed to produce a behavior $\tau$ such that the state $\tau(i)$ corresponds to the state $\widetilde{\Phi}(h \circ p)(i)$ for every $i \in \mathbb{N}$. The behavior $\widetilde{\Phi}(h \circ p)$ tells us where those stuttering steps must be added: each step $\widetilde{\Phi}(h \circ p)(i) \rightarrow \widetilde{\Phi}(h \circ p)(i+1)$ that leaves the value of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ unchanged corresponds to a stuttering step added to the behavior $\sigma$ satisfying $T^{\text {thp }}$ to form $\tau$.

Define the function $f$ in $(\mathbb{N} \rightarrow \mathbb{N})$ in terms of $h \circ p$ as follows. Let $f(0)=0$, and for all $i \in \mathbb{N}$, let $f(i+1)$ be the smallest number greater than $f(i)$ such that the value of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in state $\widetilde{\Phi}(h \circ p)(f(i+1))$ is different from its value in state $\widetilde{\Phi}(h \circ p)(i)$. (Such a number $f(i+1)$ exists for the value of $h \circ p$ in any reachable state of $T^{\text {thp }}$ because adding the infinite-stuttering variable $t$ ensured that $\square \diamond\left(t^{\prime} \neq t\right)$ is true for every behavior of $T^{t h p}$.)

To construct $\widetilde{\Phi}(h \circ p)$ from a behavior $\sigma$ with $\left.\sigma\right|_{\langle\mathbf{x}, \mathbf{z}, t\rangle}=h \circ p$, we have to add stuttering steps to make each state number $i$ of $\sigma$ correspond to state number $f(i)$ of $\widetilde{\Phi}(h \circ p)$. The stuttering variable $s$ added to $T^{t h p}$ to define $T^{\text {thps }}$ has to add $f(i+1)-f(i)-1$ stuttering steps between states number $i$ and $i+1$ of a behavior of $T^{t h p}$. That means adding $f(\operatorname{Len}(h))-f(\operatorname{Len}(h)-1)-1$ stuttering steps after every step of the nextstate action of $T^{t h p}$. (Of course no stuttering step is added if $f(\operatorname{Len}(h))$ -$f(\operatorname{Len}(h)-1)=1$.) We then define $k$ to be a state expression whose value in any behavior satisfying $T^{t h p s}$ is the number of steps of the next-state

[^39]action of $T^{\text {thps }}$ that have occurred so far. We can define $k$ in terms of the values of $f$ and $s$, or we can simply add $k$ as a history variable to $T^{t h p s}$. However we define it, we can express the corrected version of (B.1) that handles stuttering insensitivity by:
$$
\vDash T^{t h p s} \Rightarrow\left(I S \text { with } \mathbf{y} \leftarrow(\widetilde{\Phi}(h \circ p)(k))_{\mathbf{y}}\right)
$$
which completes the proof. End Proof Sketch

## Replacing the Prophecy Variable with a Prophecy Constant

Theorem 6.6 is true if we use a prophecy constant, as defined in Section 6.6, instead of a prophecy variable. This is proved by modifying the proof sketch of Theorem 6.6 as follows. After adding the auxiliary variables $t$ and $h$, we add to $T^{\text {th }}$ a prophecy constant $c$ whose value is the infinite sequence of $m$-tuples that are the values of $\langle\mathbf{x}, \mathbf{z}, t\rangle$ in the entire behavior. In other words,

$$
T^{t h c} \triangleq \exists c: P(h, c) \wedge T^{t h}
$$

where $P(h, c)$ asserts that $c$ is an infinite sequence of $m$-tuples such that, in every state, $h$ equals the sequence of the first $\operatorname{Len}(h)$ elements of $c$. We then define $p$ to be the state function such that, in any state, $h \circ p$ equals $c$. The proof is then the same as the rest of the proof of Theorem 6.6, using this as the definition of $p$.

