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About this Book

The first chapter, which is a little over ten pages, explains what this book
is about. I believe it will tell you whether you should read the book. If you
decide to read it, here are some things you should know.

The book’s science is embodied in a language called TLA+. Many of
its example have been written in TLA+ and checked with the TLA+ tools.
However, TLA+ is not used here because the requirements of handling indus-
trial applications require it to be a little more complicated than is necessary
for the book. The TLA+ versions of the examples and an explanation of
how to translate from the book’s notation to TLA+ will be available at
https://www.cambridge.org/XXXXX.html.

The book has no formal exercises, but the text proposes a number of
problems for you to solve that can help you learn the material. To learn
how the science can be put into practice, you should try writing your own
examples in TLA+, checking what you do with the TLA+ tools.

You are reading the pdf version of the book, in which clickable links are
colored like this. There will also be a print edition of the book available
from Cambridge University Press.

https://www.cambridge.org/XXXXX.html
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Chapter 1

Introduction

1.1 Who Am I?

Dear Reader. I am inviting you to spend many pages with me. Before
deciding whether to accept my invitation, you may want to know who I am.

I was educated as a mathematician; my doctoral thesis was on partial
differential equations. While a student, I worked part-time and summers
as a programmer. At that time, almost all programs were what I will call
traditional programs—ones with a single thread of control that take input,
produce output, and stop.

After obtaining my doctorate, I began working on concurrent algo-
rithms—ones comprising multiple independent threads of control, called pro-
cesses, that are executed concurrently. The first concurrent algorithms were
meant to be executed on a single computer, and processes communicated
through a shared memory. Later came distributed algorithms—concurrent
algorithms designed to be executed on multiple computers in which processes
communicate by message passing.

This is not the place for modesty. I was very good at concurrency—both
writing concurrent algorithms and developing the theory underlying them.
The first concurrent algorithm I wrote, published in 1974, is still taught at
universities. In 1978 I published what is probably the first paper on the
theory of distributed computing. I have received many awards and honors
for this work, including a Turing award (generally considered the Nobel
prize of computer science) for “fundamental contributions to the theory and
practice of distributed and concurrent systems.”

1



CHAPTER 1. INTRODUCTION 2

1.2 Who Are You?

You probably belong to one of two classes of people who I will call scien-
tists and engineers. Scientists are computer scientists who are interested in
concurrent computing. If you are a scientist, you should be well-prepared
to decide if this book interests you and to read it if it does.

Engineers are people involved in building concurrent programs. If you
are an engineer, you might have a job title such as programmer, software
engineer, or hardware designer. I need to warn you that this book is about
a science, not about its practical application. Practice is discussed only to
explain the motivation for the science. If you are interested just in using
the science, you should read about the language TLA+ and its tools, which
are the practical embodiment of the science [28, 35]. But if you want to
understand the underlying science, then this book may be for you.

Like many sciences, the book’s science of concurrent programs is based
on mathematics. The book assumes only that you know the math one
learns before entering a university. The basics of all the ordinary math you
will need—“ordinary” meaning not peculiar to this science—is explained in
Chapter 2. Some additional ordinary mathematics is introduced later as
needed. The appendix contains a brief summary of all this math. Most
of this math is taught at universities in an introductory math course for
computer science students, though probably not the way it is presented
here. Scientists should be used to reading math. You may find the math
hard if you’re an engineer. But unless miseducation has burdened you with
an insurmountable fear of mathematics, I encourage you to give the book a
try. Learning the math will improve your thinking.

1.3 The Origin of the Science

The science that is the subject of this book, which I will call our science,
is a mathematical theory with a practical goal. That goal is to help build
concurrent programs that work correctly. Exactly what “working correctly”
means and why it’s an important goal are explained in Section 1.4. The
origin of our science explains how I came to believe it’s a good foundation
for trying to achieve that goal.

1.3.1 The Origin of the Theory

The first concurrent algorithm was published in 1965 by Edsger Dijkstra [9].
I started writing concurrent algorithms around 1973, and I quickly learned
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that they were hard to get right. The many possible orders in which the op-
erations of different processes can be executed leads to an enormous number
of possible executions that have to be considered. The only way to ensure
that the algorithm worked correctly was to prove that it did.

By the 1970s, a standard approach had been developed for proving cor-
rectness of traditional programs. Around 1975, I and a few other computer
scientists began extending that approach to concurrent algorithms [4, 24, 29,
45]. Concurrent algorithms were usually written in pseudocode plus some
informal explanation of what the pseudocode meant. I came to realize that
all these methods for proving correctness could be explained by describing
a concurrent algorithm as what I am now calling an abstract program; and
an abstract program could be described mathematically.

Correctness of an algorithm was expressed by properties required of its
executions. I came to realize that correctness can also be expressed by an
abstract program—a more abstract, higher-level one than the abstract pro-
gram describing the algorithm. Proving correctness means showing that the
abstract program describing the algorithm implements the abstract program
describing its correctness, and I developed a method for doing that.

This work culminated around 1990 with a way to write an abstract pro-
gram as a single formula [32]. The formula is written in an obscure form
of math called temporal logic. The particular temporal logic is called TLA
(for the Temporal Logic of Actions). Most of the TLA formula for an ab-
stract program consists of ordinary math that expresses essentially what
was described by pseudocode. Temporal logic replaces the informal expla-
nation of the pseudocode. That one abstract program implements another
is expressed as logical implication together with mathematical substitution.

Throughout this period, I was writing correctness proofs of the algo-
rithms I was inventing. This showed me that my way of reasoning with
abstract programs worked in practice. However, I discovered that as my
algorithms got more complicated and the formulas describing them became
larger, the method of writing proofs used by mathematicians became unre-
liable. It could not ensure that all the details were correct. I had to devise
a method of hierarchically structuring proofs to keep track of those details.

1.3.2 The Origin of the Practice

I have spent most of my career as a member of industrial research labs. The
computer science I have done has been motivated by the problems facing
system builders—sometimes before they were aware of those problems. I
have devoted the last part of my career to developing tools to help them—
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both intellectual tools to help them think better and programs to help them
detect errors before they are implemented in code. These tools are based on
what I learned by writing and reasoning about concurrent algorithms.

Programming is not just coding. It requires thinking before we code.
Writing algorithms taught me that there are two things we need to decide
before writing and debugging the code: what the program should do and
how the program should do it. Most programmers think that the code
itself adequately describes “how the program should do it”, but I learned
that we need a higher-level, more abstract description of what the program
does. To emphasize that programming is more than just coding, I now
use the name coding language for what are commonly called programming
languages. That name is used in this book.

An algorithm is an example of a description of how a program should do
something. Concurrent algorithms are hard to understand. To invent them,
I had to be able to write them in the simplest way possible. Algorithms were
usually written in pseudocode to avoid the complexity that real code requires
to permit efficient execution. I developed a way to describe concurrent
algorithms in math that was more precise and no harder to understand
than pseudocode.

Engineers who build complex systems usually recognize the need for
describing what their programs do in a simpler, more abstract way than
with code. I decided that abstract programs written in math provided such
a way for describing the aspects of a system that involve concurrency. By
about 1995, I had designed a complete language called TLA+ that engineers
could use to write abstract programs in TLA.

The abstract programs I know of that have been written by engineers to
describe what a system should do generally consist of about 200–2000 lines
of TLA+. All but a few of those lines are ordinary math, not temporal logic.
As with code, those formulas are made easy to understand by decomposing
them into smaller pieces. This is done using simple definitions, rather than
the more complex constructs of coding languages.

To formalize mathematics and make it easier to write long formulas, I
had to add to TLA+ some concepts and syntax not present in the math com-
monly used by mathematicians—for example, variable declarations, group-
ing definitions into modules, and notation for substitution. This book uses
TLA, but not TLA+, because the examples with which it illustrates our
science are short and simple.

The kind of hierarchically structured proofs I devised can also be writ-
ten in TLA+, and there is a program for checking the correctness of those
proofs. However, with today’s proof-checking technology, writing machine-



CHAPTER 1. INTRODUCTION 5

checked proofs takes more time than engineers generally have. By the time
I designed TLA+, model checking had become a practical tool for checking
the correctness of abstract programs. A model checker can essentially check
correctness of all possible executions of a very small instance of an abstract
program. This turns out to be very effective at detecting errors. There
are two model checkers for abstract programs written in TLA+, using two
complementary approaches. Model checking is the standard way engineers
check those programs.

A program’s code can, in principle, be described by a (concrete) abstract
program and could, in principle, be written as a TLA+ formula. For a simple
program (or part of a program), the code can be hand-translated to TLA+

and checked with the TLA+ tools. Usually, the length of the program and
the complexity of the coding language makes this impractical.

From the point of view of our science, it makes no difference how long
the formula describing an abstract program is. We therefore consider a
program written in a coding language to be an abstract program. And
since we are considering only abstract programs, we will let program mean
abstract program. We will call an (abstract) program written in code a
concrete program.

Although we don’t write them as formulas, viewing concrete programs as
abstract programs provides a new way of thinking about them. One benefit
of this way of thinking is that understanding what it means for a concrete
program to implement a higher-level abstract program can help avoid coding
errors.

1.4 Correctness

Thus far, our science has been described as helping to build concurrent
programs that work correctly. Working correctly is a vague concept. Here
is precisely what it is taken to mean in this book.

We define a behavioral property to be a condition that is or is not sat-
isfied by an individual execution of a program. For example, termination
is a behavioral property. An execution either terminates or else it doesn’t
terminate, meaning that it keeps executing forever. We say that a program
satisfies a behavioral property if every possible execution of the program sat-
isfies it. A program is considered to work correctly, or simply to be correct,
if it satisfies its desired behavioral properties.

That every possible execution of a program satisfies its behavioral prop-
erties may seem like an unreasonably strong requirement. I would be happy
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if a program that I use does the right thing 99.99% of the times I run it. For
many programs, extensive testing can ensure that it does. But it can’t for
most concurrent programs. What a concurrent program does can depend on
the relative order in which operations by different processes are executed.
This makes the program nondeterministic, meaning that different executions
can do different things, even if the program receives identical inputs. This
can result in an enormous number of possible executions, and testing can
examine only a tiny fraction of them. Moreover, a concurrent program that
has run correctly for years can start producing frequent errors because a
small change to the computer hardware, the operating system, or even the
other programs running at the same time causes incorrect executions that
have never occurred before. The only way to prevent this is to ensure that
every possible execution satisfies the behavioral properties.

Model checking is more effective at finding errors in concurrent programs
than ordinary testing because it checks all possible executions. However,
it does this only on a few small instances of the program—for example,
an instance with few processes or one that allows only a small number of
messages to be in transit at any time.1 Engineering judgment is required
to decide if correctness of those instances provides enough confidence in the
correctness of the program.

There is one way testing could find errors in concrete programs. When
building a concurrent system, an abstract program is often used to model
how the processes interact with one another, and correctness of that pro-
gram is checked. The concrete program is then coded by implementing each
process of the more abstract program by a separate process in the code.
Since there is no concurrency within an individual process, testing that the
concrete program implements the more abstract program has a good chance
of finding coding errors. Research on this approach is in progress.

1.5 A Preview

To give you an idea of what our science is like, this section describes in-
formally a simple abstract program for Euclid’s algorithm—a traditional
algorithm that computes a value and stops. It’s a very simple concurrent
program in which the number of processes equals 1. Our science applies to
single-process programs, although there are simpler sciences that work quite

1There are techniques for proving the correctness of a program by model checking a
simpler program, but they have not been implemented for abstract programs written in
TLA+.
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well for them.
Euclid’s algorithm computes the greatest common divisor (GCD) of two

positive integers that we will call M and N . For example, the GCD of 12 and
16, written GCD(12, 16), equals 4 because 4 is the largest integer such that
12 and 16 are both multiples of that integer. The algorithm is an abstract
program containing two variables that we name x and y . Here is its prose
description.

Start with x equal to M and y equal to N and repeatedly perform the
following action until the program stops:

If the values of variables x and y are equal, then stop; otherwise,
subtract from the variable having the larger value the value of the
other variable.2

When the program has stopped, x and y equal GCD(M ,N ).

I believe most engineers and many scientists can’t explain why an execution
of Euclid’s algorithm computes GCD(M ,N ), which means that they don’t
understand the algorithm. Here is the explanation provided by our science,
beginning with how we view executions.

We consider an execution to be a sequence of states. For Euclid’s algo-
rithm, a state is an assignment of values to the program variables x and y .
We write the state that assigns 7 to x and 42 to y as [x :: 7, y :: 42]. Here is
the sequence of states that is the execution of Euclid’s algorithm for M = 12
and N = 16.[

x :: 12
y :: 16

]
→

[
x :: 12
y :: 4

]
→

[
x :: 8
y :: 4

]
→

[
x :: 4
y :: 4

]
The states in the sequence are separated with arrows because we naturally
think of an execution going from one state to the next. But in terms of our
science, the algorithm and its execution just are; they don’t go anywhere.

What an algorithm does in the future depends on its current state, not
on what happened in the past. This means that in the final state of the
execution, in which x and y are equal, they equal GCD(M ,N ) because of
some property that is true of every state of the execution. To understand
Euclid’s algorithm, we must know what that property is.

That property is GCD(x , y) = GCD(M ,N ). (Chapter 3 explains how
we show that every state satisfies this property.) Because an execution

2You may have seen a more efficient modern version of Euclid’s algorithm that replaces
the larger of x and y by the remainder when it is divided by the smaller. For the purpose
of this example, it makes little difference which we use.
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stops only when x and y are equal, and GCD(i , i) equals i for any positive
integer i , this property implies that x and y equal GCD(M ,N ) in the final
state of the execution.

That the formula GCD(x , y) = GCD(M ,N ) is true in every state of a
program’s execution is a behavioral property. A behavioral property that
asserts a formula is true in all states of an execution is called an invariance
property, and the formula is called an invariant of the program. Correctness
of any concurrent program depends on it satisfying an invariance property.
To understand why the program is correct, we have to know the invariant
of the program that explains its correctness.

The invariant GCD(x , y) = GCD(M ,N ) shows that, if Euclid’s algo-
rithm terminates, then it produces the correct output. A traditional pro-
gram must also satisfy the behavioral property of termination. The two
behavioral properties

• The program produces correct output if it terminates.

• The program terminates.

are special cases of the following two classes of behavioral properties that
can be required of a concurrent program:

Safety What the program is allowed to do.

Liveness What the program must eventually do.

These two classes of properties are defined precisely in Section 4.1. Termina-
tion is the only liveness property required of a traditional program. There
are many kinds of liveness properties that can be required of concurrent
programs.

Euclid’s algorithm satisfies its safety requirement (being allowed to ter-
minate only if x and y equal GCD(M ,N )) because the only thing it is
allowed to do is start with x = M and y = N and execute its action. That
is, it satisfies its safety requirement because it is assumed to satisfy the
safety property of doing only what the description of the algorithm allows
it to do.

Euclid’s algorithm satisfies its liveness requirement (eventually terminat-
ing) because it is assumed to satisfy the liveness property of eventually per-
forming any action that its description allows it to perform. (Section 3.4.2.8
shows how we prove that the algorithm terminates.)

I have found it best to describe and reason about safety and liveness
in different ways. In our science, temporal logic plays almost no role in



CHAPTER 1. INTRODUCTION 9

handling safety, but it is central to handling liveness. The TLA formula for
an abstract program is the logical conjunction of a safety property and a
liveness property.

A single-process algorithm that computes a value and stops doesn’t seem
to be a good example for a science of concurrent programs. So, let’s consider
a concurrent version of Euclid’s algorithm. It’s a two-process version of the
algorithm, suitable for execution on a single computer with the processes
communicating through shared variables. We call the two processes the x
process and the y process. The algorithm uses the same program variables
as the one-process version of Euclid’s algorithm and it begins in the same
starting state, with x = M and y = N . If the x process hasn’t stopped, it
is allowed to execute the following action whenever the when condition is
true:

When x ≥ y , stop if x = y , else subtract the value of y from x .

Process y is the same as process x , except with x and y interchanged.
Written in pseudocode, this version of Euclid’s algorithm looks differ-

ent from the one-process version. However, if we consider the executions
of the two versions, we see that they are the same. That is, they have the
same sequence of states, where a state is an assignment of values to x and y .
Whether we view Euclid’s algorithm as a one- or two-process algorithm may
affect how we implement it with a concrete program. An implementation
of the two-process algorithm with a two-process concrete program would
probably be less efficient than a single-process implementation of the one-
process algorithm. Since these two versions of the algorithm have the same
executions, from the point of view of correctness they are the same algo-
rithm. Both versions are written as the same TLA formula. More precisely,
their formulas are equivalent. There are many equivalent ways to write a
mathematical formula. How we choose to write the TLA formula for Eu-
clid’s algorithm can depend on whether we view it as a one- or two-process
algorithm.

1.6 Why Math?

The science of bridge building has a mathematical basis, but bridge design-
ers don’t represent a bridge by a mathematical formula. Why should we
describe an abstract program with one? The simple answer is, because we
can. A concrete program is not a physical object; it’s a concept. Code is
just one representation of that concept. While possible in theory, writing a
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mathematical representation of a concrete program is not practical. How-
ever, for simpler abstract programs, it is possible; and I’ve found it to be a
good way to represent them.

Math has been developed over thousands of years to be simple and ex-
pressive. An abstract program ignores many implementation details, which
often means allowing multiple possible implementations. This is simple to
express in math. Code is designed to describe one way of computing some-
thing. It can be hard or even impossible to write code that allows all those
possibilities. Being based on concepts from coding languages, pseudocode
also lacks the simplicity and expressiveness of math.

One place we want to allow many possible implementations is in describ-
ing what the environment can do. A program can’t work in an arbitrary
environment. An implementation of Euclid’s algorithm will not produce the
correct answer if the operating system can arbitrarily modify the variables x
and y . A concurrent program can interact with its environment in compli-
cated ways, and we have to state explicitly what the program assumes about
its environment to know if its correct. We usually want to assume as little as
necessary about the environment, which means the abstract program should
allow it to have many different behaviors.

Unanticipated behavior of the environment is a serious source of errors
in concurrent programs. Part of the environment of a program is likely to
be another program, such as an operating system. Avoiding errors may
require finding answers to subtle questions about exactly what that other
program does. This is often difficult, because the only description of what
it does other than its code is likely to be imprecise prose. When writing the
abstract program to describe what our concrete program does, describing
what the environment can do will tell us what questions we have to ask.

The expressiveness of math, embodied in TLA, provides a practical
method of writing and checking the correctness of high-level designs of sys-
tems. Such checking can catch errors early, when they are easier to correct.
TLA+ is used by a number of companies, including Amazon [42], Microsoft,
and Oracle. Math also provides a new way of thinking about programs that
can lead to better programming. There is usually no way to quantify the
result of better thinking, but it was possible in the following instance.

Virtuoso was a real-time operating system. It controlled some instru-
ments on the European Space Agency’s Rosetta spacecraft that explored
a comet. Its creators decided to build the next version from scratch, and
they started by writing a high-level design in TLA+. They described their
experience in a book [49]. The head of the project, Eric Verhulst, wrote this
in an email to me:



CHAPTER 1. INTRODUCTION 11

The [TLA+] abstraction helped a lot in coming to a much cleaner ar-
chitecture. One of the results was that the code size is about 10× less
than in [Virtuoso].3

This result was unusual. It was possible only because the design of the
entire system was described with TLA+. Usually, TLA+ is used to describe
only critical aspects of a system that involve concurrency, which represent
a small part of the system’s code. But this example dramatically illustrates
that describing abstract programs with mathematics can produce better
programs.

3The book states the reduction in code size to be a factor of 5–10. Verhulst explained
to me that it was impossible to measure the reduction precisely, so the book gave a
conservative estimate; but he believes it was actually a factor of 10.



Chapter 2

Ordinary Math

We will write an abstract program as a mathematical formula. A program
can be quite complex, leading to a long formula. A long formula with a lot
of esoteric mathematics would be impossible to understand. Almost all the
math used in our formulas is ordinary math, consisting of arithmetic, simple
logic, sets, and functions. You should know most of it already if you took
an introductory university math course for computer science or engineering
students. Ordinary math does not include the temporal logic introduced in
Sections 3.4 and 3.5.

This chapter explains the foundation of the ordinary math used in this
book. It describes the math needed to begin our study of abstract pro-
grams. Later chapters introduce additional math as needed, in special sec-
tions named Math I through Math XI. Math introduced in one chapter may
be used in later chapters. A brief summary of all the ordinary math used in
the book is in Appendix Section A.1. Longer and perhaps easier to under-
stand intuitive explanations of most of the math we will use can be found
on the Web.

An abstract program is written as a TLA formula. While most of that
formula consists of ordinary math, TLA is a temporal logic, and temporal
logic is not ordinary math. The meaning of TLA formulas will be explained
in terms of ordinary math. However, although not hard to understand,
temporal logic doesn’t satisfy all the properties of ordinary math. Avoid-
ing mistakes when using it requires understanding what its formulas mean.
Giving a meaning to the formulas of a logic is called defining a semantics
of the logic. This chapter explains how to define a semantics by defining
the meaning of formulas of ordinary math. Even if you’re familiar with the
math presented here, the explanation of its semantics may be new to you.

12
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Therefore, you should at least skim this chapter carefully.

In mathematics, the truth of an assertion is established by proof. A
mathematician’s proof is usually a sequence of paragraphs. This way of
writing proofs is adequate for simple proofs. However, it’s not reliable for
complicated proofs. It’s particularly unsuited to handling the many details
in a proof of correctness of a program. This book uses a way of writing
structured proofs that makes proofs easier to read, and therefore makes it
harder to prove things that aren’t true. Ordinary paragraph proofs are used
only to prove simple results, and for proof sketches that aren’t meant to be
proofs.

Most of the proofs in this book are in the appendix. Before reading
them, you should read Appendix Section A.2, which explains our structured
proof style. I hope that, some day, all engineers will be able to write proofs
of correctness of their abstract programs. The proofs mathematicians write
are too unreliable to provide confidence that a program is correct. Engineers
will have to use some way of structuring proofs like the one described in this
book. Scientists would also benefit from using it.