## B. 13 Proof of Theorem 7.2

The proof uses the following assertion, which the definition of the action composition operator "." implies is true for all actions $A_{i}$ and $B_{j}$ :
(B.2) $\vDash\left(\exists i \in I: A_{i}\right) \cdot\left(\exists j \in J: B_{j}\right) \equiv\left(\exists i \in I, j \in J: A_{i} \cdot B_{j}\right)$

Theorem 7.2 If $A \equiv \exists i \in I: A_{i}$ and $B \equiv \exists j \in J: B_{j}$ for actions $A_{i}$ and $B_{j}$, then:

$$
\models\left(\forall i \in I, j \in J: A_{i} \cdot B_{j} \Rightarrow B_{j} \cdot A_{i}\right) \Rightarrow(A \cdot B \Rightarrow B \cdot A)
$$

Proof: It suffices to assume $A_{i} \cdot B_{j} \Rightarrow B_{j} \cdot A_{i}$ for all $i \in I$ and $j \in J$ and prove $A \cdot B \Rightarrow B \cdot A$. Here is the proof:

$$
\begin{array}{rlrl}
A \cdot B & \equiv\left(\exists i \in I, j \in J: A_{i} \cdot B_{j}\right) & & \text { by (B.2) } \\
& \Rightarrow\left(\exists i \in I, j \in J: B_{j} \cdot A_{i}\right) & & \text { we assume } A_{i} \cdot B_{j} \Rightarrow B_{j} \cdot A_{i} \text { for all } i \text { and } j \\
& \equiv B \cdot A & & \text { by (B.2), substituting } I \leftarrow J, J \leftarrow I, \\
& & A_{i} \leftarrow B_{j}, \text { and } B_{j} \leftarrow A_{i} .
\end{array}
$$

## End Proof

## B. 14 Proof of Theorem 7.3

Theorem 7.3 If $S$ equals Init $\wedge \square[N e x t]_{\mathbf{x}}, P$ is a safety property, and $Q$ is a state predicate such that $=S \Rightarrow \square \mathbb{E}\left([N e x t]_{\mathrm{x}}^{+} \wedge Q^{\prime}\right)$, then $\models S \wedge \square \diamond Q \Rightarrow P$ implies $=S \Rightarrow P$.

1. $\langle S, \square \diamond Q\rangle$ is machine closed.
1.1. Suffices: Assume: $\rho$ a finite behavior satisfying $S$

Prove: $\quad \rho$ is a prefix of a behavior satisfying $S \wedge L$
Proof: By definition of machine closure.
1.2. There is a mapping $\Phi$ such that if $\mu$ is any finite behavior satisfying $S$, then $\Phi(\mu)$ is a finite behavior ending in a state satisfying $Q$ such that $\mu \circ \Phi(\mu)$ satisfies $S$.
Proof: The hypothesis $\models S \Rightarrow \square \mathbb{E}\left([N e x t]_{\mathbf{x}}^{+} \wedge Q^{\prime}\right)$ implies that the action $[N e x t]_{\mathbf{x}}^{+} \wedge Q^{\prime}$ is enabled in the last state of $\mu$. Therefore, there is a finite behavior $\psi$ beginning with the last state of $\mu$ and containing at least two states such that the last state of $\psi$ satisfies $Q$ and every step of $\psi$ satisfies $[N e x t]_{\mathbf{x}}^{+}$. Let $\Phi(\mu)$ equal $\operatorname{Tail}(\psi)$. Then $\mu \circ \Phi(\mu)$ satisfies $S$ by definition of $S$, because $\mu$ satisfies Init and $\square[N e x t]_{\mathbf{x}}$ and every step of $\psi$ is a $[N e x t]_{\mathbf{x}}^{+}$step; and the last state of $\mu \circ \Phi(\mu)$ satisfies $Q$.
Define $\tau_{i}$ for $i \in \mathbb{N}$ by: $\tau_{0} \triangleq \rho$

$$
\tau_{i+1} \triangleq \tau_{i} \circ \Phi\left(\tau_{i}\right) \text { for all } i \in \mathbb{N}
$$

### 1.3. Q.E.D.

Proof: Let $\sigma$ be the (unique) behavior such that each $\tau_{i}$ is a prefix of $\sigma$, so $\rho$ (which equals $\tau_{0}$ ) is a prefix of $\sigma$. Each finite prefix of $\sigma$ is a prefix of some $\tau_{i}$ and therefore satisfies $S$. Since $S$ is a safety property, this implies $\sigma$ satisfies $S$. For all $i \in \mathbb{N}, \tau_{i+1}$ has at least one more state satisfying $Q$ than $\tau_{i}$ does, so $\sigma$ satisfies $\square \diamond Q$.
2. $S=\mathcal{C}(S \wedge \square \diamond Q)$

Proof: By step 1 and Theorem 4.5.
3. Q.E.D.