Understanding a science of program correctness requires understanding
how to prove correctness of a program. Later chapters of the main text
therefore contain some proofs. Those chapters explain what you need to
know about our proof style to understand their proofs.

The description of Euclid’s algorithm in Chapter 1 used the program
variables x and y . Program variables are different from the variables of
ordinary math, such as the ones used in elementary algebra. The values of
the program variables x and y in Euclid’s algorithm change during execution
of the algorithm. The values of the variables x and y of elementary algebra
remain the same throughout a calculation. They are like the constants M
and N of Euclid’s algorithm. For now, we will use the term variable to mean
a variable of ordinary math, like the ones of elementary algebra.

We begin with what I believe is the hardest math that you will have to
know—a branch of math that takes people years to learn. It’s much too
difficult to explain here, so I will have to assume that you’ve already learned
it. It’s called arithmetic.

2.1 Arithmetic as a Mathematical Theory

Arithmetic is about numbers. The first numbers you learned about are the
positive integers 1, 2, 3, etc. You then learned about more and more kinds of
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numbers until eventually you learned about the real numbers, which include
integers, rational numbers like 3/4, and lots of other numbers like −

√
2 and

π (which equals 3.14159. . . ). Although the numbers we will use are almost
always integers, most of our discussion here applies to all real numbers, so
we let number mean real number.

We use the same notation for the operators of arithmetic that you learned
in school—for example +, / (division), and ≥ ; except that multiplication is
written “∗” because mathematicians use × to mean something else.

An operator like ∗ is what we call a mapping . A mapping M takes some
fixed number of arguments. If M takes two arguments, then M (v ,w) is a
value for some values v and w . For the mapping ∗, if v and w are numbers,
then ∗(v ,w) equals the number we usually write v ∗ w . For the mapping
= , if v and w are numbers, then =(v ,w) is a value we call true if v equals
w , and it’s a different value we call false if v doesn’t equal w .1 The values
true and false are called Booleans. A mapping such as = whose value is
a Boolean for all values of its arguments is called a predicate.

A mathematical theory contains expressions. An expression in the theory
of arithmetic is a syntactically correct sequence of numbers, the operators of
arithmetic, and parentheses—for example 2 ∗ (3 + 42). It’s best to think of
2 ∗ (3 + 42) as a way of writing the expression ∗(2,+(3, 42)). Since it’s the
normal way of writing expressions, we’ll write 2 ∗ (3 + 42); but we’ll think
of it as ∗(2,+(3, 42)).

An expression like 2∗(3+42) whose value is a number is called a numeric
expression. An expression like 2 + 2 > 22 whose value is a Boolean is called
a Boolean expression or, more commonly, a formula.

The semantics of a mathematical theory is a mapping that assigns a
meaning to each expression. We write the meaning of an expression exp as
[[exp]]. But you spent years learning the meaning of arithmetic expressions,
so there’s no need for me to explain it to you. If I define something in terms
of arithmetic expressions, then you will understand it.

2.2 The Mathematical Theory of Algebra

By algebra, we mean here elementary algebra, which you probably learned
as a teenager. In addition to numbers, algebra has variables that “stand
for” numbers. For example, 3 ∗ x − 2 ∗ y is a numeric expression of algebra,

1Arithmetic has two different operators named −, one takes two arguments, and
−(v ,w) equals the number we usually write v − w ; the other takes a single argument,
and −(v) is the number we write −v .
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I have been told that many engineers are intimidated by formulas
containing Greek letters like Υ. If you’re one of them, don’t
worry. You had no trouble dealing with π as a child; you can
handle a few more Greek letters now. They’re used sparingly
in this book, but sometimes representing a particular kind of
object with Greek letters makes the text easier to read. Here are
all the Greek letters used in the book, along with their English
names. You don’t have to remember their names; you just need
to distinguish them from one another.

Lowercase

α alpha λ lambda π pi τ tau
β beta µ mu ρ rho φ phi
δ delta ν nu σ sigma ψ psi
ε epsilon (also written ε)

Uppercase

Λ Lambda Υ Upsilon Π Pi Φ Phi
∆ Delta

Figure 2.1: Greek letters used in this book.

and 3 ∗ x − 2 ∗ y = 7 is an algebraic formula, where x and y are variables.
The meaning of an algebraic expression is the value obtained by substi-

tuting arbitrary numbers for the variables. To state this precisely, we define
an interpretation to be a mapping from variables to numbers. The mean-
ing of an expression of algebra is a mapping from interpretations to values,
where a value is a number or a Boolean. If exp is an expression and Υ is an If you’re not

used to reading
formulas with
Greek letters,
go now to
Figure 2.1.

interpretation, then [[exp]](Υ) equals the value of the arithmetic expression
obtained by replacing each variable v that occurs in exp with Υ(v). For
example, suppose Υ is an interpretation such that Υ(x ) equals 1 and Υ(y)
equals −2, then [[3 ∗ x − 2 ∗ y ]](Υ) equals 3 ∗ 1− 2 ∗ (−2), which equals 7.

Observe that the ∗ and − in [[3∗x−2∗y ]](Υ) are different operators than
the ∗ and − in 3 ∗ 1− 2 ∗ (−2). In [[. . .]](Υ) they are operators of algebra; in
3 ∗ 1 . . . they are operators of arithmetic. The meaning of the operator ∗ of
algebra is defined in terms of the operator ∗ of arithmetic by the rule that,
for any algebraic expressions exp1 and exp2 and any interpretation Υ:

[[exp1 ∗ exp2]](Υ) = [[exp1]](Υ) ∗ [[exp2]](Υ)

There are similar rules for − and the other operators of algebra. There are
also two other rules:
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• [[v ]](Υ) equals Υ(v), for any variable v .

• [[exp]](Υ) equals exp, if exp contains no variables (so it’s an expression
of arithmetic).

We can apply these rules to compute [[3 ∗ x − 2 ∗ y ]](Υ) as follows:

[[3 ∗ x − 2 ∗ y ]](Υ)

= [[3 ∗ x ]](Υ) − [[2 ∗ y ]](Υ) by the rule for −
= [[3]](Υ) ∗ [[x ]](Υ) − [[2]](Υ) ∗ [[y ]](Υ) by the rule for ∗
= 3 ∗Υ(x ) − 2 ∗Υ(y) by the two rules above

An important class of formulas are ones that equal true no matter what
values are substituted for their variables. Such a formula is said to be valid ;
and the assertion that F is valid is written |= F . For example, we write

|= p ∗ (q + r) = p ∗ q + p ∗ r(2.1)

The thing we write as |= F is not a formula of algebra. It’s an assertion about
the formula F . Formally, |= F is a metamathematical formula or meta-
formula. We usually call it something else like an assertion or a condition.
When |= F is true for an interesting formula F , mathematicians generally
call F a theorem.2 We might call (2.1) a theorem of algebra. An axiom is
a theorem that we take to be an assumption. I will sometimes call |= F a
meta-formula to remind you that it’s not a formula.

A proof rule tells us how to deduce the validity of one formula from
the validity of one or more other formulas. A basic proof rule of algebra is
that if a formula is valid, then the formula obtained by substituting numeric
expressions for the formula’s variables is also valid. For example, we can
deduce from (2.1) the following meta-formula, for any numeric expressions
exp1, exp2, and exp3,

|= exp1 ∗ (exp2 + exp3) = exp1 ∗ exp2 + exp1 ∗ exp3

Implicit in the informal definition of an interpretation given above is that
an interpretation assigns values to all possible variables, not just the ones
in any particular expression. The value of [[F ]](Υ) for a formula F depends
only on the values the interpretation Υ assigns to variables that occur in
F . But letting an interpretation assign values to all variables simplifies

2Logicians call a formula a theorem only if it it can be proved from some collection of
axioms and proof rules.
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things, because it means we don’t have to keep track of which variables an
interpretation is assigning values to.

We assume that there are infinitely many variables. We do this for the
same reason we assume there are infinitely many integers even though we
only ever use relatively few of them: it makes things simpler not to have to
worry about running out of them.

2.3 Mathglish

Math is precise, but this book isn’t written in math. It’s written in English
that explains math. Explaining the precise meaning of math in the imprecise
language of English is not easy. To help them do this, English-speaking
mathematicians speak and write in a dialect of English I call Mathglish. (I
expect mathematicians use similar dialects of other languages.) Mathglish
differs from English in two ways: It eliminates some of the imprecision of
English by giving a precise meaning to some imprecise English words, and it
makes the written language more compact by using mathematical formulas
to replace English phrases.

This book is written in Mathglish. This chapter explains the Mathglish
you need to know to read the book. This section discusses the second feature
of Mathglish—the use of formulas to replace prose.

Consider these two sentences that might appear in a math book:

1. Substituting y + 1 for z in formula (42) yields x ≥ y + 1.

2. Formula (42) shows us that x ≥ y + 1.

Grammatically, we can see that the two uses of “x ≥ y + 1” are different.
In sentence 1 it’s a noun, while in sentence 2 it’s a complete clause. In
sentence 1, “x ≥ y + 1” is a formula; in sentence 2 it’s an abbreviation for
“x is greater than or equal to y + 1”. This grammatical difference tells us
that the two sentences have very different meanings. Sentence 2 asserts that
the formula x ≥ y + 1 is true. The first doesn’t tell us whether it’s true or
false. For example, sentence 1 could be followed by:

Since (41) implies x < y + 1, this proves that (42) is false.

It isn’t always possible to tell from the grammar which way a formula is
being used in a sentence. Sometimes we have to look at the context in
which the sentence appears. The formula x ≥ y + 1 can be true only in a
context in which some assumptions have been made about the values of x
and y—assumptions that are expressed by formulas that are assumed to be
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true. Without such assumptions, the formula can be used only as a formula,
which may be true or false. I have tried to make it clear by grammar or
context what it means when a formula appears in a sentence in this book.

2.4 Boolean Arithmetic (Propositional Logic)

Arithmetic is about numbers. Boolean arithmetic is about Boolean val-
ues. Since there are only two Boolean values, true and false, Boolean
arithmetic is infinitely simpler than ordinary arithmetic. A lot of mathe-
matical reasoning can be described as Boolean arithmetic calculation. In
fact, Boolean arithmetic is also called propositional logic. We’ll first see how
it’s used in algebra.

We obtained an operator of algebra such as + from the correspond-
ing operator + of arithmetic by defining [[exp1 + exp2]](Υ) to equal
[[exp1]](Υ) + [[exp2]](Υ), for any numeric expressions exp1 and exp2 and any
interpretation Υ. We can do the same thing with the operators of Boolean
algebra. For example, the operator ∧ of Boolean algebra, which is defined
below, can be made an operator of algebra by defining [[F ∧G ]](Υ) to equal
[[F ]](Υ) ∧ [[G ]](Υ) for any formulas (Boolean-valued expressions) F and G
and any interpretation Υ.

When you studied algebra, you learned how to solve equations such as

3 ∗ x − 2 ∗ y = 7 and 7 ∗ x + 3 ∗ y = 1(2.2)

You would have found the solution x = 1 and y = −2. It is the only solution,
because calculating the solution actually proves that equations (2.2) imply
x = 1 and y = −2. The concepts of and and imply are expressed by the
operators ∧ and ⇒ of Boolean logic. In solving equations (2.2), you proved
this theorem:

|= (3 ∗ x − 2 ∗ y = 7) ∧ (7 ∗ x + 3 ∗ y = 1) ⇒ (x = 1) ∧ (y = −2)(2.3)

Mathematical theories generally have formulas, and the operators of Boolean
arithmetic are turned into operators on formulas in all those theories the
same way it’s done with elementary algebra.

Since you probably already know them, the operators of Boolean arith-
metic are presented only briefly. Here are the operators, their names, and
how they’re read in Mathglish:

¬ negation not
∧ conjunction and
∨ disjunction or

⇒ implication implies
≡ equivalence if and only if
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Implication is sometimes written → or ⊃, and ≡ is sometimes written ⇔
or ↔. Negation and conjunction are defined by

¬true = false
¬ false = true

true ∧ true = true
true ∧ false = false
false ∧ true = false
false ∧ false = false

The other operators can be defined in terms of ¬ and ∧. In these definitions,
A and B represent Boolean values and

∆
= means equals by definition:

A ∨ B
∆
= ¬(¬A ∧ ¬B)

A⇒ B
∆
= (¬A) ∨ B

A ≡ B
∆
= (A⇒ B) ∧ (B ⇒ A)

If you’re not familiar with Boolean arithmetic, you should write out the
complete definitions of ∨, ⇒, and ≡, the way it’s done above for ¬ and ∧.
Here is a brief explanation of what these operators and their Mathglish
counterparts mean—where is true means equals true.

¬A asserts that A is not true, where not means the same thing in English
and Mathglish.

A ∧ B asserts that A is true and B is true, where and has the same meaning
in both languages.

A ∨ B asserts that A is true or B is true (or both A and B are true). Unlike
or in English, or in Mathglish allows the possibility that both formulas
are true.

A⇒ B asserts that A is true implies B is true. This means that B must
be true if A is true, but says nothing about B if A is false. Thus,
false ⇒ true and false ⇒ false both equal true. Reading ⇒
as implies is confusing because A implies B in English means that A
being true causes B to be true, while implies in Mathglish does not.
Only in Mathglish would we say that 2 + 2 = 5 implies 2 + 2 = 4.
A good way to understand ⇒ and the Mathglish implies is that we
want

(x > 20) ⇒
implies

(x > 10)

to be true for all numbers x , and substituting different numbers for x
shows that we want A⇒ B to equal true except when A = true and
B = false. Observe that in (2.3), the formula to the left of the ⇒
equals false for an interpretation Υ unless Υ(x ) = 1 and Υ(y) = −2.
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A ≡ B asserts that A is true if and only if B is true. Thus, ≡ is the
equality relation for Boolean values. We read ≡ as is equivalent to.
Because we often want to express equivalence, written Mathglish has
the abbreviation iff for if and only if. We sometimes write equals
instead of is equivalent to because it’s shorter.

Boolean arithmetic is often described as arithmetic with the two numbers
0 and 1, where false is 0 and true is 1. There is the following correspon-
dence between the Boolean operators on false and true and the arithmetic
operators on 0 and 1

∧ ↔ ∗ ∨ ↔ + ⇒ ↔ ≤ ≡ ↔ =

except that 1+1 is taken to equal 1. Under this correspondence, the following
laws of ordinary arithmetic become the following laws of Boolean arithmetic,
where A, B , and C are any Boolean values:

∧ and ∨ are associative and commutative—where an operator ? is
associative iff (A ? B) ? C equals A ? (B ? C ) , and ? is commutative
iff A ? B equals B ?A .

⇒ and ≡ are transitive, where ? is transitive iff A ? B and B ? C
imply A ? C . Transitivity is often used in proofs. For example, tran-
sitivity of⇒ allows us to prove A⇒ Z by proving A⇒ B and B ⇒ C
and . . . and Y ⇒ Z .

∧ distributes over ∨ , which means that A ∧ (B ∨ C ) equals
(A ∧ B) ∨ (A ∧ C ) .

Boolean arithmetic also has the extra rule that ∨ distributes over ∧ .
Negation is related to subtraction by ¬A ↔ 1 − A, which leads to the

following rules of Boolean arithmetic:

¬(A ∧ B) equals (¬A) ∨ (¬B) ¬(A ∨ B) equals (¬A) ∧ (¬B)

All expressions of Boolean arithmetic are Boolean valued, so they are
formulas. When parsing these formulas, ¬ has higher precedence (binds
more tightly) than ∧ and ∨, which have higher precedence than ⇒ and ≡.
Thus

¬A ∧ B ⇒ C ∨D equals ((¬A) ∧ B)⇒ (C ∨D)

I don’t know how the following expressions should be parsed, so don’t write
them:

A ∧ B ∨ C A ≡ B ⇒ C
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When these operators are incorporated into algebra, they have lower prece-
dence than arithmetic operators like + and >. However, it’s best to put
parentheses around purely algebraic formulas (like those of (2.2)) when us-
ing operators from Boolean arithmetic.

I like the name Boolean arithmetic because it makes the subject sound as
simple as it really is. However, it’s usually called propositional logic, so that’s
what we’ll call it from now on. You can find propositional logic calculators
on the Web that will check whether a formula like (A⇒ B)⇒ (¬B ⇒ ¬A)
is true for all Boolean values A and B . They can help you become facile
with propositional logic.

2.5 ZF

Computers do a lot more than numerical computation. To describe what
computer systems do mathematically, our math needs more kinds of values
than just numbers. The simplest way I know to make the math we need
rigorous is to base it on what is called ZF set theory or simply ZF, where Z
and F stand for the mathematicians Ernst Zermelo and Abraham Fraenkel.
One thing that makes ZF simple is that every value is a set. In ZF, the terms
set and value mean exactly the same thing. Sometimes I will write set/value
instead of set or value to remind you that the two words are synonyms.

You’ve probably learned that a set is a collection of things. In ZF, those
things are sets, so a set is a collection of sets. However, we will see below
that not all collections are sets—in particular, the collection of all sets isn’t
a set. The fundamental operator on sets is ∈, which is read is an element
of or simply in. For every value/set S , the formula e ∈ S equals true iff
e is one of the values/sets that S is a collection of. We call the values in a
set S the elements of S . Two values/sets are equal iff they have the same
elements.

Two sets that we will use are the set R of all real numbers and the set
I of integers. Thus,

√
2 is an element of R but not an element of I. Since

the elements of a set are sets, this means a number must be a set. Logicians
have used the operators of ZF set theory to define the set of real numbers.
There’s no need for us to do that; we just assume the real numbers exist
and the arithmetic operators satisfy their usual properties. This means that
42 and

√
2 are sets, but we don’t specify what their elements are. We know

that
√

2 ∈ 42 equals either true or false, but we don’t know which. The
\enlargethispage
command.Booleans true and false are also values.3 We generally use the term value

3As usually defined, ZF does not consider true and false to be sets. Making them
sets will allow the value of a program variable to be a Boolean.
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for a set/value like 42 or true for which we don’t know what its elements
are; and we use the term set for a set/value when we know what its elements
are.

We define the semantics of ZF the same way we defined the semantics
of algebra. The meaning [[exp]] of an expression exp of ZF is a mapping
from interpretations to values, where an interpretation is a mapping from
variables to values. The operators of propositional logic are incorporated
into ZF the same way they were incorporated into algebra. A formula is an
expression F such that [[F ]](Υ) is a Boolean for every interpretation Υ.

You’ve probably learned a number of operations on sets, and you will
need them if you want to write abstract programs that describe real systems.
But the examples in this book are so simple that we’ll need few of them.
We often speak of one set being a subset of another—for example, I is a
subset of R because every integer is a real number. The assertion that S is
a subset of T is written ⊆. It is effectively defined by this axiom:

|= S ⊆ T ≡ ((v ∈ S )⇒ (v ∈ T ))

where S , T , and v are variables.
A simple way to describe a set is by enumerating its elements. If

v1, . . . , vn are any values, then they are the (only) elements of the set
{v1, . . . , vn}. This set need not have n elements. For example, the set
{3,
√

2, 3, 2+1, 42, 3} contains only the three elements
√

2, 3, and 42. It is
equal to the set {42, 42, 3,

√
2}. (It is as silly to say that a set has two copies

of the number 42 as it is to say that a football team has two copies of one
of its players.) For n = 0, this defines {} to be the empty set, which has no
elements.

ZF contains the construct that mathematicians call set comprehension,
but that I prefer to call subsetting . The expression {v ∈ S : F} equals the
set whose elements are all the elements in the set S for which the formula
F is true. For example, we can define the set N of natural numbers, which
consists of all non-negative integers, by:

N
∆
= {n ∈ I : n ≥ 0}

In the expression {v ∈ S : F}, the symbol v is what is called a bound variable.
It can be used only in the formula F , but not in S . Bound variables are
discussed in Section 2.7.

A kind of set that is often used in describing programs is a finite set of
consecutive integers, such as {−1, 0, 1, 2} . This set is written −1 . . 2. In
general, we define:

m . .n
∆
= {i ∈ I : m ≤ i ≤ n}
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This definition implies that m . .n equals the empty set {} if m > n.

It’s an axiom of ZF that if S is a set, then {v ∈ S : F} is a set for any
formula F . This axiom implies that the collection of all sets can’t be a
set. To show this, we assume the collection V of all values/sets is a set
and obtain a contradiction. If V is a set, then {v ∈ V :¬(v ∈ v)} is a set;
let’s call that set S . Since S is a set, the definition of V implies S ∈ V is
true. The definition of the subsetting construct then implies S ∈ S is true
iff ¬(S ∈ S ) is true, which is impossible since true doesn’t equal false.
Therefore, V can’t be a set. This argument is called Russell’s paradox,
because it was discovered by the mathematician and philosopher Bertrand
Russell. Intuitively, the collection of all sets is too big to be a set.

2.6 Meaningless Expressions

The formula x + y = y + x is a valid formula of algebra. However, validity
of a formula in ZF means that it is true for every interpretation, where
an interpretation is an assignment of a value/set to every variable. For
x + y = y + x to be a valid formula of ZF, N + true = true + N would
have to equal true; and there’s no reason why it should. What should be
a valid formula of ZF is:

(x ∈ R) ∧ (y ∈ R) ⇒ (x + y = y + x )

But for this formula to be valid, this formula should be true:

(N ∈ R) ∧ (true ∈ R) ⇒ (N + true = true + N)(2.4)

and (2.4) contains the meaningless expressions N + true and true + N.
This seems to be a problem.

Most computer scientists would say that the problem is solved by using
types. The variables x and y in the formula x + y = y + x should have
type real number, so validity of that formula means that it’s true for inter-
pretations that assign real numbers to x and y . Types would make (2.4) an
illegal formula.

I believe types are wonderful in a coding language, and I wouldn’t want
to write code in an untyped language. However, I have found the kind
of types provided by coding languages to be unsuitable for representing
abstract programs. For example, type correctness for Euclid’s algorithm
means that the values of the variables x and y are positive integers. The
simple type systems of most coding languages don’t allow a type like positive
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integer. Moreover, those type systems are overly restrictive, disallowing
some reasonable expressions.

There are type systems that allow the type positive integer and are not
restrictive. They are needed to formalize the kind of math that mathemati-
cians do, so their proofs can be checked by computer. However, those type
systems are so complicated that I never tried to learn them. I didn’t have to
because I realized that they are not needed for the math used to describe and
reason about abstract programs. Instead, type correctness can be treated
as a simple invariance property of programs. For example, type correctness
of Euclid’s algorithm is the invariance of the formula (x ∈ N+) ∧ (y ∈ N+),
where N+ is the set {n ∈ I : n > 0} of positive integers.

The solution to the problem of the meaningless formula (2.4) is to realize
that it’s not a problem, and formula (2.4) equals true. The expressions
N + true and true + N are meaningless only in the sense that we have
not assigned them a meaning. All we know about them is that they are
values/sets. But that’s enough to tell us that N + true = true + N equals
either true or false. We don’t know whether or not N and true are
numbers. We know that 42 is a set, but we don’t know what its elements
are. It’s possible that 42 is the set N, or that it equals the value/set true.
However, it doesn’t matter if N and true are numbers. If either or both
of the them is not a number, then (2.4) equals false ⇒ (N + true =
true + N), which equals true since N + true = true + N is a Boolean.
The other possibility is that N and true are both numbers. In that case,
no matter what numbers they are, N + true = true + N equals true.

Since we haven’t given the expression N +true a meaning, we will call
it meaningless. But there’s nothing harmful in writing such a meaningless
expression. The expression is just useless because we don’t know what it
means. If correctness of a program depends on the value of a meaningless
expression, then we can’t prove that the program is correct. Moreover, a tool
for checking correctness should report an error because it has to determine
the value of a meaningless expression to decide if the program is correct. In
practice, the kind of error in an abstract program that a simple type checker
can catch is almost always quickly caught by model checking, and it is easily
caught when trying to prove something about a type-incorrect expression.

Though not described in this way, ZF is usually considered to have a
type system containing two types: Boolean and non-Boolean. For example,
the commutativity of ∧ is expressed as

|= (A ∧ B) ≡ (B ∧A) .(2.5)
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The assumption that A and B are Booleans isn’t needed because it can be
inferred that A and B have type Boolean.4 We can maintain that simplicity
without having to introduce types by assuming that rules of predicate logic
like (2.5) are true for all values A and B , not just for Booleans. We do that
by assuming a mapping Bool such that Bool(true) = true, Bool(false) =
false, and Bool(v) ∈ {true, false} for all values v . We can then define
predicate logic operators like ∧ such that v∧w equals Bool(v)∧Bool(w) for
all values v and w . This means that, although we don’t know what 2 ∧ {3}
equals, we know that it’s a Boolean value and that it equals {3} ∧ 2.

2.7 Quantification and Bound Variables

2.7.1 Quantification

Math has two Boolean-valued constructs called quantifiers whose symbols,
names, and Mathglish pronunciation are:

∀ universal quantification for all

∃ existential quantification there exists

They have the following meanings, where v is a variable and F is any formula
of ZF:

∀ v : F is true iff F is true when any value is substituted for v .

∃ v : F is true iff there is some value that, when substituted for v ,
makes F true.

These are called unbounded quantifiers because they make an assertion about
all values.5 As we saw with the formula x + y = y + x , we are seldom inter-
ested in formulas that are satisfied by all values of a variable. We usually
want to assert that a formula is true for all values in some set. It’s also of
little use to know that there exists a value of x such that x 2 = 2 if we don’t
know that that value is a number, since it’s possible that true2 = 2 even if
true isn’t a number. We therefore usually use the two bounded quantifiers
∀ v ∈ S and ∃ v ∈ S , defined by:

∀ v ∈ S : F
∆
= ∀ v : (v ∈ S )⇒ F

∃ v ∈ S : F
∆
= ∃ v : (v ∈ S ) ∧ F

4The rules of Boolean algebra were described in Mathglish in Section 2.4. They couldn’t
be expressed there as theorems because we had not yet introduced Boolean-valued vari-
ables.

5The bound in unbounded bears no relation to the bound in bound variable.
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For example, the following formula asserts that there exists a (real) number
whose square equals y :

∃ x ∈ R : y = x 2(2.6)

Since x 2 is a non-negative real number for any real number x , and a real
number y has a square root (that’s a real number) iff y ≥ 0, this formula is
equivalent to (y ∈ R) ∧ (y ≥ 0) .

The two bounded quantifiers are related by these theorems:

|= (∀ v ∈ S : F ) ≡ (¬∃ v ∈ S :¬F )

|= (∃ v ∈ S : F ) ≡ (¬∀ v ∈ S :¬F )

(2.7)

You should be able to check that they follow from the quantifiers’ informal
definitions. You should also be able to check that ∀ v ∈ {} : F equals true
and ∃ v ∈ {} : F equals false for any formula F .

When parsing a formula, the scope of a quantifier extends as far as
possible—for example, until terminated by the end of the formula or by a
right parenthesis whose matching left parenthesis precedes the quantifier.
We abbreviate ∀ v ∈ S : ∀w ∈ T : F as ∀ v ∈ S ,w ∈ T : F , and we abbre-
viate ∀ v ∈ S : ∀w ∈ S : F as ∀ v ,w ∈ S : F , with similar abbreviations for
∃ and for the unbounded quantifiers.

Quantifiers and the rules for reasoning about them form what is called
predicate logic. Predicate and propositional logic are the basis for reasoning
in ordinary mathematics. A valid formula whose validity is based solely on
the laws of predicate and propositional logic, and not on the meanings of
any other operators in the formula, is called a tautology. For example, the
truth of

|= (∃ v ∈ N : M (v , x ) ∧ (v +1 > x )) ⇒ (∃ v ∈ N : M (v , x ))

doesn’t depend on the definitions of N and the mapping M , or on the
meaning of the arithmetic operators + and >. It follows from the rule
|= A ∧ B ⇒ A of propositional logic and the predicate logic rule that
|= F ⇒ G implies |= (∃ v ∈ S : F )⇒ (∃ v ∈ S : G). The theorems of predi-
cate and propositional logic themselves are also called tautologies.

2.7.2 Bound Variables

As in the subsetting constructor {v ∈ S : F}, the v in the formulas ∀ v ∈ S : F
and ∃ v ∈ S : F is a bound variable that can appear only in F , not in S . More
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precisely, these expressions declare v to be a variable whose scope is the for-
mula F . Bound variables are somewhat subtle and must be used with care.
To understand why, we need to examine variables and scoping.

Like coding languages, formal languages for mathematics usually have
explicit variable declarations, and a variable can be used only within the
scope of its declaration. In this book and in almost all math books, most
of those declarations are implicit. For example, in the discussion of Eu-
clid’s algorithm in Section 1.5, the program variables x and y are implicitly
declared with scopes that lie entirely within that section. Those program
variables are unrelated to the mathematical variables x and y that appear
in Section 2.6.

Every expression we write occurs in a context, which specifies the vari-
able declarations within whose scope the expression occurs. For example,
the context of the subformula y = x 2 of formula (2.6) contains the same
variable declarations as the complete formula (2.6), except it includes the
declaration of x made by the quantifier ∃ x . A bound variable of a formula
F is one that is declared by a quantifier or a subsetting constructer within
F . A variable that is not bound in F is called a free variable of F . For
example, x is a bound variable and y a free variable of formula (2.6).

Things get complicated if formula (2.6) occurs within the scope of an-
other declaration of x . It’s best to view the x declared in the context of
(2.6) and the x declared by its quantifier as two different variables with the
same name. (This means that an interpretation must be a mapping from
variables to values, not from variable names to values. That should seem
natural if you’ve done any programming, because a program’s code can con-
tain multiple program variables with the same name that may have different
values.)

Having two different variables with the same name can produce er-
rors if you’re not careful. For example, formula (2.6) is equivalent
to (y ∈ R) ∧ (y ≥ 0). Therefore, substituting an expression exp for y
in that formula should yield the formula (exp ∈ R) ∧ (exp ≥ 0). Let’s
take exp to be x 2 + 1, where x is the variable whose declaration’s
scope contains the formula (2.6). Naively substituting x 2 + 1 for y in
(2.6) produces ∃ x ∈ R : x 2 + 1 = x 2, which equals false, rather than
(x 2 + 1 ∈ R) ∧ (x 2 + 1 ≥ 0). The problem is that we should have substi-
tuted for y in (2.6) the formula x 2 + 1 in which x is the variable declared
outside the formula, not the formula’s bound variable. Such a substitution
would produce a formula that’s equivalent to (x 2+1 ∈ R)∧(x 2+1 ≥ 0); but
that formula would contain two different variables named x , and our math
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provides no way to write such a formula.6 Logicians call the error produced
by the naive substitution variable capture.

Fortunately, there’s an easy way to avoid variable capture. The under-
lying mathematics doesn’t depend on what we name variables. If we change
the name of the bound variable in (2.6) to anything other than y , for ex-
ample writing it as ∃w ∈ R : y = w2, then we get an equivalent formula.
Naively substituting x 2 + 1 for y in that formula yields a formula equivalent
to (x 2 + 1 ∈ R) ∧ (x 2 + 1 ≥ 0), as it should.

We can avoid having to rename the bound variable in (2.6) if we use a
name different from the name of any variable declared in its context. That
is, we can avoid such variable capture by obeying this rule:

Safe Scoping Rule Never declare a bound variable within the scope
of a declaration of a variable with the same name.

The rule prevents writing (2.6) in any context in which we could write a
formula like x 2 + 1 to substitute for y .

The Safe Scoping Rule will help keep you out of trouble, but it isn’t
enough. There are unlikely situations involving definitions in which this
rule alone will not prevent variable capture. Section 2.8.1 below mentions
another way variable capture can still occur. So when writing hand proofs,
you should always be aware that variable capture is a potential problem,
and it may require renaming bound variables to avoid it.

2.8 Defining Mappings and Functions

2.8.1 Mappings

Programs can be quite complex. The way to handle complexity is by hi-
erarchical composition. Mathematics has a very simple and very powerful
mechanism for hierarchical composition: the definition. We now examine
definitions.

We introduced the symbol
∆
= , meaning is defined to equal, and defined

∨ by writing A ∨ B
∆
= . . . . The Boolean operator ∨ is a mapping that

takes two arguments, and A ∨ B is an abbreviation of ∨(A,B) . We also

defined N by writing N
∆
= . . . . We can consider N to be a mapping that

takes zero arguments, so every definition defines a mapping.

6There are ways to write quantification without using bound variables that allow writ-
ing such formulas, but they’re inconvenient to use.
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The definition

M (a, b)
∆
= a2 + b2(2.8)

defines the mapping M such that M (exp1, exp2) equals (exp1)
2 + (exp2)

2,
for any expressions exp1 and exp2. A mapping that has one or more argu-
ments is not a value. The string M + 42 is not an expression; it’s nonsense,
like 3 + = 7. (Appendix A.3 explains why mappings can’t all be values.)
The mapping M can appear in an expression only in a subexpression of
the form M (exp1, exp2). However, (2.8) defines this subexpression to equal
(exp1)

2 + (exp2)
2, for all expressions exp1 and exp2 — even if exp1 equals R

and exp2 equals false.
The symbols a and b in (2.8) are called the parameters of the definition.

Definition parameters are bound variables, whose scope is the right-hand
side of the definition. However, they pose no problem of variable capture
because they are replaced by expressions when the defined symbol appears
in a formula. The Safe Scoping Rule should still be applied to them because
the definition (2.8) would be confusing if it appeared within the scope of the
declaration of a variable named a or b.

While definition parameters are bound variables that can’t do any “cap-
turing”, variable capture is still possible with a definition such as

P(a, b)
∆
= (a > b) ∧ ∃ x ∈ R : b = x 2

whose right-hand side declares the bound variable x . The Safe Scoping Rule
ensures that this definition does not occur in the scope of a variable named
x . However, P may later be used in an expression that is in the scope of a
variable x . Avoiding variable capture when substituting in that expression
may require changing the name of the bound variable in the definition of P .

A fundamental rule of mathematics you may have learned as a teenager
is that circular definitions are forbidden. We can’t define M in terms of P ,
and P in terms of Q , and Q in terms of M . The obvious way to enforce
this rule is to require that a definition use only previously defined mappings.
However, to understand the definitions, it’s often best to write them in the
opposite order, so higher-level concepts are defined before defining the lower-
level concepts on which they are built. So, we will order definitions to make
them easier to understand, while avoiding circular definitions.

A special class of circular definitions are allowed in which a mapping
is defined in terms of itself. They’re called recursive definitions and are
introduced in Section 3.5.
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2.8.2 Functions

You may have learned about functions, and you undoubtedly did if you
studied calculus. If you did learn about them, you may have wondered why
I use the term mapping rather than function. Most mathematicians consider
them to be the same. We’ll see why they must be different.

Here, we describe functions of a single argument. Functions of multiple
arguments are defined in Section 2.8.3 below. We consider a function to be
a special kind of mapping that differs from other mappings in two ways:

• A function f has a domain, called domain(f ), and the value of f (v)
can be specified only for values v in domain(f ).

• A function is a value; other mappings need not be.

The first difference implies that the mapping M defined by

M (S )
∆
= N ∈ S

defines M (S ) to equal the Boolean N ∈ S for all values S because its value
is specified for every set/value S . We know that M (S ) equals N ∈ S , which
is a Boolean, for any value S . But M is not a function, because its domain
would have to be the set of all sets/values, and we saw in Section 2.5 that
the collection of all sets can’t be a set.

If you’ve studied calculus, you’ve seen functions like the function f , whose
domain is the set {x ∈ R : x 6= 0} of non-zero real numbers, defined by let-
ting f (x ) equal 1/x 2 for all numbers x in that set. Mathematicians seem to
have no convenient notation for writing such a function. We will write that
function f as v ∈ {x ∈ R : x 6= 0} 7→ 1/v2. In general,

f
∆
= v ∈ S 7→ exp

defines f to be the function with domain(f ) equal to S such that f (v) = exp
for all v ∈ S . In the expression v ∈ S 7→ exp, v is a bound variable whose
scope is the expression exp. This definition tells us nothing about the value
of f (v) if v is not an element of S . However, f is a value. This is important
because the value of a program variable must be a value, so we can use
functions as ordinary values, just like numbers, when describing abstract
programs.

Mathematicians generally define a function to be a set of pairs of values.
However, while a function is a set/value, I prefer not to specify what its
elements are—in part, because I prefer to define a pair as a function. All
we know about a function is that it is completely determined by its domain
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and the value it assigns to elements of that domain. Thus, if f and g are
two functions with domain S and f (v) = g(v) for all v ∈ S , then the two
functions are equal.

2.8.3 Sequences and Tuples

Lists are omnipresent—from shopping lists to lists of transactions on a bank
statement. A list is represented mathematically as a sequence, which is
a function f whose domain is a consecutive sequence of natural numbers,
where f (i) is element number i of the sequence. We will use two kinds of
sequences that are numbered in different ways:

Ordinal The items of an ordinal sequence are numbered starting with
item 1. The sequence represents a list whose items are naturally named
with the ordinal numbers first, second, third, etc. For example, in a
list of people waiting to be served, the second person to be served is
naturally called person number 2.

Cardinal The items of a cardinal sequence are numbered starting with
item 0. It represents a list in which it is natural to name an item by
its distance from an item numbered 0. For example, in the list of floors
in a building, the ground floor is naturally named floor 0, and floor
number 2 is two floors above it.

When I started describing abstract programs with mathematical formulas, I
discovered that the formulas were usually simpler if I described finite lists as
ordinal sequences. However, the meaning and properties of the formulas are
defined in terms of infinite sequences and finite prefixes of those sequences;
and the math is simpler if those are cardinal sequences. So, we will use both
kinds of sequences.

Mathematicians often use tuples. We represent a tuple as a finite or-
dinal sequence. Mathematicians enclose tuples in parentheses, but paren-
theses are used for lots of other things, so we make formulas containing
tuples easier to read by using angle brackets 〈 and 〉 instead. Thus, the or-
dinal sequence 〈John,Mary , John 〉 is the function with domain 1 . . 3 such
that 〈John,Mary , John 〉(2) equals Mary. The empty sequence, which is
the unique function whose domain is the empty set, is written 〈 〉. It is
the one sequence that is both an ordinal and a cardinal sequence. The
Cartesian product operator × is used to describe sets of tuples. For exam-
ple, S × T ×U is the set of all triples (3-tuples) 〈s, t , u 〉 such that s ∈ S ,
t ∈ T , and u ∈ U .
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A mapping with n arguments can be considered to be a mapping with a
single argument that is an n-tuple. There is no need to do that for arbitrary
mappings, but we do it for functions. We define a function of n arguments
to be a function whose domain is a set of n-tuples, where f (v1, . . . , vn) is
an abbreviation for f (〈v1, . . . , vn 〉). By a rule of ZF that hasn’t yet been
introduced, any set of n-tuples is a subset of the Cartesian product of n
sets.

The lists that we will represent by cardinal sequences consist of things
that happen one after the other. They will be written with their items sep-
arated by → symbols, as in the sequence of four states that is the execution
of Euclid’s algorithm shown in Section 1.5.

2.9 Some Useful Notation

Here are two pieces of notation that mathematicians don’t seem to need,
but that I find essential for writing formulas that describe programs.

2.9.1 if/then/else

A programmer who read enough math would notice that mathematicians
lack anything corresponding to the if/then/else statement of coding lan-
guages. Instead, they use either prose or a very awkward typographical
convention. We let the expression

if P then exp1 else exp2

equal exp1 if P = true and exp2 if P = false.
While it’s inspired by the if/then/else coding language statement, you

should not think of an if/then/else expression as instructions for comput-
ing something. It’s somewhat like the expression written in the C language
and its descendants as P ? exp1 : exp2 . However, coding languages usually
specify the order in which the expressions P , exp1, and exp2 are evaluated.
In mathematics there is no concept of evaluation. An expression simply has
a value for any particular interpretation.

2.9.2 Conjunction and Disjunction Lists

Abstract mathematical descriptions of real systems can be quite long. Def-
initions are used to decompose them into shorter formulas that are easier
to understand. However, those shorter formulas can still be a few dozen
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lines long. They are understandable because mathematical formulas have
a natural hierarchical structure. To take full advantage of that structure,
we use a simple bit of notation that mathematicians and many computer
scientists find heretical, but that engineers appreciate.

There are two simple ideas: a of formulas bulleted by ∧ or ∨ represents
the conjunction or disjunction, respectively, of those formulas; and indenta-
tion is used to replace parentheses. For example, if A, B , . . . , J are formulas,
then:

∧ ∨ A ∧ B
∨ C
∧ D ⇒ E equals
∧ ∨ ∃ x : F
∨ ∧ G ≡ H
∧ J

( (A ∧ B)
∨ C )

∧ (D ⇒ E )
∧ ( (∃ x : F )
∨ ( (G ≡ H )
∧ J ) )

Note how the implicit parentheses in the bulleted lists delimit the scope of
the ⇒ and ∃ x operators in this formula.

Making indentation significant is a feature of the currently popular Python
coding language, but it works even better in this notation because the use
of ∧ and ∨ as “bullets” makes the logical structure easier to see.



Chapter 3

Describing Abstract
Programs with Math

In this chapter, we take a leisurely path that begins with a conventional
mathematical method of describing computer systems and ends with the
definition of almost all of TLA. Along the way, you will learn how to describe
the safety part of an abstract program, how to prove it satisfies invariance
properties, and the temporal logic that will be used to describe its safety
and liveness properties as a single formula.

3.1 The Behavior of Physical Systems

Programs are meant to be executed on physical computers. I have been
guided by the principle that any statement I make about a program should
be understandable as a statement about its execution on one or more com-
puters. The description of our science of concurrent programs therefore
begins by examining the physics of computing devices. We don’t care about
the actual details of how transistors and digital circuits work. We are just
interested in how scientists describe physical systems. As a simple example,
we view a planet orbiting a star the way an astronomer might.

We consider the one-planet system’s behavior starting at some time t0,
after the star and planet have been formed and the planet has settled into
its current orbit. We assume that the planet remains in that orbit forever.
Let R≥ be the set {r ∈ R : r ≥ t0} of all real numbers r with r ≥ t0. The
behavior of the one-planet system is described by its state at each instant of
time at or after time t0. We assume the star is much more massive than the
planet, so we can assume that it doesn’t move. We also assume that there
are no other objects massive enough to influence the orbit of the planet, so
the state of the system is described by the values of six state variables: three

34



CHAPTER 3. DESCRIBING ABSTRACT PROGRAMS 35

describing the three spatial coordinates of the planet’s position and three
describing the direction and magnitude of its momentum. Let’s call those
state variables v1, . . . , v6; we won’t worry about which of the six values
each represents. The quantities these variables represent change with time,
so the value of each variable v i is a function, where v i(t) represents the value
at time t . The behavior of the system is described mathematically by the
function σ with domain R≥ such that σ(t) is the tuple 〈v1(t), . . . , v6(t)〉 of
numbers, for every t ∈ R≥. Physicists call σ(t) the state of the system at
time t .

In this description, the planet is modeled as a point mass. Real plan-
ets are more complicated, composed of things like mountains, oceans, and
atmospheres. For simplicity, the model ignores those details. This limits
the model’s usefulness. For example, it’s no good for predicting a planet’s
weather. But models of planets as point masses are sometimes used to plan
the trajectories of a real spacecraft. It’s also not quite correct to say that the
model ignores details like mountains and oceans. The mass of the model’s
point mass is the total mass of the planet, including its mountains and
oceans, and its position is the planet’s center of mass. The model abstracts
those details, it doesn’t ignore them.

The laws that determine the point-mass planet’s behavior σ are ex-
pressed by six differential equations of this form:

dv i

dt
(t) = f i(t)(3.1)

where t ∈ R≥ and each f i is a function with domain R≥ such that f i(t)
is a formula containing the expressions v1(t), . . . , v6(t). Don’t worry if you
haven’t studied calculus and don’t know what equation (3.1) means. All
you need to know is that it asserts the following approximate equality for
small non-negative values of dt :

v i(t + dt) ≈ v i(t) + f i(t) ∗ dt(3.2)

and the approximation gets better as dt gets smaller. (It reaches equality
when dt = 0.) The differential equations (3.1) have the property that for
any time t > t0 and any time r > t , the values of the six numbers v i(t)
and the functions f i completely determine the six values v i(r) and hence
the value of σ(r). That is, the equations imply:

History Independence For any time t ∈ R≥, the state σ(r) of the system
at any time r > t depends only on its state σ(t) at time t , not on
anything that happened before time t .