Proof: By step 2, the assumption that $P$ is a safety property, and Theorem 4.3.

## Bibliography

[1] Martín Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM Transactions on Programming Languages and Systems, 16(5):1543-1571, September 1994. This paper has an appendix published by ACM only online that contains proofs. Other online versions of the paper might not contain the appendix.
[2] Martín Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on Programming Languages and Systems, 17(3):507-534, May 1995. This paper has an appendix published by ACM only online that contains proofs. Online versions of the paper might not contain the appendix.
[3] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21(4):181-185, October 1985.
[4] E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer and System Sciences, 10:110-135, February 1975.
[5] Selma Azaiez, Damien Doligez, Matthieu Lemerre, Tomer Libal, and Stephan Merz. Proving determinacy of the PharOS real-time operating system. In Michael Butler, Klaus-Dieter Schewe, Atif Mashkoor, and Miklós Biró, editors, 5th Intl. Conf. Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ 2016), volume 9675 of LNCS, pages 70-85. Springer, 2016.
[6] Arthur Bernstein and Paul K. Harter, Jr. Proving real time properties of programs with temporal logic. In Proceedings of the Eighth Symposium on Operating Systems Principles, pages 1-11, New York, 1981. ACM. Operating Systems Review 15, 5.
[7] James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion. Inf. Comput., 107(2):171-184, 1993.
[8] Ernie Cohen and Leslie Lamport. Reduction in TLA. In David Sangiorgi and Robert de Simone, editors, CONCUR'98 Concurrency Theory, volume 1466 of Lecture Notes in Computer Science, pages 317-331. Springer-Verlag, 1998.
[9] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications of the ACM, 8(9):569, September 1965.
[10] Thomas W. Doeppner, Jr. Parallel program correctness through refinement. In Fourth Annual ACM Symposium on Principles of Programming Languages, pages 155-169. ACM, January 1977.
[11] Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer. Verification of hybrid systems. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 1047-1110. Springer, 2018.
[12] Michael Fischer. Re: Where are you? Email message to Leslie Lamport. Arpanet message sent on June 25, 1985 18:56:29 EDT, number 8506252257.AA07636@YALE-BULLDOG.YALE.ARPA (47 lines), 1985.
[13] Michael J. Fischer, Nancy Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382, April 1985.
[14] R. W. Floyd. Assigning meanings to programs. In Proceedings of the Symposium on Applied Math., Vol. 19, pages 19-32. American Mathematical Society, 1967.
[15] Aman Goel, Stephan Merz, and Karem A. Sakallah. Towards an automatic proof of the bakery algorithm. In Marieke Huisman and António Ravara, editors, Formal Techniques for Distributed Objects, Components, and Systems, volume 13910 of Lecture Notes in Computer Science, pages 21-28. Springer, 2023.
[16] George Gonthier and Leslie Lamport. Recursive operator definitions. Research Report RR-9341, Inria Saclay Ile de France, 2020. https: //inria.hal.science/hal-02598330/file/RR-9341.pdf.
[17] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks? In Werner Kuich, editor, Automata, Languages and Programming, 19th International Colloquium, ICALP92, Vienna,