CHAPTER 3. DESCRIBING ABSTRACT PROGRAMS 36

The generalization from a planetary system to an arbitrary physical system
starting at time t0 is straightforward. The system is described by state
variables v1, . . . , vn , and its behavior σ is described mathematically as the
function with domain R≥ such that σ(t) equals 〈v1(t), . . . , vn(t)〉. History
independence is satisfied by any isolated physical system—that is, by any
system that is assumed not to be influenced by anything outside the system.1

There is one way our one-planet system differs from most systems. For
this system, it is possible to solve the differential equations (3.1) to write
the functions v i as formulas in terms of ordinary mathematical operations.
Even for two planets around a star that is not much heavier than them, it
is impossible to write such a solution. The functions v i can be proved to
exist and be unique, but the best we can do in general is find very close
approximations to those functions for some finite interval of time.

Physics describes systems with math. Remember that in math, there are
infinitely many variables. A description of any particular system contains
only a finite number of them—the system variables. The description (3.1) of
a planet orbiting a star contains only the six system variables describing the
planet’s state. It doesn’t say that there is nothing else in the universe. It just
says nothing about any other planets. Instead of thinking of (3.1) and (3.2)
as describing a planet orbiting a star, it’s more accurate to think of them
as describing a universe in which the planet is orbiting the star. They also
describe a universe containing both the planet and a spacecraft that orbits
the star; they just say nothing about the spacecraft, since the spacecraft is
too small to affect the planet’s motion. (The spacecraft’s motion could be
affected by the planet.) Formulas (3.1) and (3.2) just say nothing about the
spacecraft.

Physical science is descriptive. The laws of physics describe how a planet
moves; they don’t instruct the planet. Programs are prescriptive; they tell a
computer what to do. This may make it seem strange to use physical science
as a guide to a science of programs. But being descriptive or prescriptive
is not a property of the math. It’s just how we choose to view that math.
We can view the equations of planetary motion not only as a description of
how a planet moves, but also as commands given to the planet by nature.
The math is agnostic. Our science views a program as a description of what
behaviors it allows, not as commands for producing those behaviors. This
view allows much more freedom in describing programs.

1In classical physics, the state at time t0 uniquely determines the system’s subsequent
behavior. The situation is less clear in quantum physics where multiple subsequent be-
haviors seem possible, but the set of those behaviors is completely determined by the
state.
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3.2 Behaviors of Digital Systems

Math I

The Operator % For any integers m and n with n > 0, the value of
m % n is defined to be the remainder when m is divided by n. The precise
definition is that m % n equals the unique integer r satisfying

(m = d ∗ n + r) ∧ (0 ≤ r < n)

for some integer d . The operator % is pronounced modulo and is written
mod by mathematicians.

Mathematical Induction You have probably encountered mathematical
induction; if not, you may want to read about it on the Web. Simple math-
ematical induction proves that a formula is true for all n ∈ N by proving
that it is true for n = 0 and that if it is true for n then it is true for n + 1.
It is stated more precisely by this proof rule, where P is any mapping:

|= P(0) and |= ∀n ∈ N : P(n)⇒ P(n + 1) implies |= ∀n ∈ N : P(n)

This rule is a meta-formula, and the Mathglish terms and and implies are
used to represent the Boolean operators ∧ and ⇒ to make it clear that it is
a meta-formula and not a formula.

Strong mathematical induction allows proving that the formula is true
for n + 1 by assuming that it is true for all numbers in 0 . .n, not just true
for n. It is stated as:

|= ∀n ∈ N : (∀m ∈ 0 . . (n − 1) : P(m))⇒ P(n)

implies |= ∀n ∈ N : P(n)

In this rule, for n = 0 the hypothesis implies

|= (∀m ∈ 0 . . − 1 : P(m))⇒ P(0)

which equals |= P(0) , since ∀m ∈ {} : P(m) equals true.

3.2.1 From Continuous to Discrete Time

Digital systems are physical systems, usually electromagnetic, in which cer-
tain stable states represent a collection of one-bit values. For example, at
a certain point in a circuit, 0 volts may represent a 0 and 3.3 volts may
represent a 1. Classical physics describes the behavior of physical systems
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as continuous.2 If the voltage at some point in a circuit changes from 0 volts
to 3.3 volts, it must pass through 1 and

√
2 volts.

Computers and other digital systems are designed so that each bit can
be thought of as passing instantaneously from one stable state to the next.
This means that we can think of there being a sequence of discrete times t0,
t1, t2, . . . that are the only times at which the value of a bit can change.
(We assume there is an event at time t0 that initializes all the bits of the
device.) We pretend that between times t j and t j+1, the part of the circuit
representing each bit is in a stable state. Moreover, whether a bit changes
its value at time t j+1 depends on the (stable) values of the bits immediately
before time t j+1.

3 Thus, the system is history independent.
Although built from one-bit registers, digital systems are designed

so that larger components can also be viewed as changing their state
instantaneously—for example, a 128-bit register or even all the bits in a
chip controlled by a single clock. We can pretend that the entire component
changes its value in discrete steps that can occur only at the times t j . Thus,
we can view a digital system as one whose components are represented by
state variables that can have more than two values.

When a digital system is executing a program, the state of the program
does not correspond directly to the state of the system. The value of a
program variable might be represented by different parts of the system at
different times. For example, its value may at some times be stored in a
memory chip, at some times it may be in a register of a processor chip, and
at some times it might be stored on a disk. Later, we’ll see what it means
mathematically for a digital system to implement a program in this way.
For now, consider a concrete program to be just a digital system described
by discretely changing variables whose values are not just bits but may be
any data structure provided by the language—for example, 128-bit integers.
An abstract program is the same, except the value of a variable may be
any value—for example a real number such as

√
2, not just a finite-precision

approximation like 1.414213562. Modeling a science of programs on the
science of physical systems ensures that it can address real problems, and
we are not just creating a science of angels dancing on the head of a pin.

2Here, classical physics includes relativity but not quantum mechanics. I believe that
quantum mechanics also describes a continuous universe, but a discussion of that would
take us too far afield.

3The tj are pretend times, not exact physical times. Two bits that change at the
same pretend time may change at different physical times because the clock pulse that
generates the change may reach one of them a fraction of a nanosecond before the other.
Chip designers must ensure that we can pretend that they change at the same time.
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(However, the science should be able to describe any discretely behaving
angels, wherever they might be dancing.)

We are seldom interested in the actual times t j at which state variables
can change. To simplify things, we consider only the sequence of states
through which the system passes, ignoring the times at which it enters and
leaves those states. We call the state created at time t j state number j .
Instead of letting a state variable v be a function that assumes the value
v(t) at time t , we consider it to be a function that assumes the value v(j ) in
state number j . In other words, the value of a state variable v is a cardinal
sequence of values. A behavior σ of a program is also a sequence, where
σ(j ), its state number j , describes the values of the device’s variables in
that state.

If a program or a digital device runs forever, then the sequence of times
t j is infinite and therefore so is the sequence σ of its states. But if a pro-
gram terminates, then those sequences can be finite. Other than parallel
programs, in which concurrency is added to a traditional program so it can
run faster by using multiple processors, most concurrent programs are not
supposed to stop. A concrete concurrent program will not really run forever,
but we describe it as running forever for the same reason we assume there
are an infinite number of variables even though we use only a finite number
of them: it makes things simpler.

Still, some concurrent programs are supposed to stop, so we have to
describe them. For simplicity, we describe those programs as well with
infinite state sequences. Exceptionally observant readers will have noticed
that while the times t j had to be chosen so we can pretend that the state
changes only at those times, we did not require that the state had to change
at each of those times. There can be times t j at which none of the program
variables’ values change. In particular, if the program stops, we can add an
infinite number of times t j after it has stopped. This leads to an infinite
sequence of states such that, for some k , the values of the program’s variables
after state number k are the same. We call a pair 〈σ(j ), σ(j +1)〉 of successive
states in a behavior σ a step of σ. A step in which the values of the program’s
variables do not change is called a stuttering step of the program.

We call a behavior ending in infinitely many stuttering steps a halting
behavior of the program. It describes an execution in which the program
stops. There are many reasons a program might stop—for example, an error
might cause it to abort. If the program stops because it has completed what
it was supposed to do, we say that it terminates. The term halting covers
all cases when the program stops.

Mathematically, a behavior of a digital system or an abstract program
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variables x = 1, y = 1;

while true do
a: x : = x + y + 2 ;

y : = y + 2
end while

Figure 3.1: The simple abstract program Sqrs.

is an infinite cardinal sequence of states, where each state is an assignment
of values/sets to variables. There is a natural tendency to think of state
number j of a behavior as occurring at time j on some clock that ticks at
a constant rate. Don’t think of it like that. A microsecond might elapse
between when the system reaches state number j and when it reaches state
number j +1, and a day or a femtosecond might then elapse before it reaches
state number j +2. All we know is that the system can’t reach state number
j + 1 before it reaches state number j .

By removing any information about the physical time at which things
happen, it may appear that we have eliminated the possibility of describing
how much actual time it takes for something to happen. That’s not the case,
and Section 5.2 explains how to describe the times at which things happen.
However, correctness of few programs depends on exactly how long it takes
the program to do something, and I know of no commonly used coding
language that allows us to write such programs. To my knowledge, nothing
in the definition of the Java coding language assures us that executing the
statement x = x+1 takes less than a century.

3.2.2 An Example: Sqrs

Our first example is a very simple abstract program called Sqrs that is
described in Figure 3.1 with pseudocode. The variables statement describes
the program variables and their initial values (their values in state 0). In
this example, the program variables are x and y , and their initial values are
both 1. The program’s code consists of a while true loop, which means
that the body of the loop is repeatedly executed forever. Program Sqrs is
an abstract program because it runs forever, producing a behavior with an
infinite number of states, unlike a concrete program that would halt with
an error when x became too big.

In a science, it would be crazy to let “=” mean anything other than what
it has meant in mathematics for several centuries, so we use “:=” to mean
assignment. Except for the label a that you can ignore for the moment,



CHAPTER 3. DESCRIBING ABSTRACT PROGRAMS 41

it should be obvious what an execution of the loop body does. What’s
not obvious in most pseudocode and in virtually all real code is how to
represent the execution as a behavior—which means as a sequence of states.
In particular, how many different steps in the behavior describe a single
execution of the loop body?

We would expect to describe execution of the loop body of Sqr with at
least one step. But should there be more? For example, should evaluating
x +y in the first assignment statement be a separate step? Coding languages
seldom answer this question because it makes no difference to the result
computed by a traditional program. However, it can make a big difference
for concurrent programs.

We will adopt the PlusCal algorithm language’s [37] convention of using
labels to indicate what the separate steps of a behavior are. The rule is that
execution from one label to the next constitutes a single step. This means
that a step begins and ends with program execution at a label. For program
Sqrs, this implies that execution of the entire loop body, starting from label
a and finishing when the program reaches a again, is a single step. With
this choice of what constitutes a step in the behavior, the values x (j ) and
y(j ) of the variables in each state j of the behavior are determined by two
formulas:

(x (0) = 1) ∧ (y(0) = 1)(3.3)

∀ j ∈ N : ∧ x (j + 1) = x (j ) + y(j ) + 2
∧ y(j + 1) = y(j ) + 2

(3.4)

We call (3.3) the initial predicate. It determines the initial state. Formula
(3.4) is called the step predicate. It’s the discrete analog of the differential
equations (3.1) that describe the orbiting planet. Instead of describing how
the values of the variables change in the continuous behavior when time
increases by the infinitesimal amount dt , the step predicate (3.4) describes
how they change when the state number of the discrete behavior increases
by one.

You can check that (3.3) and (3.4) define a behavior that begins as
follows where, for example, [x :: 16, y :: 7]3 indicates that state number 3
assigns the values 16 to x and 7 to y , and the arrows are purely decorative.[

x :: 1
y :: 1

]
0

→
[

x :: 4
y :: 3

]
1

→
[

x :: 9
y :: 5

]
2

→
[

x :: 16
y :: 7

]
3

→
[

x :: 25
y :: 9

]
4

→ · · ·
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These first few states of the behavior suggest that in the complete behavior,
x and y equal the following functions:

x = (j ∈ N 7→ (j + 1)2)

y = (j ∈ N 7→ 2 ∗ j + 1)

(3.5)

To prove that (3.3) and (3.4) imply (3.5), we must prove that they imply:

∀ j ∈ N : (x (j ) = (j + 1)2) ∧ (y(j ) = 2 ∗ j + 1)(3.6)

A proof by (simple) mathematical induction that (3.3) and (3.4) imply (3.6)
is a nice exercise in algebraic calculation.

We can think of (3.5) as the solution of (3.3) and (3.4), just as the for-
mulas describing the position and momentum of the planet at each time t
are solutions of the differential equations (3.1). It is mathematically im-
possible to find solutions to the differential equations describing arbitrary
multi-planet systems. It is mathematically possible to write explicit descrip-
tions of variables as functions of the state number like (3.5) for the abstract
programs written in practice, but those descriptions are almost always much
too complicated to be of any use. Instead, we reason about the initial pred-
icate and the step predicate, though in Section 3.4.1 we’ll see how to write
them in a more convenient way.

The interesting thing about program Sqrs is that the sequence of values
assumed by x in an execution of the program is the sequence of all posi-
tive integers that are perfect squares, and this is accomplished using only
addition. This is obvious from (3.5), but for nontrivial examples we won’t
have such an explicit description of each state of a behavior. Remember
that history independence implies that, at any point in a behavior, what
the program does in the future depends only on its current state. What is
it about the current state that ensures that if x is a perfect square in that
state, then it will equal all greater perfect squares in the future? There is
a large body of work on reasoning about traditional programs, initiated by
Robert Floyd in 1967 [15], that shows how to answer this question. If you’re
familiar with that work, the answer may seem obvious. If not, it may seem
like it was pulled out of a magician’s hat. Obvious or magic, the answer is
that the following formula is true for every state number j in the behavior
of Sqrs:

∧ (x (j ) ∈ N) ∧ (y(j ) ∈ N)

∧ y(j ) % 2 = 1

∧ x (j ) =

(
y(j ) + 1

2

)2

(3.7)
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This formula implies that x (j ) is a perfect square, since the first two con-
juncts imply that y(j ) is an odd natural number. Moreover, since y(j +1) =
y(j ) + 2, the last conjunct implies that x (j + 1) is the next larger perfect
square after x (j ). So, the truth of (3.7) for every state number j explains
why the algorithm sets x to all perfect squares in increasing order.

A predicate like (3.7) that is true for every state number j of a behavior
is called an invariant of the behavior. By mathematical induction, we can
prove that a predicate is an invariant by proving these two conditions:

I1. The predicate is true for j = 0.

I2. For any k ∈ N, if the predicate is true for j = k then it’s true for
j = k + 1.

For (3.7), I1 follows from the initial predicate (3.3), and I2 follows from the
step predicate (3.4). (You should have no trouble writing the proof if you’re
used to writing proofs; otherwise, it might be challenging.)

A predicate that can be proved to be an invariant by proving I1 from an
initial predicate and I2 from a step predicate is called an inductive invariant .
Model checkers can check whether a state predicate is an invariant of small
instances of an abstract program. But the only way to prove it is an invariant
is to prove that it either is or is implied by an inductive invariant. For
any invariant P , there is an inductive invariant that implies P . However,
writing an inductive invariant for which we can prove I1 and I2 is a skill
that can be acquired only with practice. Tools to find it for you have been
developed [16, 40], but I don’t know how well they would work on industrial
examples.

The first conjunct of the invariant (3.7) asserts the two invariants
x (j ) ∈ N and y(j ) ∈ N. An invariant of the form v(j ) ∈ S for a variable v
is called a type invariant for v . An inductive invariant almost always must
imply a type invariant for each of its variables. For example, without the
hypotheses that x (j ) and y(j ) are numbers, we can deduce nothing about
the values of x (j + 1) and y(j + 1) from the step predicate (3.4).

Most mathematicians would not bother to write the first conjunct of
(3.7), simply assuming it to be obvious. However, mathematicians aren’t
good at getting things exactly right. They can easily omit some uninterest-
ing corner case—for example, the assumption that a set is nonempty. Those
“uninteresting corner cases” are the source of many errors in programs. To
avoid such errors, we need to state explicitly all necessary requirements,
including type invariants.
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variables x = 1, y = 1, pc = a;

while true do
a: x : = x + y + 2 ;
b: y : = y + 2

end while

Figure 3.2: The finer-grained abstract program FGSqrs.

3.2.3 A Finer-Grained Example: FGSqrs

Now consider a modified version of our abstract program Sqrs in which
the execution of each assignment statement in the body of the while loop
is represented as a separate step of the behavior. This is specified in the
pseudocode by adding a label right before the second assignment statement.
The label is b and the program is called FGSqrs.

The natural way to describe the state of FGSqrs is with the variables x
and y and an additional variable to specify which assignment statement is
the next one to be executed.4 Such a variable isn’t needed in Sqrs because
that program has just a single label. The variable we add is traditionally
called pc (for program counter). We will let its value equal the label from
which the execution described by the next step begins. (That execution
ends when it reaches the following label.) We assume that a and b are two
arbitrary distinct values.

The pseudocode for FGSqrs is in Figure 3.2. The variables declaration
contains pc and its initial value, even though we know pc is needed because
there’s more than one label, and program execution is normally assumed to
start at the beginning of the code. But, a little redundancy doesn’t hurt. A
little redundancy doesn’t hurt.

Here is the mathematical description of the behavior of program FGSqrs.
As with Sqrs, it consists of an initial predicate and a step predicate.

Initial Predicate (x (0) = 1) ∧ (y(0) = 1) ∧ (pc(0) = a)

4In program FGSqrs, an additional variable isn’t needed because which statement
should be executed next can be deduced from the values of the variables x and y , but
that’s not the case in most programs written in pseudocode.
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Step Predicate ∀ j ∈ N : if pc(j ) = a
then ∧ x (j + 1) = x (j ) + y(j ) + 2

∧ y(j + 1) = y(j )
∧ pc(j + 1) = b

else ∧ x (j + 1) = x (j )
∧ y(j + 1) = y(j ) + 2
∧ pc(j + 1) = a

When they see this step predicate, most programmers and many computer
scientists think that the conjuncts y(j + 1) = y(j ) and x (j + 1) = x (j ) are
unnecessary. They think that not saying what the new value of a variable
equals should mean that it equals its previous value. But if that were the
case, then what we wrote wouldn’t be math. We would be giving up the
benefits of centuries of mathematical development—the benefits that are
the reason science is based on math. An essential aspect of math is that a
formula means exactly what it says—nothing more and nothing less. If the
step predicate didn’t say what y(j + 1) equals when pc(j ) = a is true, then
there would be no more reason for it to equal y(j ) than for it to equal the
function i ∈ N 7→

√
−42 .

You may find it discouraging that the mathematical description of
FGSqrs is more complicated than its pseudocode in Figure (3.2). Please
be patient. You will see in Section 3.4.1 how a little notation can simplify
it. We can always write an abstract program more compactly in pseudocode
than in math, as long as we don’t have to explain precisely what the pseu-
docode means. But science is precise, and a science of abstract programs
must explain exactly what they mean. Moreover, tools can’t check an im-
precise description of a program. Math is the simplest way to explain things
precisely.

PlusCal is a precise language for describing abstract programs in what
looks like pseudocode. (However, it’s infinitely more expressive than ordi-
nary pseudocode because its expressions can be any mathematical expres-
sions—even uncomputable ones.) A PlusCal program is translated to a
mathematical description of the program in TLA+. I often find it easier to
write an abstract program in PlusCal than directly in TLA+. However, I
reason about the TLA+ translation, not the PlusCal code. And for many
abstract programs, including most distributed algorithms, it’s easier to write
the program directly in TLA+ than in PlusCal.

The code whose execution is described as a single step of the behavior is
called an atomic operation. Because a single step in a behavior describing
the execution of Sqrs is replaced by two steps in the behavior describing
the execution of FGSqrs, we say that FGSqrs has a finer grain of atomicity
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than Sqrs. Having a finer grain of atomicity implies that the step predicate
is more complicated.

Having a finer grain of atomicity also implies that the inductive invariant
that explains why the abstract program works will be more complicated.
However, there is a trick for obtaining the invariant for FGSqrs from the
invariant (3.7) of Sqrs. Define yy(j ) to equal y(j ) if execution of FGSqrs is
at label a, and to equal the value y(j ) will have after executing statement
b if execution is at b. The mathematical definition is:

yy(j )
∆
= if pc(j ) = a then y(j ) else y(j ) + 2

Observe that x and yy are changed at the same time by statement a of
FGSqrs exactly the same way that the loop body of Sqrs changes x and
y . Statement b of FGSqrs leaves x and yy unchanged. This implies that,
because (3.7) is an inductive invariant of Sqrs, the formula obtained from
(3.7) by substituting yy for y satisfies condition I2 for FGSqrs. It’s easy
to check that this formula also satisfies I1, so it is an inductive invariant of
FGSqrs. This trick of finding an expression (such as yy(j )) that is changed
by the fine grained program the way the coarse-grained program changes
a variable (such as y) can often be used to obtain an invariant for a finer-
grained abstract program from an invariant of a coarser-grained one. It is
also at the heart of program refinement, the subject of Chapter 6.

3.3 Nondeterminism

Math II

The # Operator The operator # is defined so that if S is a finite set,
then #(S ) equals the number of elements in S . If S is not a finite set (so it
must be an infinite set), then #(S ) is a meaningless expression.

More About Functions For any sets D and S , ZF defines D → S to be
the collection, which is assumed to be a set, of all functions f with domain
D such that f (x ) ∈ S for all x ∈ D . A value f is a function with domain D
iff f equals v ∈ D 7→ f (v). Therefore, this is an axiom of ZF:

|= f ∈ (D → S ) ≡ ∧ f = (v ∈ D 7→ f (v))

∧ ∀ v ∈ D : f (v) ∈ S

An array in coding languages is described mathematically as a function,
where the expression f [x ] in the language means f (x ). For a variable f
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whose value is an array/function, assigning the value 4.2 to f [14] changes
the value of f to a new array/function that we can write as:

x ∈ domain(f ) 7→ if x = 14 then 4.2 else f (x )

Mathematicians have little need to write such a function, but it occurs of-
ten when math is used to describe programs, so we need a more compact
notation for it. We write it like this:

f except 14 7→ 4.2

3.3.1 Sources of Nondeterminism

The laws of classical physics, such as the laws of planetary motion, are
deterministic. Given the initial values of all the variables, their values at any
later time are completely determined. Causes of nondeterminism are either
negligible because they have an insignificant effect—for example, meteor
showers—or are simply assumed not to happen—for example, cataclysmic
collisions with errant asteroids.

A program is nondeterministic if the initial state of a behavior doesn’t
determine the complete behavior. Even when executed on supposedly deter-
ministic digital systems, nondeterminism is the norm in programs—especially
concurrent ones. Here are some sources of nondeterminism in programs:

User Input The user giving a value to the program is usually described as
an action of the program that nondeterministically chooses the value
provided by the user. The user can also be described as a separate
process that nondeterministically chooses the value to provide.

Random Algorithms Some algorithms can achieve better average perfor-
mance by making random choices. Our science of programs is not
meant for describing average properties of possible behaviors, so it
can’t distinguish this case from one in which random choices are the
result of user input.

Generality We may want an abstract program to allow multiple possible
implementations. Those possibilities appear as nondeterminism in the
abstract program.

Failure Physical devices don’t always behave the way they’re supposed to.
In particular, they can fail in various ways. Programs that tolerate
failures describe a failure as an operation that may or may not be
executed.
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Timing Uncertainty The time taken to perform operations in an individ-
ual process can vary from one execution to another for several reasons,
including (i) being run on different hardware and (ii) competition for
resources with other processes in the same program or in concurrently
executed programs. This results in multiple behaviors in which op-
erations in different processes are executed in different orders. Those
different orders can lead to very different behaviors.

Timing uncertainty is the most important source of errors due to nondeter-
minism that affects all concurrent programs (not just fault-tolerant ones).
Let’s examine a simple example of it.

3.3.2 An Example: Increment

The example is a trivial abstract multiprocess program called Increment . It
has a variable x that initially equals 0, and each process just increments x
by 1 and terminates. A process does this in two steps: the first step reads
the current value of x , and the second step sets x to one plus the value it
read. You should convince yourself that with N processes, an execution can
terminate with x having any value from 1 through N . The final value of x
will be N if each process executes its two steps with no intervening step by
any other process. The final value will be 1 if all processes read x before
any process sets the value of x .

This abstract program is described with pseudocode in Figure 3.3, where
Procs is the set of processes. (Procs is really a set of process identifiers,
but for convenience we call its elements processes.) The only assumption
we make about this set is that it is finite and nonempty. The process
statement declares that there is a process for every element of Procs, and it
gives the code for an arbitrary process p in Procs. The variables t and pc are
local to process p, each process having its own copy of these two variables.
Variable x is global, accessed by all the processes. Process p saves the result
of reading x in its variable t . The initial value of t doesn’t matter, but
letting all variables have reasonable initial values makes a type invariant
(and sometimes other invariants) simpler, so we let t initially equal 0.

The mathematical description of the abstract program Increment is in
Figure (3.4), where a, b, and done are assumed to be three different val-
ues. The process-local variables t and pc are represented by mathematical
variables whose values in each state are functions with domain Procs, where
t(p) and pc(p) are the values of those variables for process p. The initial
predicate, describing the values of the variables in state number 0, is simple.
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variables x = 0 ;

process p ∈ Procs
variables t = 0, pc = a ;
a: t : = x ;
b: x : = t + 1

end process

Figure 3.3: The Increment abstract program for a set Procs of processes.

Initial Predicate

∧ x (0) = 0
∧ t(0) = (p ∈ Procs 7→ 0)
∧ pc(0) = (p ∈ Procs 7→ a)

Step Predicate

∀ j ∈ N : PgmStep(j ) ∨ Stutter(j )

where

PgmStep(j )
∆
= ∃ p ∈ Procs : aStep(p, j ) ∨ bStep(p, j )

aStep(p, j )
∆
= ∧ pc(j )(p) = a
∧ x (j + 1) = x (j )
∧ t(j + 1) = (t(j ) except p 7→ x (j ))
∧ pc(j + 1) = (pc(j ) except p 7→ b)

bStep(p, j )
∆
= ∧ pc(j )(p) = b
∧ x (j + 1) = t(j )(p) + 1
∧ t(j + 1) = t(j )
∧ pc(j + 1) = (pc(j ) except p 7→ done)

Stutter(j )
∆
= ∧ ∀ p ∈ Procs : pc(j )(p) = done
∧ 〈x (j + 1), t(j + 1), pc(j + 1)〉 = 〈x (j ), t(j ), pc(j )〉

Figure 3.4: The Increment abstract program in math.



CHAPTER 3. DESCRIBING ABSTRACT PROGRAMS 50

The possible steps in a behavior are described by a predicate that, for each
j , gives the values of x (j + 1), t(j + 1), and pc(j + 1) for any assignment
of values to x (j ), t(j ), and pc(j ). It asserts that there are two possibilities,
described by formulas PgmStep(j ) and Stutter(j ), that are explained below.

PgmStep(j ) describes the possible result of some process executing one step
starting in state j . The predicate equals true iff there exists a process
p for which aStep(p, j ) or bStep(p, j ) is true, where:

aStep(p, j ) describes a step in which process p executes its statement
labeled a in state number j . Its last three conjuncts describe the
values of the three variables x , t , and p in state j +1. Many people
are tempted to write t(j + 1)(p) = x (j ) and pc(j + 1)(p) = b
instead of the third and fourth conjuncts. But that would permit
t(j +1)(q) and pc(j +1)(q) to equal any values for q 6= p. Instead
we must use the except operator defined in Section 2.8.2. The
first conjunct is a predicate that is true or false of state j . It is an
enabling condition, allowing the step described by the following
three conjuncts to occur iff that condition is true.

bStep(p, j ) describes a step in which process p executes its statement
labeled b in state number j . It is similar to aStep(p, j ). Its
enabling condition is pc(j )(p) = b. The step sets pc(j + 1)(p)
to done, which is a value indicating that the process has reached
the end of its code and terminated.

Stutter(j ) describes a stuttering step starting in state j . It is enabled iff
pc(j )(p) equals done for all p ∈ Procs, so all processes have termi-
nated. At that point, PgmStep(j ) is not enabled, so only an infinite
sequence of stuttering steps can occur, as required for a terminated
abstract program. The second conjunct in the definition of Stutter(j )
uses the fact that two tuples are equal iff their corresponding elements
are equal to write the following formula more compactly:

(x (j + 1) = x (j )) ∧ (t(j + 1) = t(j )) ∧ (pc(j + 1) = pc(j ))

A property we might like to prove about abstract program Increment is that,
when it has terminated, the value of x lies between 1 and the number of
processes. Let’s define N to equal #(Procs), the number of processes. Since
a process has terminated iff its local pc variable equals done, the property
we want to prove is that this formula is an invariant of Increment—that is,
true for every j ∈ N:

(∀ p ∈ Procs : pc(j )(p) = done) ⇒ (x (j ) ∈ 1 . .N )(3.8)
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This is not an inductive invariant because condition I2 is not satisfied. For
example, suppose the following is true:

• pc(j )(p) = b and pc(j )(q) = done for all q 6= p

• t(j )(p) = N

Then (3.8) is true in state number j , but false in state number j + 1.
To show that (3.8) is an invariant of Increment , we must find an inductive

invariant that implies it. Stopping now and trying to find that inductive
invariant by yourself is a good exercise. But it’s not easy if you don’t have
practice finding inductive invariants and don’t have a tool to check if what
you think is an inductive invariant actually is one. So, I will write one for
you.

An inductive invariant almost always requires a type invariant for each
variable. We start by defining TypeOK to assert a type invariant for each
of the three variables:

TypeOK (j )
∆
= ∧ x (j ) ∈ 0 . .N
∧ t(j ) ∈ (Procs → 0 . .N )
∧ pc(j ) ∈ (Procs → {a, b, done})

TypeOK is an invariant, but not an inductive invariant. For example, if
x (j ) = 1, t(j )(p) = N , and pc(j )(p) = b, then TypeOK (j ) is true but a step
satisfying bStep(p, j ) makes TypeOK (j + 1) false. We can make TypeOK an
inductive invariant by weakening it, replacing the two occurrences of 0 . .N
with N. However, I prefer a stronger, more informative type invariant.

To write the rest of the inductive invariant, we define NumberDone(j )
to be the number of processes that have terminated in state j . The precise
definition is:

NumberDone(j )
∆
= #({p ∈ Procs : pc(j )(p) = done})

The complete inductive invariant, which we call Inv , is defined by:

Inv(j )
∆
= ∧ TypeOK (j )

∧ ∀ p ∈ Procs :
(pc(j )(p) = b) ⇒ (t(j )(p) ≤ NumberDone(j ))

∧ x (j ) ≤ NumberDone(j )

(3.9)

To prove that Inv is an inductive invariant of program Increment , we must
prove I1 and I2. I1 asserts that the initial predicate implies Inv(0), and I2
asserts that the step predicate implies Inv(j ) ⇒ Inv(j + 1). We will not
consider how these conditions are proved until we have a more convenient
way of writing them.
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3.4 Temporal Logic

Math III

Proof by Contradiction An ordinary proof of P ⇒ Q assumes that
P is true and proves Q is true. A proof by contradiction proves P ⇒ Q
by assuming that P ∧ ¬Q is true and proving false. Russell’s paradox,
explained in Section 2.5, is a proof by contradiction of:

{v ∈ S : F} is a set for any formula F
implies the collection of all sets isn’t a set

Proof by contradiction is an application of this theorem of propositional
logic:

|= (P ⇒ Q) ≡ (P ∧ ¬Q ⇒ false)

Many mathematicians dislike proofs by contradiction because they find them
inelegant. If you write a proof to make sure that what you’re trying to prove
is true, then you should always write a proof by contradiction. It’s never
harder and can make it easier to write the proof. I like to view proofs by
contradiction in terms of this theorem of propositional logic:

|= (P ⇒ Q) ≡ (P ∧ ¬Q ⇒ Q)

It asserts that to prove P implies Q , we can assume both P and ¬Q and
prove Q . This gives us an additional hypothesis. Moreover, it’s a very
strong hypothesis. If P ⇒ Q is true, then P implies that ¬Q is equivalent
to false, which is the strongest possible hypothesis (since false implies
anything). If you wind up not using the additional hypothesis, you can just
delete it.

Structured Proofs Mathematicians write proofs in prose. This works
fine, if the prose satisfies two conditions:

1. It’s short. This usually means one paragraph of less than about a
dozen lines.

2. It explicitly mentions every assumption and previously proved fact
that is needed by the proof.

Proofs that are not short should be structured. The simplest structured
proof consists of a sequence of numbered steps, each consisting of an asser-
tion and its prose proof satisfying conditions 1 and 2. The assertion of the
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last step is Q.E.D., which stands for the goal of the proof—that is, what
must be proved to prove the theorem. Each step’s proof may assume the
assertions of previous steps. General structured proofs, in which a step’s
proof may also be a structured proof, are introduced in Section 6.4.

3.4.1 The Logic of Actions

3.4.1.1 Eliminating State Numbers

There’s an easy way to simplify initial predicates, step predicates, and in-
variants: remove the explicit state numbers. It’s obvious that an initial
predicate is about state number 0, so we can eliminate every “(0)” in it.
An invariant is true for all states, so we don’t have to say which states it’s
about. For a step predicate, we just have to distinguish between v(j ) and
v(j + 1) for a variable v . A notation for doing this that dates back at least
to the early 1980s is to replace v(j ) by v and v(j + 1) by v ′. The initial
and step predicates of program Increment have been rewritten this way in
Figure 3.5, where they’ve been given the names Init and Next . The in-
ductive invariant (3.9) is also rewritten without the “(j )” and named Inv .
(The “(j )” has been implicitly removed from the definition of NumberDone.)
Make sure that you understand Figure 3.5 by comparing it with Figure 3.4
and definition (3.9).

Mathematically, the big leap from Figure 3.4 to Figure 3.5 is removing
the explicit mention of state numbers—for example, writing x instead of
x (j ). In Figure 3.4, Procs and x are both ordinary mathematical variables.
The value of Procs is a set of processes and the value of x is a function whose
domain is N. In Figure 3.5, the value of Procs is a set of processes—the
same set throughout a behavior of the program. However, the value of x
depends on the state of the behavior.

The price of removing explicit state numbers from our formulas is leaving
the domain of ordinary math, with a single kind of variable, and entering a
new kind of math in which there are two kinds of variables: mathematical
variables like Procs, whose values are the same in every state of a behavior,
and program variables like x that are implicit functions of the state. Pro-
gram variables like x look weird to mathematicians. In math, the value of a
variable x is fixed. We’ve seen in Chapter 2 that when a mathematician does
something else and introduces a variable x , it’s really a completely different
variable that happens also to be written “x”. Of course, you’re familiar with
program variables because they’re the variables of coding languages, whose
values change in the course of a computation.
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Initial Predicate

Init
∆
= ∧ x = 0
∧ t = (p ∈ Procs 7→ 0)
∧ pc = (p ∈ Procs 7→ a)

Step Predicate

Next
∆
= PgmStep ∨ Stutter

where

PgmStep
∆
= ∃ p ∈ Procs : aStep(p) ∨ bStep(p)

aStep(p)
∆
= ∧ pc(p) = a
∧ x ′ = x
∧ t ′ = (t except p 7→ x )
∧ pc′ = (pc except p 7→ b)

bStep(p)
∆
= ∧ pc(p) = b
∧ x ′ = t(p) + 1
∧ t ′ = t
∧ pc′ = (pc except p 7→ done)

Stutter
∆
= ∧ ∀ p ∈ Procs : pc(p) = done
∧ 〈x ′, t ′, pc′ 〉 = 〈x , t , pc 〉

Inductive Invariant

Inv
∆
= ∧ TypeOK
∧ ∀ p ∈ Procs : (pc(p) = b) ⇒ (t(p) ≤ NumberDone)
∧ x ≤ NumberDone

Figure 3.5: Abstract program Increment and its invariant Inv in simpler
math.
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Since this book is about a science of programs, we will henceforth use the
name variable for program variables. Mathematical variables like Procs will
be called constants. When describing a program mathematically, variables
correspond to what we normally think of as program variables. Constants
are parameters of the program, such as a fixed set of processes. Early coding
languages had constants as well as variables. In modern coding languages,
constants are buried in the code, where they are called static final variables
of an object.

In this book, the variables in pseudocode are explicitly declared, and un-
declared identifiers like Procs are constants. For formulas, the text indicates
which identifiers are variables and which are constants.

In addition to having both variables and constants, the formulas in Fig-
ure 3.5 have primed variables, like x ′. An expression that may contain
primed and unprimed variables, constants, and the operators and values of
ordinary math (which means everything described in Chapter 2) is called a
step expression. A Boolean-valued step expression is called an action. The
math whose formulas are actions is called the Logic of Actions, or LA for
short.

3.4.1.2 The Semantics of the Logic of Actions

As we did in defining the semantics of elementary algebra in Section 2.2,
we define the meaning [[exp]] of an expression of LA to be a mapping on
interpretations. An interpretation assigns values to variables. Since LA has
both constants and variables, there are two parts to an interpretation: an
assignment of values to constants and an assignment of values to variables.

Since constants are ordinary mathematical values, and we have already
discussed the semantics of ordinary math, we will ignore the part of an inter-
pretation for LA that assigns values to them. When discussing a formula of
LA, we assume that there is some fixed interpretation Υ that assigns values
to the constants. Constants are usually assumed to satisfy some conditions.
For example, the constants M and N of Euclid’s algorithm in Section 1.5
are assumed to be positive integers, and the constant Procs of program
Increment in Section 3.3 is assumed to be a finite set. We assume that
the fixed interpretation Υ satisfies those assumptions. We define |= F for a
formula F of LA to mean that [[F ]] is true for all interpretations in which
the assignment of values to the constants satisfies the assumptions.

In LA, there are effectively two kinds of variables: unprimed and primed.
An interpretation of LA assigns values to each of those kinds of variables,
where the values assigned to v and v ′ are independent of one another.
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We have defined a state to be an assignment of values to program vari-
ables. So, since we’re neglecting constants, an interpretation for an LA
formula is a pair of states—the first assigning values to the unprimed vari-
ables and the second assigning values to the primed variables. We have used
the term step to mean a pair of successive states in a behavior. We now let
it mean any pair of states. We will write the step consisting of the states s
and t as s → t rather than 〈s, t 〉 because that makes it clear that s and t
are states.

To define the semantics of LA, we therefore have to define [[exp]](s → t)
for any states s and t . We have not yet defined any operators for LA,
so the only operators that can appear in an LA expression are ordinary
mathematical operators like + and ∈. They have the usual semantics in
LA. For example

[[exp1 + exp2]](s → t)
∆
= [[exp1]](s → t) + [[exp2]](s → t)

For an unprimed variable v , we define [[v ]](s → t) to equal s(v), the value
assigned to variable v by state s. For a primed variable v ′, we define
[[v ′]](s → t) to equal t(v).

We call an LA expression a step expression and an LA formula an action.
For an action A and step s → t , we say that s → t satisfies A or is an A
step iff [[A]](s → t) equals true.

A state expression is an LA expression that contains no primed vari-
ables, and a state formula is a Boolean-valued state expression. For a state
expression exp, the value of [[exp]](s → t) depends only on s, so we can write
it as [[exp]](s).

Because the meaning of an LA expression assigns different values to v
and v ′, we can treat v and v ′ as two unrelated variables. This means that
we can reason about LA formulas as if constants, unprimed variables, and
primed variables were all different mathematical variables. Thus, for LA as
defined so far, we can regard LA as ordinary math with some mathematical
variables having names like v ′ ending with ′ .

3.4.1.3 The Prime Operator (′)

In Figure 3.5, only variables are primed. In the Logic of Actions, we can
prime not just a variable but any state expression—that is, any expression
containing no primes. For a state expression exp, the value of the step
expression exp′ on a step s → t is the value of exp on t . More precisely, the
meaning of exp′ is defined by [[exp′]](s → t) = [[exp]](t). This means that
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exp′ is equivalent to the step expression obtained by priming all the variables
in exp. The priming operator (′) can be applied only to state expressions.
In LA, priming an expression that contains a prime is a syntax error. That
means that it is illegal to prime an expression containing a defined symbol
whose definition contains a prime. For example, if e is defined to equal
x ′ + 1, then e ′ is syntactically illegal.

A constant has the same value in both states of a step. Therefore,
|= c′ = c is true for any constant c. More generally, a constant expression is
an expression with no (primed or unprimed) variable; and |= exp′ = exp is
true for any constant expression exp. The bound identifiers of predicate logic
are like ordinary mathematical variables, which means they are treated like
constants in the Logic of Actions. For example, (∃ i ∈ N : y = x + i)′ equals
∃ i ∈ N : y ′ = x ′ + i . We therefore call bound identifiers bound constants.
Appendix Section A.4 gives an example of how you can get into trouble by
forgetting that bound identifiers are constants.

The semantics of LA imply that the prime operator distributes over
the operators and constructs of ordinary math—for example, that (F ∨G)′

equals F ′ ∨G ′. By expanding all definitions and distributing primes in this
way, we obtain a formula in which the prime operator is applied only to vari-
ables. We don’t have to expand all definitions to obtain such a formula. We
need only expand definitions that contain a prime or that appear within a
primed expression and contain a variable. Once we have reached an expres-
sion in which only variables are primed, we can reason about the resulting
expression as if constants, variables, and primed variables were all ordinary
mathematical variables. We therefore need no additional rules for reasoning
about LA formulas.

Section 3.2.2 defined an inductive invariant Inv of a program to be a
state predicate satisfying conditions I1 and I2, which we can restate as:

I1. Inv is implied by the program’s initial state.

I2. If Inv is true in a state, then the program’s next-state predicate implies
that it is true in the next state.

For program Increment, whose initial predicate is Init and whose next-state
action is Next , these two conditions can be expressed in LA as:

|= Init ⇒ Inv

|= Inv ∧ Next ⇒ Inv ′
(3.10)

The proof of these conditions for program Increment is discussed in Ap-
pendix Section B.1.
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Thus far, the correctness properties of programs that have concerned us
have been invariance properties. All the reasoning we have done to verify
that a program satisfies an invariance property is naturally expressed in
LA. The safety property usually proved of a traditional program is that it
cannot produce a wrong answer—which is expressed as the invariance of
the property asserting that the program has not terminated with a wrong
answer. The most popular way of proving such a property is Hoare logic [22].
Appendix Section A.5 explains Hoare logic and its relation to the Logic of
Actions. (Remember that to understand its structured proof, you should
first read Appendix Section A.2.)

3.4.1.4 Action Composition

The Logic of Actions contains another operator that is almost never used
in describing abstract programs and will not play a major role for us until
Section 8.1. However, it does make brief appearances in Sections 5.1.2 and
6.4.4.3, so it is explained here.

For actions A and B , the action A · B is defined to be true of a step
s → t iff there is a state u such that s → u is an A step and u → t is
a B step. If actions A and B describe two pseudocode statements Sa and
S b , then A · B describes the statement Sa ; S b executed by executing Sa

followed by S b . For example, the statements labeled a and b in process p of
program Increment shown in Figure 3.3 are described by actions aStep(p)
and bStep(p) of Figure 3.5, and:5

aStep(p) · bStep(p) ≡ ∧ pc(p) = a
∧ x ′ = t(p) + 1
∧ t ′ = (t except p 7→ x )
∧ pc′ = (pc except p 7→ done)

Replacing the actions aStep(p) and bStep(p) with aStep(p) · bStep(p) in the
definition of the next-state action Next of program Increment produces a
program with a coarser grain of atomicity. Choosing the grain of atomicity
of an abstract program involves a tradeoff between making the program
detailed enough to be useful and simple enough to be usable. Section 8.1
addresses this tradeoff using action composition.