Austria, July 13-17, 1992, Proceedings, volume 623 of Lecture Notes in Computer Science, pages 545-558. Springer, 1992.
[18] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492, January 1990.
[19] Wim H. Hesselink. Eternity variables to prove simulation of specifications. ACM Trans. Comput. Log., 6(1):175-201, 2005.
[20] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271-281, 1972.
[21] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576-583, October 1969.
[22] Cliff B. Jones. Specification and design of (parallel) programs. In R. E. A. Mason, editor, Information Processing 83: Proceedings of the IFIP 9th World Congress, pages 321-332, Amsterdam, September 1983. IFIP, North-Holland.
[23] R. M. Keller. Formal verification of parallel programs. Communications of the ACM, 19(7):371-384, July 1976.
[24] R. P. Kurshan and Leslie Lamport. Verification of a multiplier: 64 bits and beyond. In Costas Courcoubetis, editor, Computer-Aided Verification, volume 697 of Lecture Notes in Computer Science, pages 166-179, Berlin, June 1993. Springer-Verlag. Proceedings of the Fifth International Conference, CAV'93.
[25] Peter Ladkin, Leslie Lamport, Bryan Olivier, and Denis Roegel. Lazy caching in TLA. Distributed Computing, 12(2/3):151-174, 1999.
[26] Leslie Lamport. The paxos algorithm or how to win a turing award. Web page. https://lamport.azurewebsites.net/tla/ paxos-algorithm.html.
[27] Leslie Lamport. TLA-temporal logic of actions. A web page at https: //lamport.azurewebsites.net/tla/tla.html.
[28] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software Engineering, SE-3(2):125-143, March 1977.
[29] Leslie Lamport. The mutual exclusion problem-part ii: Statement and solutions. Journal of the ACM, 32(1):327-348, January 1986.
[30] Leslie Lamport. Hybrid systems in TLA ${ }^{+}$. In Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in Computer Science, pages 77-102, Berlin, Heidelberg, 1993. Springer-Verlag.
[31] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and Systems, 16(3):872-923, May 1994.
[32] Leslie Lamport. Proving possibility properties. Theoretical Computer Science, 206(1-2):341-352, October 1998.
[33] Leslie Lamport. Fairness and hyperfairness. Distributed Computing, 13(4):239-245, November 2000.
[34] Leslie Lamport. Specifying Systems. Addison-Wesley, Boston, 2003.
[35] Leslie Lamport. Real-time model checking is really simple. In Dominique Borrione and Wolfgang Paul, editors, Correct Hardware Design and Verification Methods, 13th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2005, Saarbrücken, Germany, October 3-6, 2005, Proceedings, volume 3725 of Lecture Notes in Computer Science, pages 162-175. Springer, 2005.
[36] Leslie Lamport. The PlusCal algorithm language. In Martin Leucker and Carroll Morgan, editors, Theoretical Aspects of Computing, ICTAC 2009, volume 5684 of Lecture Notes in Computer Science, pages 36-60. Springer-Verlag, 2009.
[37] Leslie Lamport. How to write a 21st century proof. Journal of Fixed Point Theory and Applications, March 2012. DOI: 10.1007/s11784-012-0071-6.
[38] Leslie Lamport and Stephan Merz. Auxiliary variables in TLA+. arXiv:1703.05121 (https://arxiv.org/abs/1703.05121) Also available, together with $\mathrm{TLA}^{+}$specifications, at http://lamport. azurewebsites.net/tla/auxiliary/auxiliary.html.
[39] Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason., 40(1):1-33, 2008.
[40] Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Communications of the ACM, 18(12):717-721, December 1975.
[41] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. How amazon web services uses formal methods. Communications of the ACM, 58(4):66-73, April 2015.
[42] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method to support highly-available distributed systems. In Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing, pages 8-17. ACM Press, August 1988.
[43] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Informatica, 6(4):319-340, 1976.
[44] Susan Owicki and David Gries. Verifying properties of parallel programs: An axiomatic approach. Communications of the ACM, 19(5):279-284, May 1976.
[45] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent programs. ACM Transactions on Programming Languages and Systems, 4(3):455-495, July 1982.
[46] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. Journal of the ACM, 27(2):228-234, April 1980.
[47] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on the Foundations of Computer Science, pages 4657. IEEE, November 1977.
[48] Eric Verhulst, Raymond T. Boute, José Miguel Sampaio Faria, Bernard H. C. Sputh, and Vitaliy Mezhuyev. Formal Development of a NetworkCentric RTOS. Springer, New York, 2011.
[49] Hagen Völzer and Daniele Varacca. Defining fairness in reactive and concurrent systems. J. ACM, 59(3):13:1-13:37, 2012.

## Index

The index obviously needs to be added.


[^0]:    ${ }^{1}$ There are techniques for proving the correctness of a program by model checking a simpler program, but they have not been implemented for abstract programs written in TLA ${ }^{+}$.

[^1]:    ${ }^{2}$ You may have seen a more efficient modern version of Euclid's algorithm that replaces the larger of $x$ and $y$ by the remainder when it is divided by the smaller. For the purpose of this example, it makes little difference which we use.