The operator “·” is associative, meaning (A ·B) ·C = A · (B ·C ) for any
actions A, B , and C . We can therefore omit parentheses and simply write

5If you believe that the second and third conjuncts in this formula are in the wrong
order, then you’re thinking in terms of coding languages, not math. Remember that F ∧G
is equivalent to G ∧ F .
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A · B · C .
For any action A, we define the action A+ to be satisfied by a step s → t

iff state t can be reached from state s by a sequence of one or more A steps.
In other words:

A+ ∆
= A ∨ (A ·A) ∨ (A ·A ·A) ∨ (A ·A ·A ·A) ∨ . . .

3.4.2 The Temporal Logic RTLA

In 1977, Amir Pnueli [48] had the idea of using an obscure branch of math-
ematics called temporal logic to express time-dependent properties without
explicitly mentioning times or state numbers. He used a temporal logic
containing the single temporal operator 2 and operators defined in terms
of 2. You can read 2 as always, but when you become more familiar with
it you’ll probably just call it box. Intuitively, the formula 2F asserts that
the formula F is true at all times. For example, if P is a state predicate,
then 2P asserts that P is true in all states of a behavior.

From now on, we will be discussing and using temporal logic. We will
continue to ignore assignments of values to constants, assuming some fixed
interpretation satisfying the assumptions made about those constants.

In the kind of temporal logic Pnueli used, called linear-time temporal
logic, the meaning of a formula is a predicate on behaviors, where a behavior
is an infinite cardinal sequence of states. In other words, a behavior σ is
a function from N to states. We think of σ(n) as the state at time n, so
the first state of σ is σ(0). But remember, the only resemblance of the
state number n to a time is that state σ(n) does not occur later than state
σ(n + 1). (In Section 5.2, we’ll see that they could both occur at the same
time.) We’ll sometimes write σ as σ(0)→ σ(1)→ · · · .

RTLA is the temporal logic containing the same temporal operators as
Pnueli’s original logic, all defined in terms of 2, but having the formulas
of LA as the basic formulas. The formulas of RTLA can all be written as
LA formulas and formulas obtained from them using the operator 2 and
the usual Boolean operators and quantifiers of ordinary math. The only
expressions of RTLA are formulas. Prime (′) can appear only in the basic
LA formulas. It’s illegal to prime a formula containing a 2.

The TLA in RTLA stands for Temporal Logic of Actions. The R stands
for Raw, in the sense of unrefined. We’ll see later that RTLA allows us
to write formulas that we shouldn’t write. TLA is the logic obtained by
restricting RTLA to make it impossible to write those formulas. But that’s
a complication we don’t need to worry about now, so we’ll start with the
simpler “raw” logic.
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In temporal logic formulas, the operator 2 binds more tightly than the
operators of propositional logic. For example, 2F ∨G is parsed as (2F )∨G .

3.4.2.1 Simple RTLA

In RTLA, the operator 2 can be applied to any RTLA formula, so we can
write formulas like 2(A ⇒ 2B) where A and B are actions. We will begin
by considering simple RTLA, in which the operator 2 is applied only to
actions, not to formulas containing 2.

A formula of a temporal logic is called a temporal formula. For any
assignment of values to constants, the meaning [[F ]] of a temporal formula
is a behavior predicate—that is, a mapping that assigns Boolean values to
behaviors. An action A is a formula of RTLA, where it is viewed as a
behavior predicate. As a formula of LA, we’ve viewed A as a step predicate.
As a formula of RTLA, we view it as a behavior predicate that is true on a
behavior iff, viewed as a step predicate, it is true of the behavior’s first step.

To state that precisely, let [[A]]LA be the meaning of A as an LA formula.
We define its meaning [[A]]RTLA as an RTLA formula as follows. For any
behavior σ, which equals σ(0)→ σ(1)→ σ(2)→ · · ·, we define

[[A]]RTLA(σ)
∆
= [[A]]LA(σ(0)→ σ(1))(3.11)

From now on, [[F ]] means [[F ]]RTLA for all RTLA formulas, including actions.
We will explicitly write [[A]]LA to denote the meaning of A as an LA formula.

For an action A, we define 2A to be the temporal formula that is true
of a behavior iff A is true of all steps of the behavior. In other words, we
define the meaning [[2A]] of the RTLA formula 2A by

[[2A]](σ)
∆
= ∀n ∈ N : [[A]]LA(σ(n)→ σ(n + 1))(3.12)

Like most logics, RTLA contains the propositional logic operators, where
they have their standard meanings. For example, [[F ∧ G ]](σ) equals
[[F ]](σ) ∧ [[G ]](σ). We will write a quantified formula like ∃ i ∈ S : F with
F a temporal formula only when S is a constant expression, in which case
[[∃ i ∈ S : F ]](σ) equals ∃ i ∈ [[S ]] : [[F ]](σ) , where [[S ]] is the value of S under
the assumed assignment of values to constants. As in LA, bound identi-
fiers are called bound constants and they act like constants, having the same
value in all states of a behavior.

It’s important to remember that a behavior is any cardinal sequence of
states. It doesn’t have to be a behavior of any particular program. Since
any step is the first step of lots of behaviors, it’s obvious that if A is an LA
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formula, then |= A is true when A is viewed as an RTLA formula iff it’s true
when A is viewed as an LA formula.

Now let’s return to the description of program Increment in Figure 3.5.
It tells us that a behavior σ is a behavior of the program iff (i) the initial
predicate Init is true of its first state σ(0) and (ii) the step predicate Next
is true for every step σ(n) → σ(n + 1) of σ. Condition (i) is expressed
by [[Init ]], since (3.11) tells us that [[Init ]](σ) equals [[Init ]]LA(σ(0) → σ(1));
and since Init is a state predicate, it’s true of a step iff it’s true of the first
state of the step. By (3.12), condition (ii) is expressed as [[2Next ]]. Thus
(the meaning of) the formula Init ∧2Next is true of a behavior σ iff σ is a
behavior of program Increment .

Of course, this is true for an arbitrary program. The behaviors that
satisfy a program with initial predicate Init and next-state action Next
are described by the simple RTLA formula Init ∧ 2Next . Any program is
described by an RTLA formula of this form. As promised, we can write any
program as a mathematical formula. It’s an RTLA formula rather than a
TLA formula, and we’ll see that it needs to be modified. But for now, it’s
close enough to the final TLA formula.

By (3.12), the state predicate Inv is true in all states of a behavior iff
2Inv is true of that behavior. That Inv is an invariant of Increment means
that, for any behavior σ, if σ is a behavior of Increment then Inv is true in
all states of σ. Thus, that Inv is an invariant of Increment is expressed by
this condition:

|= Init ∧ 2Next ⇒ 2Inv(3.13)

Remember that in (3.10) and (3.13), when Init , Next , and Inv are the formu-
las defined in Figure 3.5, |= F means that F is true for all interpretations
satisfying the assumptions we made about the constants of Increment—
namely, that Procs is a nonempty finite set and the values of a, b, and done
are different from one another.

In general, the conditions I1 and I2 for showing that a state predicate Inv
is an invariant of a program Init ∧2Next are expressed in LA by conditions
(3.10). It is an RTLA proof rule that these conditions imply (3.13). When we
prove a safety property like (3.13), the major part of the reasoning depends
on the definitions of the formulas Init , Next , and Inv . That reasoning is
reasoning about actions, which is formalized by LA. The temporal logic
reasoning, which is done in RTLA, is trivial. Describing the program with a
single formula is elegant. But it is really useful only when verifying liveness
properties, which requires nontrivial temporal reasoning.
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Because it’s often forgotten, it is worth repeating that a state is any
assignment of values to variables, and a behavior is any infinite sequence of
states. Even when we are discussing program Increment , “state” means any
state, including states in which x has the value 〈

√
2, 1 . . 147〉. In (3.13), |=

means true for any behavior, even behaviors in which the initial value of x
is 〈
√

2, 1 . . 147〉. It is true for those behaviors because Init equals false for
them (unless 〈

√
2, 1 . . 147〉 happens to equal 0, which it might).

3.4.2.2 The Complete RTLA

Simple RTLA suffices for reasoning about safety properties, but not for
liveness properties. For example, we want to express the liveness property
of program Increment that a process p eventually terminates. Termination
of p means that pc(p) eventually equals done and remains equal to done
forever. In terms of explicit state numbers, where pc(n) is the value of pc
in state number n, this property can be written:

∃ j ∈ N : ∀ k ∈ N : pc(j + k)(p) = done(3.14)

To write it without explicit state numbers, we need full RTLA, in which
2 can be applied to any RTLA formula, not just to an action. To define
the meaning of all RTLA formulas, we first define σ+n, for any behavior σ
and natural number n, to be the behavior obtained by removing the first n
states from the sequence σ. That is, σ+n is the behavior

σ(n)→ σ(n + 1)→ σ(n + 2)→ · · ·

so σ+n equals i ∈ N 7→ σ(i + n) .
For any RTLA formula F , the RTLA formula 2F is true of a behavior

σ iff it is true of the behaviors σ+n for all n ∈ N. In other words:

[[2F ]](σ)
∆
= ∀n ∈ N : [[F ]](σ+n)(3.15)

for any behavior σ. When F is an action A, this is the same definition as
(3.12) because the first step σ+n(0)→ σ+n(1) of σ+n is σ(n)→ σ(n + 1) .

Although 2 has a simple definition, temporal formulas can be hard to
understand at first. It helps to think of a temporal formula as an assertion
about the present and future. The state σ(n) of a behavior σ is the state at
time n, and the behavior σ+n is the part of the behavior σ that begins at
time n. We can then think of [[F ]](σ+n) as asserting that F is true at time
n of behavior σ. Thus, [[F ]](σ) asserts that F is true at time 0 of σ, and
[[2F ]](σ) asserts that F is true at all times of σ. The formula 2F therefore
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asserts that F is true at all times—that is, F is always true. (Remember
that time n is just some instant of time; it is not n time units after time 0.)

We now drop the [[ ]] and think about temporal logic the same way we
think about ordinary math, conflating a formula with its meaning. So, we’ll
think of a temporal formula F as a Boolean-value function on behaviors.
However, we will still turn to the formal meaning (3.15) of 2 when it is
useful.

Since we will now be working with temporal logic formulas, we consider
a tautology to be any valid formula whose validity depends only on theo-
rems of temporal logic, which include theorems of ordinary predicate and
propositional logic. We will therefore call theorems of temporal logic tau-
tologies. Sections 3.4.2.3–3.4.2.8 below examine 2 and temporal operators
defined in terms of 2. They present quite a few temporal logic tautolo-
gies. Understanding intuitively why those tautologies are true will make
you comfortable reading temporal logic formulas and thinking in terms of
them.

3.4.2.3 The 2 Operator

We first consider some temporal logic tautologies—theorems about arbitrary
temporal formulas. If they are not obvious, rewrite them in terms of the
meanings of the formulas. The first tautology asserts the obvious fact that
if F is always true, then it is true now:

|= 2F ⇒ F(3.16)

The next tautology asserts that F ∧ G true at all times is equivalent to F
true at all times and G true at all times:

|= 2(F ∧G) ≡ (2F ) ∧ (2G)(3.17)

You should check that (3.17) follows from the definition (3.15) of 2 and the
predicate-logic tautology:

|= (∀n ∈ S : P ∧Q) ≡ (∀n ∈ S : P) ∧ (∀n ∈ S : Q)

Observe that 2(F ∨G) and (2F ) ∨ (2G) are not equivalent. For example,
2(F ∨G) is true of a behavior in which F is true only in the initial state and
G is false in the initial state and true in all other states. However, neither
2F nor 2G is true of that behavior.

We can generalize (3.17) to any conjunction, including an infinite con-
junction—that is, quantification over an infinite set of formulas. If F i is a
temporal formula for all i ∈ S , then:

|= 2(∀ i ∈ S : F i) ≡ (∀ i ∈ S : 2F i)(3.18)
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The next tautology should also be obvious. It asserts that if F implies G is
true at all times, then F is true at all times implies G is true at all times:

|= 2(F ⇒ G)⇒ (2F ⇒ 2G)(3.19)

Perhaps less obvious is this proof rule, which is sort of a converse of (3.16):

|= F implies |= 2F(3.20)

The assertion |= F means that F is true of all behaviors. The assertion
|= 2F asserts that for any behavior, F is true of the part of that behavior
starting at any time. But that part of the behavior is itself a behavior, so
|= F implies that F is true of it. If this is not obvious to you, then you
may be thinking of a behavior as a behavior of some program. A behavior
is any infinite sequence of states, so if you remove the first n states of any
behavior, you get a behavior.

From (3.19) and (3.20) we easily derive:

|= F ⇒ G implies |= 2F ⇒ 2G(3.21)

This rule lies at the heart of much temporal logic reasoning. Another rule
we will need is

|= 2(F ∧G ⇒ H ) implies |= 2F ⇒ 2(G ⇒ H )(3.22)

It follows from (3.21) and the equivalence of F ∧G ⇒ H and F ⇒ (G ⇒ H ).
We now examine some additional temporal assertions that can be defined

using 2.

3.4.2.4 Eventually (3)

The operator 3 is defined by 3F
∆
= ¬2¬F . Like 2, the operator 3 binds

more tightly than the operators of propositional logic, so 3F ∧G is parsed
as (3F ) ∧ G . To understand 3, we derive the meaning [[3F ]] of a formula
3F from (3.15):

[[3F ]](σ) ≡ [[¬2¬F ]](σ) by definition of 3

≡ ¬ [[2¬F ]](σ) by the meaning of ¬
≡ ¬∀n ∈ N : [[¬F ]](σ+n) by (3.15)

≡ ¬∀n ∈ N : ¬ [[F ]](σ+n) by the meaning of ¬
≡ ∃n ∈ N : [[F ]](σ+n) by (2.7) of Section 2.7
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Hence, 3F asserts that F is true at some time—either now or in the future.
We read 3 as eventually, where by being eventually true we include the
possibility of being true only now. Corresponding to the tautologies (3.16)
and (3.17) for 2 are these tautologies for 3:

|= F ⇒ 3F |= 3(F ∨G) ≡ (3F ∨3G)(3.23)

Make sure you understand why they are true from the meaning of 3 as
eventually. These two tautologies can be derived from (3.16) and (3.17).
For example:

(F ⇒ 3F ) ≡ (¬(¬F )⇒ ¬(2¬F )) By logic and the definition of 3.

≡ (2¬F ⇒ ¬F ) By propositional logic.

(3.24)

and |= 2¬F ⇒ ¬F follows from (3.16). You should convince yourself that
3(F ∧ G) and (3F ) ∧ (3G) need not be equivalent. The equivalence of
3(F ∨G) and 3F ∨3G generalizes to arbitrary disjunctions:

|= 3(∃ i ∈ S : F i) ≡ (∃ i ∈ S : 3F i)

Here are three tautologies relating 3 and 2. The first is obtained by negating
3F and its definition; the third by substituting ¬F for F in the first; and
the second by negating both sides of the equivalence in the third:

|= ¬3F ≡ 2¬F |= ¬2F ≡ 3¬F |= 2F ≡ ¬3¬F(3.25)

They should be obvious from thinking of 2 as always and 3 as eventually.
The first two tell us that moving ¬ over a temporal operator 2 or 3 changes
2 to 3 and 3 to 2. Note the similarity between 2/3 and ∀ /∃ , a similarity
that arises from the meanings of 2 and 3. Here is another tautology that
follows from the intuitive meanings of 2 and 3 :

|= (2F ∧3G)⇒ 3(2F ∧G)(3.26)

It asserts that if F is true from now on and G is true at some time in the
future, then at some time in the future F is true from then on and G is true
then.

We can express liveness properties with 3. For example, the assertion
that some state predicate P is eventually true is a liveness property. The
assertion that the program whose formula is F satisfies this property is
|= F ⇒ 3P . Since the assertion that something eventually happens is a
liveness property, most of the formulas we write that contain 3 express
liveness.
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To prove that a program described by formula F satisfies the liveness
property 3P , we must prove |= F ⇒ 3P . A proof by contradiction proves
this by proving |= F ∧ ¬3P ⇒ 3P . By the equivalence of ¬3P and 2¬P ,
this is equivalent to proving |= F ∧ 2¬P ⇒ 3P . In particular, if P is a
state predicate, this allows us to assume that ¬P is an invariant of F when
proving that F implies 3P . We can use the invariance ¬P to prove other
invariants of F . This form of reasoning is at the heart of most proofs that
a program satisfies a liveness property.

3.4.2.5 Eventually Always (32)

Recall that termination of process p of program Increment means that pc(p)
eventually equals done and remains forever equal to done, a property ex-
pressed with explicit state numbers by (3.14). This is expressed in RTLA
as 32(pc(p) = done), because [[32(pc(p) = done)]](σ) equals

∃ j ∈ N : ∀ k ∈ N : [[pc(p) = done]]((σ+j )+k )

and (σ+j )+k equals σ+(j+k), so pc(j +k)(p) in (3.14) equals [[pc(p)]]((σ+j )+k ).
We can think of 32 as a temporal operator meaning eventually always.

Convince yourself that this is a tautology:

|= 32(F ∧G) ≡ (32F ) ∧ (32G)

3.4.2.6 Infinitely Often (23)

It should now seem natural to think of 23F as meaning always eventually
F is true. If you’re not used to thinking about infinite sequences, it may
not be obvious that always eventually is equivalent to infinitely often. So,
let’s prove it.

Theorem 3.1 F is infinitely often true iff it is always eventually true.

Define Sσ to be the set of times at which F is true of a behavior σ.

1. F is infinitely often true of σ iff Sσ is an infinite set.

Proof: By definition of infinitely often.

2. Sσ is an infinite set iff for every time n, there is a time m ≥ n such that
m ∈ Sσ .

Proof: A nonempty set of natural numbers is infinite iff it has no largest
element.
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3. The statement that for every time n there exists a time m ≥ n such that
m ∈ Sσ is equivalent to the statement that F is always eventually true.

Proof: By the definitions of Sσ and always eventually.

4. Q.E.D.

Proof: By propositional logic, because steps 1–3 are of the form A iff B ,
B iff C , and C iff D , and the theorem asserts A iff D .

It is usually most helpful to think of 23 as meaning infinitely often rather
than always eventually. For example, consider the formula 23(F ∨ G). It
asserts that F ∨G is true infinitely often, which means that F or G is true
infinitely often. But F or G is true infinitely often iff at least one of them
is true infinitely often. This yields the following tautology:

|= 23(F ∨G) ≡ (23F ) ∨ (23G)(3.27)

The rules for moving ¬ over 2 and 3 that are implied by the first two
tautologies of (3.25) yield the following two tautologies. For example, the
first comes from ¬23F ≡ 3¬3F ≡ 32¬F .

|= ¬23F ≡ 32¬F |= ¬32F ≡ 23¬F(3.28)

3.4.2.7 The End of the Line

You might expect that we can keep constructing more and more compli-
cated operators like 233232 with sequences of 2 and 3. We can’t. Any
such sequence is equivalent to 2, 3, 23 or 32. To see this, first observe
that always always is the same as always. That is, 22F is equivalent to
2F . That’s because ∀ i , j ∈ N : P(i + j ) is equivalent to ∀ k ∈ N : P(k), for
any P .

Similarly, eventually eventually is the same as eventually, so 33F is
equivalent to 3F . The equivalence of 33 and 3 also follows from the
definition of 3 and the equivalence of 22 and 2 by:

33F ≡ ¬2¬¬2¬F ≡ ¬22¬F ≡ ¬2¬F ≡ 3F

So, we can only get a new operator by alternating 2 and 3. However, 23
and 32 is as far as we can go because of the following tautologies:

|= 323F ≡ 23F |= 232F ≡ 32F(3.29)

The first one is obvious if we read 323 as eventually infinitely often, because
F is true at infinitely many times iff it is true at infinitely many times after
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some time has passed. You can convince yourself that the second is true
by realizing that infinitely often F always true is equivalent to F being
always true starting at some time. Alternatively, you can show that the
first tautology implies the second by figuring out why each of the following
equivalences is true:

232F ≡ ¬3¬¬2¬¬3¬F ≡ ¬323¬F ≡ ¬23¬F
≡ ¬¬3¬¬2¬¬F ≡ 32F

3.4.2.8 Leads To (;)

Although there are no more operators to be defined by directly stacking 2

and 3, there is another useful temporal operator defined in terms of them:
the operator ;, read leads to, defined by:

F ; G
∆
= 2(F ⇒ 3G)(3.30)

The operator ; is parsed like ⇒, meaning it has lower precedence (binds
less tightly) than ¬, ∧, and ∨, and it has the same precedence as ≡ .

Formula F ; G asserts of a behavior that, whenever F is true, G is true
then or later. You should convince yourself that ; is transitive, meaning:

|= (F ; G) ∧ (G ; H ) ⇒ (F ; H )

Here are two additional tautologies that should be obvious:

|= ((F ∨G) ; H ) ≡ (F ; H ) ∧ (G ; H )

|= (F ; G) ∧ 2(G ⇒ H ) ⇒ (F ; H )

(3.31)

The first of these tautologies generalizes to:

|= ((∃ i ∈ S : F i) ; H ) ≡ (∀ i ∈ S : (F i ; H ))(3.32)

Here are three more tautologies involving ;; try to understand why they’re
true.

(a) |= 2F ∧ (F ; G) ⇒ 23G

(b) |= (F ; G) ≡ (F ∧2¬G ; G)

(c) |= (F ∧2G ; H ) ≡ (F ∧2G ; H ∧2G)

(3.33)

Here’s how I understand them:

(a) F ; G implies that whenever F is true, G is true then or later; and
2F implies that F is always true. Therefore, 2F ∧ (F ; G) implies
G is true infinitely often.
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(b) F ; G ≡ 2(F ⇒ 3G) Definition of ; .

≡ 2(F ∧ ¬3G ⇒ 3G) Propositional logic.

≡ 2(F ∧2¬G ⇒ 3G) By (3.25).

≡ F ∧2¬G ; G Definition of ; .

(c) F ∧ 2G ; H asserts that, for all t , if F ∧ 2G is true at time t , then
H is true at some time u ≥ t ; and 2G true at time t implies it is still
true at time u, so H ∧2G is true at time u.

Observe that tautology (b) justifies a proof by contradiction: to prove that
F true implies G is eventually true, we can assume that G is never true.

Proving ; properties is at the heart of liveness proofs. For example,
here’s how we prove termination of Euclid’s algorithm, discussed in Sec-
tion 1.5. The algorithm terminates because while x 6= y is true, the sum of x
and y keeps decreasing, which can’t continue forever because the algorithm
satisfies the invariant that x and y are positive integers. Therefore, even-
tually x = y and the algorithm terminates. This argument is formalized in
RTLA as follows.

To prove termination, we must prove that every behavior of the algorithm
satisfies 3(x = y). The proof uses this tautology, which follows from the
meanings of the operators 2, ;, and ′ :

|= 2(P ⇒ Q ′) ⇒ (P ; Q)(3.34)

The tautology |= 3P ∨2¬P allows us to prove 3(x = y) by assuming that
a behavior of the algorithm satisfies 2(x 6= y) and obtaining a contradiction.
Let Ri be the state predicate x + y ≤ i . We prove that 2(x 6= y) and the
invariant that x and y are positive integers imply that, for all i > 0, the
program satisfies 2(Ri ⇒ (Ri−1)

′). By (3.34), this implies Ri ; Ri−1. By
the transitivity of ; and mathematical induction, this implies RM+N ; R0.
Since the program implies that RM+N is true in the initial state, this im-
plies that 3R0 is true, contradicting the invariant that x and y are always
positive.

3.4.2.9 Warning

Although elegant and useful, temporal logic is weird. It’s not ordinary math.
In ordinary math, any operator Op we can define satisfies the condition,
sometimes called substitutivity, that the value of an expression Op(e1, . . . , en)
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is unchanged if we replace any e i by an expression equal to e i . If Op takes
a single argument, substitutivity means that

|= (exp1 = exp2)⇒ (Op(exp1) = Op(exp2))(3.35)

is true for any expressions exp1 and exp2. For example, (3.35) is true
for the operator ¬ . However, the temporal operator 2 is not substitu-
tive. For example let exp1 and exp2 be the state predicates x = 0 and
y = 0, respectively; and let σ be a behavior such that for each j ∈ N, the
state σ(j ) assigns the value 0 to x and the value j to y . Then exp1 and
exp2 both equal true for σ because they are both true for σ(0). Formula
2exp1 is true for σ because x = 0 is true in all its states, but 2exp2 is
false for σ because y = 0 is true only in the first state σ(0). Hence, the
value of the formula (exp1 = exp2)⇒ (2exp1 = 2exp2) for this behavior
is (true = true)⇒ (true = false), which equals false. The operator
′ (prime) is similarly not substitutive, so it too is weird. This weirdness
affects all temporal logics and makes temporal logic reasoning tricky.

3.5 TLA

Math IV

Simple Recursive Definitions A recursive definition of a mapping M
is one in which M appears in its definition. (Mathematicians call them
inductive definitions.) A simple recursive definition defines a function f
with domain N by defining the value of f (0) to equal some expression not
containing f and, for every n > 0, defining f (n) in terms of f (n − 1). The
classic recursive definition is that of n ! (pronounced n factorial), which
equals the product of the numbers from 1 through n, with 0! defined to
equal 1. If we consider n ! to be an abbreviation of !(n) for the function !,
we can define ! by

!
∆
= n ∈ N 7→ if n = 0 then 1 else n ∗ !(n − 1)

An arbitrary definition f
∆
= n ∈ N 7→ exp where f appears in the expression

exp does not necessarily define f to equal n ∈ N 7→ exp. For example, if
I had written !(n + 1) instead of !(n − 1) in the definition of !, then it’s
not obvious what that definition would mean. (Its meaning is defined in
Appendix Section A.1.9.) But all you need to know is that it would define
!(n) to be a meaningless expression for any value n.6

6This particular definition would define ! to be a function with domain N, but with
!(n) a meaningless expression for any n. However, it’s usually not the case that such a
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The actual definition given above does define ! to be a function that
equals the right-hand side of its definition. The intuitive reason is that the
definition allows us to compute !(n) in a finite number of steps for any
natural number n. For example, we can compute !(42) by computing !(41),
which we can compute by computing !(40), which we can compute by . . . ,
which we can compute by computing !(0), which equals 1.

3.5.1 The Problem

There is something terribly wrong with our RTLA descriptions of abstract
programs, because there is something terribly wrong with the descriptions
like the one in Figure 3.4 that we wrote using explicit step numbers. To
see why, let’s return to the discussion in Section 3.1 of how astronomers
describe a planet orbiting a star. As explained there, the mathematical
description of the orbiting planet is best thought of as describing a universe
containing the planet, saying nothing about what else is or is not in the
universe. In particular, that description applies just as well to a universe
in which there is a spacecraft close to the star that orbits it very fast—
perhaps going around the star 60 times every time the planet goes around
it once. Since the spacecraft is too small to affect the motion of the planet,
we would obtain a description of the system composed of the planet and the
spacecraft by adding (conjoining) a description of the spacecraft’s motion
to the description of the planet’s motion. The description of the planet’s
motion remains an accurate description of that planet in the presence of
the spacecraft. It would be crazy if we had to write different formulas to
describe the planet because of the spacecraft that has no effect on it.

Now consider the descriptions of abstract programs we’ve been writing.
In particular, consider an RTLA formula HM describing how the values of
the hour and minute displays of a 24-hour clock change. Using the variables
hr and min to describe the current hour and minute being displayed, we
might define HM to equal Init ∧2Next , where:

Init
∆
= (hr = 0) ∧ (min = 0)

Next
∆
= ∧ min ′ = (min + 1) % 60
∧ hr ′ = if min = 59 then (hr + 1) % 24 else hr

(3.36)

But suppose that the clock also displays seconds. The RTLA formula HMS
that also describes the second display might use a variable sec to describe
that display. A behavior σ allowed by HMS would not be allowed by HM

non-terminating recursion can be proved to define a function.
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because HM requires every step to change the value of min, while σ must
change the value of sec in every step and the value of min in only every 60th

step.
It is just as crazy for an abstract program describing an hour-minute

clock not to describe a clock that also displays seconds as it is for a descrip-
tion of a planet’s motion no longer to describe that motion because of a
spacecraft that doesn’t affect the planet. It means that anything we’ve said
about the hour and minute display might be invalid if there’s also a second
display. And it doesn’t matter if the minute display is on a digital clock on
my desk and the second display is on a phone in my pocket. More generally,
it means if we’ve proved things about completely separate digital devices
and we look at those two devices at the same time, nothing we’ve proved
about them remains true unless those devices are somehow synchronized to
run in lock step. The more you think about it, the crazier it seems.

3.5.2 The Solution

To figure out how to fix this problem, let’s first see where we went wrong.
It happened in Section 3.2.1, when we went from a sequence t0, t1, t2, . . .
of times to a sequence 0, 1, 2, . . . of state numbers. We were writing a
description of a particular system. But math and science don’t describe a
system; they describe a universe containing that system. And that universe
can contain many systems. A different system might lead to a different
sequence u0, u1, u2, . . . of times, with only t0 and u0 equal. Our error
was converting two possibly different times t i and u i into the same state
number. The result was that when we thought we were writing a description
of a particular system, we were actually writing a description of a universe
in which the values of all variables, including ones describing other systems,
could change only when the variables of that particular system changed.

You might think that because the error occurred when we were throwing
away times, we need to represent the time at which a state holds, not just
a state number. Fortunately, there is a simpler solution. It’s the one we
used to eliminate finite behaviors and consider only infinite behaviors. We
observed that we could do that by adding stuttering steps at the end of a
finite sequence of states—steps that just repeat the previous state of the
program. Eliminating finite behaviors was not simply a matter of conve-
nience. The real reason to do it was to eliminate one source of craziness.
Since a behavior is not just a behavior of a particular program but a behav-
ior of the entire universe, a finite behavior is one in which everything in the
universe stops changing. The description of a halting program execution as



CHAPTER 3. DESCRIBING ABSTRACT PROGRAMS 73

a finite behavior therefore asserts that the entire universe halts when the
program does. Those infinitely many stuttering steps, in which the value of
no variable of the program changes, allow other programs’ variables to keep
changing.

We can add those stuttering steps because of the observation that the
conversion from times to state numbers requires that a program variable be
allowed to change only at time t i for some i . It does not require that any
variable does change at that time. The mistake was writing descriptions
that, until the program halts, require some variable to change value at each
time t i . Instead, we should have added to the sequence of times t i times at
which no program variable changes. Adding such a time adds a step in which
other variables describing other programs can change while the program’s
variables remain unchanged. Thus, if the description allows a behavior σ,
then it should allow the behavior obtained by inserting stuttering steps of
the program in σ. This is easy to do. For the description of the hour/minute
display, we just change the definition of HM to

HM
∆
= Init ∧ 2(Next ∨ ((hr ′ = hr) ∧ (min ′ = min)))

We can write this formula more compactly as

HM
∆
= Init ∧ 2(Next ∨ (〈hr ,min 〉′ = 〈hr ,min 〉))(3.37)

because 〈hr ,min 〉′ equals 〈hr ′,min ′ 〉, and two tuples are equal iff their
corresponding components are equal.

We can similarly fix every other example we’ve seen so far by changing
the next-state action Next in its RTLA description to Next∨(v ′ = v), where
v is the tuple of all variables that appear in the RTLA formula. Since this
will have to be done all the time, we abbreviate A∨ (v ′ = v) as [A]v for any
action A and state expression v .

We can add stuttering steps to a pseudocode description of an algorithm
by adding a separate process that just takes stuttering steps. However,
we won’t bother to do this. We will just consider all pseudocode to allow
stuttering steps.

When HM is defined by (3.37), if HMS is true of a behavior then HM
is also true of the behavior. This remains true when HMS is modified to
allow stuttering steps. Thus, HMS implements HM , and |= HMS ⇒ HM is
true. Implementation is implication. How elegant!

There is an apparent problem with formula HM of (3.37). It allows
behaviors in which the program takes a finite number of steps (possibly zero
steps) and then takes nothing but stuttering steps. In other words, it allows
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behaviors in which the clock stops. Most computer scientists will say that
we should never allow behaviors in which an abstract program stops when
it is possible for it to continue executing. This is because they are used
to thinking about traditional programs. In many cases, we don’t want to
require a concurrent abstract program to do something just because it can.

Never stopping is a liveness property. Taking only steps satisfying [Next ]v
is a safety property. My experience has taught me that we should describe
safety properties separately from liveness properties, because we reason
about them differently and we should think about them differently. For-
mula HM describes the safety property that the hour-minute clock should
satisfy. We will see in Section 4.2 how we conjoin a liveness property to HM
if we want to require the clock to run forever. It is a feature not a problem
that this definition of HM asserts only what the clock may do and not what
it must do.

In general, the safety property of an abstract program is written in the
form Init ∧2[Next ]v , where Init is the initial predicate and [Next ]v is the
next-state action. The formula 2[Next ]v always allows stuttering steps be-
cause [Next ]v has the form . . .∨(v ′ = v) , and v ′ = v allows stuttering steps.
However, v ′ = v allows lots of non-stuttering steps. In particular, it allows
steps in which any variable that does not appear in v can have any values
in the two states of the step. To describe an abstract program, the state ex-
pression v in 2[Next ]v must ensure that v ′ = v allows only steps that do not
change any of the program’s variables. Therefore, unless stated otherwise,
in a formula of the form 2[Next ]v where Next is the next-state action of a
program, the subscript v is assumed to be the tuple of all program variables.
(However, that subscript need not be called v .)

3.5.3 Stuttering Insensitivity

We have seen that the safety property of an abstract program should have
the form Init ∧2[Next ]v , so it allows stuttering steps. But what can we say
in general about formulas for describing systems or abstract programs?

Stuttering steps are created by adding extra times t i at which we report
the values of a program’s variables. A stuttering step does not represent the
program doing anything. It’s just a mathematical way to allow the descrip-
tions of the universe with which we describe different abstract programs to
be made consistent with one another. Therefore, any assertion we make
about a behavior of an abstract program should not depend on whether we
add or remove steps that leave the program’s variables unchanged. Since the
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assertion depends only on the values a behavior assigns to the program’s vari-
ables, this condition is satisfied iff the assertion does not depend on whether
we add or remove steps that leave all variables unchanged. We’ve used the
term stuttering step to mean a step that leaves a program’s variables un-
changed. We will now call such a step a stuttering step of the program. We
define a stuttering step to be a step that leaves all variables unchanged.

A sensible predicate F on behaviors should satisfy the condition that the
value of [[F ]](σ) is not changed by adding stuttering steps to, or removing
them from, a behavior σ. This means that the value of [[F ]](σ) is not changed
even if an infinite number of stuttering steps are added and an infinite
number removed. (However, the behavior must still be infinite, so if σ ends
in an infinite number of stuttering steps, those steps can’t be removed.) A
predicate on behaviors satisfying this condition for all behaviors σ is called
stuttering insensitive, or SI for short. When describing abstract programs
or the properties they satisfy, we should use only SI predicates on behaviors.

To define SI precisely, we first define \(σ) to be the behavior obtained by
removing from the behavior σ all stuttering steps except those belonging to
an infinite sequence of stuttering steps at the end. We do this by defining
\(σ)(n) to equal σ(f σ(n)) where the function f σ is defined recursively by
f σ(0) = 0 and f σ(n) for n > 0 equals either the smallest value i greater
than f σ(n − 1) such that σ(i) is unequal to σ(f σ(n − 1)), or else equals
f σ(n − 1) + 1 if σ stutters forever after state number f σ(n − 1).

To write the definition of f σ, we first let Min(S ) be the smallest element
of S for any set S of natural numbers. Such a smallest element exists for
any nonempty subset S of N, even if S is infinite. We next let n> be the
set {i ∈ N : i > n} of all natural numbers greater than n. The recursive
definition of f σ is then:

f σ
∆
= n ∈ N 7→

if n = 0
then 0
else if ∀ i ∈ f σ(n−1)> : σ(i) = σ(f σ(n−1))

then f σ(n−1) + 1
else Min( {i ∈ f σ(n−1)> : σ(i) 6= σ(f σ(n−1))} )

We define \(σ) to equal n ∈ N 7→ σ(f σ(n)) .
A predicate on behaviors is defined to be SI iff, for any behavior σ, the

predicate is true of σ iff it is true of \(σ). SI is a semantic condition—that is,
a condition on the meanings of formulas. Since we are conflating formulas
and their meanings, saying that a formula F is SI means that [[F ]] is SI.
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We have been using the term property informally to mean some condition
on the behaviors of a system or abstract program. We now define it to mean
an SI predicate on behaviors. Behavior predicate still means any predicate
on behaviors, not just SI ones.

3.5.4 The Definition of TLA

We now define TLA to be a language that is a sublanguage of RTLA in which
every formula is a property—that is, an SI formula. Defining a language
means giving syntactic rules for a formula to belong to the language.

We begin by defining a state predicate to be a TLA formula. Recall
that we defined a state predicate to be the RTLA formula that is true of
a behavior iff it’s true of the behavior’s first state. A state predicate is SI
because the first state of a behavior isn’t changed by adding or removing
stuttering steps.

The operators of propositional logic applied to SI formulas produce
SI formulas. For example, if adding or removing stuttering steps doesn’t
change whether formulas F and G satisfy a behavior, then they don’t change
whether F ∨ G satisfies the behavior. So, we let TLA include all formulas
obtained by applying propositional logic operators to TLA formulas. Simi-
larly, we can let TLA include all formulas obtained by applying the ordinary
operators of predicate logic. For example, ∃ x ∈ S : F is a TLA formula if F
is one and S is a constant expression.7

For any formula F , a behavior σ satisfies 2F iff every suffix σ+n of σ
satisfies F . It follows from this that 2F is SI iff F is. Therefore, for every
TLA formula F , we let 2F be a TLA formula. Every RTLA formula is built
from actions, 2, and operators of ordinary logic; and every state predicate is
a TLA formula. Therefore any RTLA formula in which the only actions are
state predicates—which means any RTLA formula containing no primes—is
a TLA formula.

It’s easy to find actions A that, when viewed as a temporal formula,
are not SI. For example, x ′ 6= x is not SI because if σ is a behavior that
satisfies x ′ 6= x , then the behavior obtained by adding a stuttering step to
the beginning of σ doesn’t satisfy it. However, the formula 2[A]v is SI for
any action A and state expression v , because it’s true of a behavior iff every
step of the behavior that changes v is an A step, and adding or removing
stuttering steps doesn’t change the steps that change v . So, we let TLA
contain all such formulas.

7We could let S be a state expression, but there is no need to.
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The formula 2[A]v asserts that action [A]v is true of all steps of a be-
havior. For reasoning about liveness, we will need to assert that an action is
true in some step of a behavior. The formula 3A is not SI for an arbitrary
action A because if A is true on some stuttering step, then 3A might be
false on a behavior σ and true on a behavior obtained by adding such a stut-
tering step to σ. However, if A does not allow stuttering steps, then adding
or removing stuttering steps doesn’t alter whether a behavior satisfies 3A,
so 3A is SI. Since A∧ (v ′ 6= v) does not allow stuttering steps, the formula
3(A ∧ (v ′ 6= v)) is SI for any state expression v . We define 〈A〉v to equal
A ∧ (v ′ 6= v); and we let TLA contain all formulas 3〈A〉v , for any action A
and state expression v .

We can also see that 3〈A〉v is SI because of the tautology:

|= 3〈A〉v ≡ ¬2[¬A]v(3.38)

This tautology follows the definition of 3 and

|= 〈A〉v ≡ ¬[¬A]v

which follows from the definitions of [ ]v and 〈 〉v and propositional logic.
From (3.38) we see that ¬3〈A〉v is equivalent to 2[¬A]v . This means that
an 〈A〉v step never occurs in a behavior iff every step of the behavior is a
[¬A]v step. This fact is used in proofs by contradiction of formulas of the
form 3〈A〉v .

The only temporal operator we have defined besides 2 and 3 is ;. We
define F ; 〈A〉v to be a TLA formula if F is one, A is an action, and v
is a state expression. This formula is SI, since by definition of ; it equals
2(F ⇒ 3〈A〉v ) .

Combining all this, we see that a TLA formula is one of the following:

• A state predicate.

• Obtained by applying propositional logic operators and the operators
2, 3, or ; to TLA formulas.

• ∀∃ c : F or ∀∃ c ∈ S : F where ∀∃ is ∀ or ∃ , for a bound constant c,
a TLA formula F , and a constant expression S .

• 2[A]v , 3〈A〉v , or F ; 〈A〉v , for an action A, a state expression v ,
and a TLA formula F .

Abstract programs and the properties they satisfy should be TLA for-
mulas. However, we can use RTLA proof rules and even RTLA formulas
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when reasoning about TLA formulas. For example, we can prove that Inv
is an invariant of Init ∧ 2[Next ]v by substituting [Next ]v for Next in the
RTLA proof rule that (3.10) implies (3.13). This yields the following rule:

|= (Init ⇒ Inv) ∧ (Inv ∧ [Next ]v ⇒ Inv ′)

implies |= Init ∧2[Next ]v ⇒ 2Inv

In this rule, the first |= means validity in LA while the second |= means
validity in TLA. A feature of TLA is that as much reasoning as possible is
done in LA, which becomes ordinary mathematical reasoning when the nec-
essary definitions are expanded and primes are distributed across operators,
so only variables are primed.



Chapter 4

Safety, Liveness, and Fairness

We have seen how to write the safety property of an abstract program in
TLA. We now see how to write its liveness property. This chapter precisely
defines safety and liveness properties, and shows why and how the liveness
property of an abstract program is written as a particular kind of liveness
property called a fairness property. In principle, any property that can be
described mathematically can be expressed in TLA by such an abstract
program. The chapter also shows how to use TLA to prove that a program
satisfies a liveness property.

4.1 Safety and Liveness

Math V

Assume/Prove Proof Steps We usually prove a formula of the form
F ⇒ G by assuming F is true and proving G is true. In our structured
proof style, we write such a proof with the following proof step:

Assume: F
Prove: G

Proof: . . .

This step asserts the truth of F ⇒ G . However, the proof of a step that
asserts the formula F ⇒ G has as its goal to prove F ⇒ G . (It might
do that by proving F ⇒ H and H ⇒ G for some H .) The proof of this
Assume/Prove step has as its goal to prove G , using the assumption that
F is true. The statement of a theorem is sometimes written as such an
Assume/Prove. It has the same meaning as for a proof step, asserting
F ⇒ G and that the proof assumes F and proves G .

79
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Instead of being a single formula, the Assume clause can be a list of
assertions—sometimes a numbered list. That’s equivalent to assuming the
conjunction of those assertions. A paragraph proof should state what previ-
ous steps and assumptions it uses, identifying them by step and assumption
numbers.

Countable Sets A countable set is one whose elements can be counted.
That is, a set S is countable iff we can assign a different natural number to
each of its elements. More precisely, a set S is countable iff there exists a
function f ∈ N → S such that ∀ s ∈ S : ∃n ∈ N : f (n) = s . All finite sets
are countable. Here is a function f that shows that the set I of all integers
is countable.

n : 0 1 2 3 4 5 6 7 8 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

f(n) : 0 1 −1 2 −2 3 −3 4 −4 . . .

This function f equals:

n ∈ N 7→ if n % 2 = 0 then −n/2 else (n + 1)/2

We will need this theorem:

Theorem 4.1 If S is a countable set, then there is a function f in N→ S
such that for every s ∈ S , there are infinitely many n ∈ N with f (n) = s.

Proof: Since S is countable, we can number its elements s0, s1, s2, . . . .
If S is finite, we can let f equal n ∈ N 7→ s(n %#(S)). Therefore, we can
assume S is infinite. Here is a picture that shows how such a function f can
be defined:

n : 0 1 2 3 4 5 6 7 8 9 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

f(n) : s0 s0 s1 s0 s1 s2 s0 s1 s2 s3 . . .