[^2]:    ${ }^{3}$ The book states the reduction in code size to be a factor of $5-10$. Verhulst explained to me that it was impossible to measure the reduction precisely, so the book gave a conservative estimate; but he believes it was actually a factor of 10 .

[^3]:    ${ }^{1}$ Arithmetic has two different operators named -, one takes two arguments, and $-(v, w)$ equals the number we usually write $v-w$; the other takes a single argument, and $-(v)$ is the number we write $-v$.

[^4]:    ${ }^{2}$ Logicians call a formula a theorem only if it it can be proved from some collection of axioms and proof rules.

[^5]:    ${ }^{3}$ As usually defined, ZF does not consider true and false to be sets. Making them sets will allow the value of a program variable to be a Boolean.

[^6]:    ${ }^{4}$ The rules of Boolean algebra were described in Mathglish in Section 2.4. They couldn't be expressed there as theorems because we had not yet introduced Boolean-valued variables.

[^7]:    ${ }^{5}$ The bound in unbounded bears no relation to the bound in bound variable.

[^8]:    ${ }^{6}$ There are ways to write quantification without using bound variables that allow writing such formulas, but they're inconvenient to use.

[^9]:    ${ }^{1}$ In classical physics, the state at time $t_{0}$ uniquely determines the system's subsequent behavior. The situation is less clear in quantum physics where multiple subsequent behaviors seem possible, but the set of those behaviors is completely determined by the state.

[^10]:    ${ }^{2}$ Here, classical physics includes relativity but not quantum mechanics. I believe that quantum mechanics also describes a continuous universe, but a discussion of that would take us too far afield.
    ${ }^{3}$ The $t_{j}$ are pretend times, not exact physical times. Two bits that change at the same pretend time may change at different physical times because the clock pulse that generates the change may reach one of them a fraction of a nanosecond before the other. Chip designers must ensure that we can pretend that they change at the same time.

[^11]:    ${ }^{4}$ In program $F G S q r s$, an additional variable isn't needed because which statement should be executed next can be deduced from the values of the variables $x$ and $y$, but that's not the case in most programs written in pseudocode.

[^12]:    ${ }^{5}$ If you believe that the second and third conjuncts in this formula are in the wrong order, then you're thinking in terms of coding languages, not math. Remember that $F \wedge G$ is equivalent to $G \wedge F$.

[^13]:    ${ }^{6}$ This particular definition would define ! to be a function with domain $\mathbb{N}$, but with $!(n)$ a meaningless expression for any $n$. However, its usually not the case that such a non-terminating recursion defines a function.

[^14]:    ${ }^{7}$ We could let $S$ be a state expression, but there is no need to.

[^15]:    ${ }^{1}$ Remember that a behavior means any infinite sequence of states, not just one that satisfies some program. If we know that a behavior satisfies the program, we can often tell that $\diamond(x=42)$ is false by looking at the behavior predicate that describes the program, without looking at the behavior at all.

[^16]:    ${ }^{2}$ Remember that property means predicate on behaviors. There are many conditions we want programs to satisfy besides properties.

[^17]:    ${ }^{3}$ Their result was stated for arbitrary behavior predicates, not properties.

[^18]:    ${ }^{4}$ With these definitions of $F$ and $G$, the formula $\square \diamond(\neg F \vee G)$ is not a TLA formula.

[^19]:    ${ }^{5}$ Algorithm $O B$ is the two-process case of an $N$-process algorithm that was discovered independently by James E. Burns and me in the 1970s, but not published until later [7, 29].

[^20]:    ${ }^{6}$ For any infix predicate symbol like $=$ or $\in$, putting a slash through the symbol negates it, so $e \notin S$ means $\neg(e \in S)$.

[^21]:    ${ }^{7}$ All the results that will be stated are satisfied if we allow a subaction $A$ to be one satisfying $\vDash \operatorname{Inv} \wedge A \Rightarrow N e x t$, where $\operatorname{Inv}$ is an invariant of the program. However, this generalization does not seem to be needed in practice.

[^22]:    ${ }^{8}$ Section 7.1 explains one way in which a possibility condition can be used to verify a property of a system and could therefore be of practical use.

[^23]:    ${ }^{9}$ Fischer sent this algorithm in an email to me [12]. I believe Martín Abadi and I were the first to describe it in print [1].
    ${ }^{10}$ The TLA ${ }^{+}$design of the real-time operating system mentioned in Section 1.6 was not used to check its real-time properties.

[^24]:    ${ }^{11}$ The expression $\{v \in S: v \in T\}$ is ambiguous; it could be either a subsetting or a mapping constructor. We will never write such an expression, so we won't worry about which it is.

[^25]:    ${ }^{1}$ Mathematicians generally use "." or "o" to denote function composition, but we have defined those symbols to mean other things.

[^26]:    ${ }^{2}$ Don't confuse different ballots with the different instances of the consensus algorithm being executed. Execution of an instance of the consensus algorithm can consist of multiple ballots.

[^27]:    ${ }^{3}$ Equivalently, we can remove edge 8 and add an edge from $p c(0)=c s$ to FALSE and an edge from FALSE to $\square \neg x(1)$, since FALSE implies anything.

[^28]:    ${ }^{1}$ Sometimes the queue can hold only some maximum number of elements, but for simplicity we assume that there is no such limit.

[^29]:    ${ }^{1}$ The rule was stated in print independently by Owicki and Gries [43] and by me [28], but I think it was well known at the time.

[^30]:    ${ }^{2}$ The action $R$ bears no relation to the superscript $R$ in $S^{R}$. It is traditional to name the action $R$ for $R$ ight-mover because of the way the reduced behavior is constructed; and there seems to be no better superscript than $R$ to signify reduced.

[^31]:    ${ }^{3}$ For example, if $\mathrm{YF}_{\mathbf{x}}^{i}\left(A_{i}\right)$ is $\mathrm{SF}_{\mathbf{x}}^{i}\left(A_{i}\right)$ and $\mathrm{ZF}_{\mathbf{X}}^{i}\left(A_{i}^{R}\right)$ is $\mathrm{WF}_{\mathbf{X}}^{i}\left(A_{i}^{R}\right)$, this condition is:
    $\vDash S \wedge F \Rightarrow\left(\diamond \square \mathbb{E}\left\langle A_{i}^{\rho}\right\rangle_{\mathbf{x}} \wedge \square\left[\neg A_{i}\right]_{\mathbf{x}} \leadsto \square \diamond \mathbb{E}\left\langle A_{i}\right\rangle_{\mathbf{x}}\right)$

[^32]:    ${ }^{4}$ We are abandoning our convention of naming a list of variables with a boldface letter and adopting the notation of [2], where each $m_{i}$ is a list of variables that we could write $m_{i, 1}, \ldots, m_{i, n_{i}}$ but won't.

[^33]:    ${ }^{5}$ By definition of machine closure, $\left\langle M_{i}^{S}, M_{i}^{L}\right\rangle$ machine closed implies $\left\langle M_{i}^{S}, E_{i}^{L} \Rightarrow M_{i}^{L}\right\rangle$ is also machine closed, because $M_{i}^{L}$ implies $E_{i}^{L} \Rightarrow M_{i}^{L}$.

[^34]:    ${ }^{6}$ An interleaving description is often taken to mean any description of a program's executions as sequences of states and/or events, so by that meaning all TLA program descriptions are interleaving descriptions.

[^35]:    ${ }^{1}$ I must confess that, many years ago, I used that term in a paper [28].

[^36]:    ${ }^{2}$ Here, variable means a variable of ordinary math, which is a constant of temporal logic. In a temporal logic book, (program) variables would be declared and could appear free in a theorem.

[^37]:    ${ }^{3}$ To handle the uninteresting case of the empty set, we can define $\widehat{\delta}(p,\{ \})$ to equal $\infty$, which is a value satisfying $r<\infty$ for all $r \in \mathbb{R}$.

[^38]:    ${ }^{1}$ To check the level- 1 proof, the $\mathrm{TLA}^{+}$proof checker requires only that step 2 be decomposed to a two-step proof, and that it be told to use two simple facts about the cardinality of finite sets that it easily deduces from a standard library of such facts.

[^39]:    ${ }^{2}$ This means that for each variable $y_{j}$ of $\mathbf{y}$, the value of $y_{j}$ in any state $\sigma(i)$ should equal the value of $y_{j}$ in $\Phi(\sigma)(i)$.