However, I don’t see an easy way to define that function mathemati-
cally. Here’s an easy way to define a function f that works. Let g be
the function in N → N such that g(n) is the largest integer satisfying
g(n)2 ≤ n , so g(n2) = n and g(n)2 ≤ n < (g(n) + 1)2 for all n ∈ N. De-

fine f (n)
∆
= sn−g(n)2 for all n ∈ N . This function has the desired property

because for any n ∈ N, for any m ≥ n there exists i ∈ m2 . . ((m + 1)2 − 1)
such that f (i) = sn . End Proof
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4.1.1 Definitions

Safety and liveness properties have been described intuitively as specifying
what the program is allowed to do and what it must do. To define them
precisely, we begin by observing that they have these characteristics:

Safety If a behavior doesn’t satisfy a safety property, then we can point to
the place in the behavior where it violates the property. For example,
if a behavior doesn’t satisfy an invariance property, it violates the
property in the first state in which the invariant is false.

Liveness We have to look at an entire infinite behavior to see that it doesn’t
satisfy a liveness property. For example, we can’t see that the property
x eventually equals 42 is violated by looking at a finite part of the
behavior.1

This characterization was turned into precise definitions of safety and live-
ness for arbitrary behavior predicates by Alpern and Schneider [3]. Since
we’re interested only in properties (which are SI), we will use a somewhat
simpler definition of safety. But first, we need a few preliminary definitions.

We call a finite, nonempty cardinal sequence of states a finite behavior.
(A behavior, without the adjective finite, still means an infinite cardinal
sequence of states.) We’ll write a finite behavior ρ as ρ(0) → · · · → ρ(n).
A nonempty finite prefix of a behavior is a finite behavior. We define the
completion ρ↑ of a finite behavior to be the behavior obtained by repeating
the last state of ρ infinitely many times—that is, adding infinitely many
stuttering steps. A finite behavior ρ is defined to satisfy a behavior predicate
iff its completion ρ↑ satisfies it. We can now precisely define safety and
liveness.

Safety A property F is a safety property iff it satisfies the following con-
dition: A behavior satisfies F iff every nonempty finite prefix of the
behavior satisfies F .

Liveness A property F is a liveness property iff every finite behavior is the
prefix of a behavior that satisfies F .

A state predicate is a safety property because it is satisfied by a behavior
iff the state predicate is true on the initial state, and a behavior and all its

1Remember that a behavior means any infinite sequence of states, not just one that
satisfies some program. If we know that a behavior satisfies the program, we can often tell
that 3(x = 42) is false by looking at the behavior predicate that describes the program,
without looking at the behavior at all.
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nonempty prefixes have the same initial state. The formula 2[A]v is a safety
property for any action A and state expression v ; here is the proof that every
nonempty finite prefix of a behavior σ satisfies 2[A]v iff σ satisfies 2[A]v .

1. Assume: Every nonempty finite prefix of σ satisfies 2[A]v .
Prove: σ satisfies 2[A]v

Proof: σ satisfies 2[A]v iff every step of σ satisfies [A]v , and every step of
σ is a step of some finite prefix of σ, so σ satisfies 2[A]v by the assumption.

2. Assume: σ satisfies 2[A]v
Prove: Every nonempty finite prefix of σ satisfies 2[A]v .

Proof: Every step of a nonempty finite prefix of σ is either a step of
σ, so it satisfies [A]v by the assumption, or it is a stuttering step, which
satisfies [A]v by definition of [ ]v .

3. Q.E.D.

Proof: Obvious, by steps 1 and 2.

It also follows easily from the definition of safety that the conjunction of
safety properties is a safety property. Therefore, as expected, the formula
Init ∧ 2[Next ]v that we have been calling the safety property of a program
is indeed a safety property.

The property that asserts that a program halts is a liveness property.
That property is true of a behavior σ iff σ ends with infinitely many steps
that leave the program’s variables unchanged. It’s a liveness property be-
cause every finite behavior ρ is a prefix of its completion ρ↑, which satisfies
the property.

Safety and liveness are conditions on properties, which are SI behavior
predicates. When we say that a TLA formula 2[A]v is a safety property,
we are conflating the formula with its meaning. It’s actually [[2[A]v ]] that
is the safety property.

4.1.2 A Completeness Theorem

TLA is quite simple, adding only the two operators ′ (prime) and 2 to
ordinary math. In theory, this simplicity makes it quite inexpressive. For
example, here is a property F12 that neither TLA nor RTLA can express:
the value of x must equal 1 before it can equal 2. It’s expressed in terms of
explicit states as:

F12
∆
= ∀ j ∈ N : (x (j ) = 2) ⇒ ∃ k ∈ N : (k < j ) ∧ (x (k) = 1)(4.1)
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This behavior predicate is a property because it’s SI; adding or removing
stuttering steps doesn’t affect whether a behavior satisfies it. Property F12

is a safety property because it’s not satisfied by a behavior σ iff there’s a
point in σ at which it’s violated—namely, a state σ(j ) in which x = 2 and
x 6= 1 in all the states σ(0), . . . , σ(j − 1).

If TLA is inexpressive, how can we describe programs with it? The
answer is, by using variables. We can express F12 as an abstract program
described by a TLA formula S 12 if we add a Boolean-valued variable, let’s
call it y , whose value is true iff x equals 1 or has previously equaled 1. We
let the initial predicate Init of S 12 assert that x 6= 2 and that y = true iff
x = 1. The next-state relation Next allows x ′ to equal 2 only if y = true,
and it sets y to true if x = 1. Here are the definitions:

S 12
∆
= Init ∧ 2[Next ]〈x ,y 〉

Init
∆
= (x 6= 2) ∧ (y = (x = 1))

Next
∆
= ∧ (x ′ = 2) ⇒ y
∧ y ′ = (y ∨ (x = 1))

(4.2)

It’s not obvious in what sense formula S 12 expresses property F12, since
S 12 contains the variables x and y while F12 describes only the values of x .
Intuitively, S 12 makes the same assertion as F12 if we ignore the value of y .
Section 7.1 describes a TLA operator ∃∃∃∃∃∃ such that ∃∃∃∃∃∃ y : S 12 means S12 if we
ignore the value of y . We’ll then see that [[∃∃∃∃∃∃ y : S 12]] equals F12. However,
there’s no need to introduce ∃∃∃∃∃∃ here. The relevant condition that S 12 satisfies
is that if G is any TLA formula that does not contain the variable y , then

|= F12 ⇒ [[G ]] iff |= S 12 ⇒ G

The idea of adding a variable to express a property works in general.
We state it now only for safety properties. We can’t express every safety
property as a TLA formula. A formula is a finite string of finitely many
symbols, and there are only a countable number of such strings; but there are
uncountably many safety properties. (For example, there are uncountably
many real numbers, so there are uncountably many properties asserting that
the initial value of x is a particular real number.) What we can show is that
any safety property (which is a predicate on behaviors) that can be described
by a mathematical formula—that is, by a formula of ZF—can be expressed
as a TLA formula. We do that by showing that if the mapping F from
behaviors to Boolean values is a safety property, then we can use F to write
a TLA formula that describes it the way S 12 describes F12 in our example.
One condition satisfied by a mathematical formula is that it contains only
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a finite number of variables, and its value depends only on the values of
those variables. Remember that we are assuming that the language LA for
writing actions contains all the operators of ZF.

The theorem is expressed with the convention of letting a boldface iden-
tifier like x be the list x 1, . . . , xn of subscripted non-bold versions of the
identifier, for some n. Thus, 〈x〉 is the tuple of those identifiers. The theo-
rem is a special case of Theorem 4.9 in Section 4.2.7 below, so the proof is
omitted.

Theorem 4.2 Let x be the list x 1, . . . , xn of variables and let F be a safety
property such that F (σ) depends only on the values of the variables x in a
behavior σ. There exists a formula S equal to Init∧2[Next ]〈x,y 〉, where Init
and Next are defined in terms of F , y is a variable not among the variables
x, and the variables of S are x and y , such that |= F ⇒ [[G ]] iff |= S ⇒ G ,
for any property G .

This theorem is a completeness result, showing that TLA can express as an
abstract program any safety property that can be expressed semantically.
While this shows that there is no fundamental lack of expressiveness in
TLA, it is of little practical significance. The proof assumes a description
of the property F and uses it to write F as an abstract program. If there
were a better way to describe properties mathematically than with abstract
programs, we should use it. There are other temporal logics that can express
the simple property F12 with a formula that’s easier to understand than S 12.
However, S 12 is not hard to understand, and abstract programs are the only
practical way I know to express all the properties of concrete concurrent
programs that we need to describe.2

4.1.3 The Operator C

We now define the operator C so that C(F ) is the strongest safety property
implied by F , for any property F . Remember that property G stronger
than property H means every behavior satisfying G satisfies H —that is,
|= G ⇒ H . The operator C is not part of the TLA language; we do not
use it to write abstract programs. What we do is show that, under certain
conditions, some G equals C(F ) for some other program F . It would be
more precise to write that [[G ]] equals C([[F ]]), but we won’t bother because
we regularly conflate a formula and its meaning.

2Remember that property means predicate on behaviors. There are many conditions
we want programs to satisfy besides properties.
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If we want C(F ) to be the strongest safety property implied by F , it
should be satisfied by the behaviors satisfying F plus the fewest additional
behaviors needed to make it a safety property. The appropriate definition
is: A behavior σ satisfies C(F ) iff every finite prefix of σ is a prefix of a
behavior that satisfies F . For example, suppose F is the property satisfied
only by behaviors in which x initially equals 0, x keeps being incremented
by 1, and eventually the behavior halts. For this property F , the property
C(F ) is satisfied by a behavior that either satisfies F or in which x initially
equals 0 and keeps being incremented by 1 forever. The following theorem
shows that this is the correct definition of C. Its proof is in the Appendix.

Theorem 4.3 If F is a property, then C(F ) is a safety property such that
|= F ⇒ C(F ) and, for any safety property G , if |= F ⇒ G then |= C(F )⇒ G .

Alpern and Schneider proved that every property is the conjunction of a
safety property and a liveness property.3 They actually proved this stronger
result, whose proof is in the Appendix:

Theorem 4.4 Every property F is equivalent to C(F ) ∧ L for a liveness
property L.

We have been describing abstract programs by formulas of the form
Init ∧2[Next ]v , which are safety properties. As we’ve observed, like any
safety property, this formula allows behaviors that halt at any point in the
behavior. We usually don’t want to allow such behaviors, so we must conjoin
a liveness property to this formula to describe most abstract programs. For
example, we can rule out behaviors of program Increment that don’t halt
prematurely with the liveness property

∀ p ∈ Procs :3(pc[p] = done)

However, we’ll see later why that’s not a good liveness property to use.

There’s another method of describing safety and liveness that helps me
understand them intuitively. It’s based on topology. The method and the
necessary topology are explained in Appendix Section A.6.

4.1.4 What Good is Liveness?

Safety properties constrain the finite behavior of a system. They describe
what must be true of finite prefixes of a behavior. Liveness properties say

3Their result was stated for arbitrary behavior predicates, not properties.
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nothing about finite prefixes; they describe what must be true if the system
runs forever. Since we don’t live forever, why should we care about liveness
properties?

In theory, liveness is useless; but in practice it’s useful. Consider the
liveness property required of a traditional program: it eventually terminates.
In theory, that’s useless because it might not terminate in a billion years.
In practice, proving that a program will terminate within a given amount
of time isn’t easy. Proving that it eventually terminates is easier, and it is
useful because the program is certainly not going to terminate soon enough if
it never does. But proving liveness provides more than that. Understanding
why a program eventually terminates requires understanding what it must
do in order to finish. That understanding helps you decide if it will terminate
soon enough. This applies to other liveness properties as well.

Using a model checker doesn’t give you the understanding that you get
from writing a proof. However, using a model checker to check liveness prop-
erties is a good way to detect errors—both in the program you intended to
write and in what you actually wrote. A program that does nothing satis-
fies most safety properties, and an error in translating your intention into
mathematics might disallow behaviors in which the program fails to satisfy a
safety property. Checking that the program satisfies liveness properties that
it should can catch such errors, as well as errors in the program you wanted
to write. Section 5.1 discusses checking liveness to check if the program you
wrote is the one you wanted to write.

4.2 Fairness

Expressing mathematically the way computer scientists and engineers de-
scribed their algorithms and programs led us to describe the safety property
satisfied by an abstract program with the formula Init ∧2[Next ]v , where
v is the tuple of all the program’s variables. We must conjoin to that for-
mula another formula to describe the program’s liveness property. To see
how this should be done, we first examine how scientists and engineers have
expressed liveness.

4.2.1 Traditional Programs and the Enabled Operator E

We start with traditional programs. It was assumed, usually without need-
ing to be stated explicitly, that a traditional program kept executing state-
ments until it terminated. If termination is expressed by pc = done, then
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this assumption can be stated as the requirement that when pc 6= done, a
Next step must eventually occur. This is expressed by the TLA formula

(pc 6= done) ; 〈Next 〉v(4.3)

The 〈. . .〉v is a bit of a nuisance, but it’s required by TLA to prevent a
liveness property from being satisfied by a stuttering step, which would make
no sense. Usually, the next-state action Next does not permit stuttering
steps, so (4.3) is equivalent to the RTLA formula (pc 6= done) ; Next .

We can’t expect a program to take steps if it has halted for any reason,
not just if it has terminated. We should therefore replace (4.3) by E ;

〈Next 〉v , where E is a state predicate that is true in a state iff it’s possible
to take a 〈Next 〉v step in that state. We write that state predicate E as
E〈Next 〉v , where E is read enabled .

In general, for any action A, we define E(A) to be the state predicate that
is true in a state s iff there exists a state t such that s → t is an A step. In
other words, E is an LA operator, where for any action A the state predicate
E(A) is defined by letting [[ E(A)]](s) equal true for a state s iff there exists
a state t such that [[A]](s → t) equals true. In the common case when A
has the form 〈B 〉v , we omit the parentheses and write simply E〈B 〉v . The
liveness property assumed of a traditional program whose safety property is
described by the formula Init ∧2[Next ]v is E〈Next 〉v ; 〈Next 〉v .

4.2.2 Concurrent Programs

In traditional programs, when the program hasn’t terminated there is just
one program statement that can be executed. In multiprocess programs,
it is usually possible for there to be multiple statements that can be exe-
cuted, each in a different process. Moreover, a process can stop not just
because it has terminated, but because it is waiting for another process to
do something. The liveness property E〈Next 〉v ; 〈Next 〉v ensures that the
program keeps executing statements as long as some process hasn’t halted.
It is satisfied if one process keeps executing statements. It allows other pro-
cesses to halt, even if they could keep executing statements. Those other
processes are said to be starved.

It was generally accepted that processes should be treated “fairly”. Mul-
tiprocess programs were usually executed on computers having fewer proces-
sors than there were processes—for many years, usually just a single proces-
sor. It was sometimes proposed that fairness should guarantee the stronger
condition that each process gets a fair share of processor time. However,
it came to be generally accepted that fairness should not specify how long
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(in terms of program steps) a process that can execute a statement might
wait before executing it. Therefore, fairness came to mean simply that no
process should be starved.

In a program with a set Procs of processes, the next-state action is
defined by

Next
∆
= ∃ p ∈ Procs : PNext(p)

where PNext(p) is the next-state action of process p. The obvious general-
ization of the liveness requirement for a traditional program suggests that
fairness for all the processes in a multiprocess program should mean:

∀ p ∈ Procs : E〈PNext(p)〉v ; 〈PNext(p)〉v(4.4)

However, this is not the way fairness should be expressed, and it is not an
appropriate liveness property for multiprocess programs. To see why, we
consider mutual exclusion algorithms.

4.2.2.1 Mutual Exclusion

The concept of fairness in a concurrent program appeared implicitly in Eds-
ger Dijkstra’s seminal 1965 paper that launched the study of concurrent
algorithms [9]. That paper defined mutual exclusion and presented the first
algorithm that implemented it.

In mutual exclusion, we assume a set of processes that each alternately
executes two sections of code called the noncritical and critical sections. A
mutual exclusion algorithm must ensure that no two processes can be execut-
ing their critical sections at the same time. For example, the processes may
occasionally print output on the same printer, and two processes printing
at the same time would produce an unreadable mixture of the two outputs.
To prevent that, the processes execute a mutual exclusion algorithm, and a
process prints only when in its critical section.

The outline of a mutual exclusion algorithm is shown in Figure 4.1,
where Procs is the set of processes. We don’t care what the processes do
in their noncritical and critical sections, so we represent them by atomic
skip statements labeled ncs and cs that do nothing when executed except
change the value of pc. The nontrivial part of the algorithm consists of the
two sections of code, the waiting and exiting sections, that begin with the
labels wait and exit . Each of those sections can contain multiple labeled
statements, using variables declared in the two variables statements.
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variables . . . ; global variables

process p ∈ Procs

variables pc = ncs, . . . ; process-local variables

while true do

ncs: skip ; noncritical section

wait : waiting section...

cs: skip ; critical section

exit : exiting section...
end while

end process

Figure 4.1: The outline of a mutual exclusion algorithm.

The safety property that a mutual exclusion algorithm must satisfy is
that no two processes are executing their critical sections at the same time—
meaning that pc(p) and pc(q) cannot both equal cs for two different pro-
cesses p and q . This is an invariance property. A cute way of expressing it
compactly is:

2 (∀ p, q ∈ Procs : (p 6= q)⇒ ({pc(p), pc(q)} 6= {cs}) )(4.5)

We will not yet state a precise liveness condition a mutual exclusion algo-
rithm should satisfy. All we need to know for now is that if some processes
enter the waiting section, they can’t all wait forever without any process
entering the critical section.

Most people viewing the outline in Figure 4.1 will think this is an un-
realistic description of a mutual exclusion algorithm because, by describing
the execution of the critical section with a single skip step, we are assuming
that the entire critical section is executed as a single step. Of course, we
realize that this isn’t the case. It no more says that the critical section is
executed as a single step than our description of an hour-minute clock says
that nothing else happens between the step that changes the clock’s display
to 7:29 and the step that changes it to 7:30. Just as 59 changes to a seconds
display can occur between those two steps, process p can print the entire
Bhagavad Gita while pc(p) equals cs. A mutual exclusion algorithm simply
describes all that printing as stuttering steps of the algorithm.

Figure 4.2 describes a program named UM , which is an abbreviation of
Unacceptable Mutual exclusion algorithm. Technically, it’s a mutual exclu-
sion algorithm because it satisfies property (4.5) with Procs equal to the
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variables x = (p ∈ {0, 1} 7→ false) ;

process p ∈ {0, 1}
variables pc = ncs ;
while true do

ncs: skip ;
wait : x [p] : = true ;
w2: await ¬ x [1− p] ;
cs: skip ;
exit : x [p] : = false

end while
end process

Figure 4.2: The unacceptable mutual exclusion algorithm UM.

set {0, 1} of processes. But for reasons that will be discussed later, it isn’t
considered to be an acceptable algorithm.

This pseudocode program is the first one we’ve seen with an await state-
ment. For a state predicate P , the statement await P can be executed only
when control is at the statement and P equals true. We could write the
statement a : await P as:

a: if ¬P then goto a end if

Executing this statement in a state with P equal to true just moves control
to the next statement. Executing it in a state with P equal to false does
not change the value of any program variable, so it’s a stuttering step of the
program. Since a stuttering step is always allowed, executing the statement
await P when P equals false is the same as not executing it. So, while we
can think of the statement await P continually evaluating the expression
P and moving to the next statement iff it finds P equal to true, mathe-
matically that’s equivalent to describing it as an action A such that E(A)
equals (pc = a) ∧ P .

This is also the first pseudocode we’ve seen with explicit array variables.
An array variable x is an array-valued variable, where an array is a function
and x [p] just means x (p). We’ve already seen implicit array variables—
namely, the local variables t and pc of program Increment are represented
by function-valued variables in Figure 3.5. I have decided to write x [p]
instead of x (p) in pseudocode to make the pseudocode look more like real
code. However, the value of an array variable can be any function, not just
(as in some coding languages such as C) a finite ordinal sequence; and we
write x (p) instead of x [p] when discussing the program mathematically. As
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we’ve seen in Figure 3.5, an assignment statement x [p] := . . . is described
mathematically as x ′ = (x except p 7→ . . .).

Algorithm UM is quite simple. The processes communicate through the
variable x , with process p modifying x (p). The initial value of x (p) for each
process p is false. To enter the critical section, process p sets x (p) to true
and then enters its critical section when x (1−p) (the array element written
by the other process) equals false.

It’s easy to see that the two processes cannot be in their critical sections
at the same time. If they were, the last process p to enter its critical section
would have read x (1 − p) equal to true when executing statement w2,
so it couldn’t have entered its critical section. Since mutual exclusion is an
invariance property, it can be proved mathematically by finding an inductive
invariant that implies mutual exclusion. You can check that the following
formula is such an inductive invariant of UM :

∧ TypeOK

∧ ∀ p ∈ {0, 1} : ∧ (pc(p) ∈ {w2, cs})⇒ x (p)

∧ (pc(p) = cs)⇒ (pc(1− p) 6= cs)

(4.6)

where TypeOK is the type-correctness invariant:

TypeOK
∆
= ∧ x ∈ ({0, 1} → {true, false})
∧ pc ∈ ({0, 1} → {ncs,wait ,w2, cs, exit})

Let UMSafe be the safety property described by the pseudocode. We
want to conjoin a property UMLive to UMSafe to state a fairness require-
ment of the program’s behaviors. Let’s make the obvious choice of defining
UMLive to be formula (4.4) with Procs equal to {0, 1} and v equal to 〈x , pc 〉.
This implies that both processes keep taking steps forever, executing their
critical sections infinitely often, which makes it seem like a good choice.
Actually, that makes it a bad choice.

Algorithm UM is unacceptable because formula UMSafe, which de-
scribes the pseudocode, permits deadlock. If both processes execute state-
ment wait before either executes w2, then the algorithm reaches the dead-
locked state in which neither await statement is enabled. Conjoining UMLive
to UMSafe produces a formula asserting that such a deadlocked state cannot
occur. It ensures the liveness property we want, that processes keep execut-
ing their critical sections. However, it does this not by requiring only that
processes keep taking steps, but also by preventing them from taking some
steps—namely, ones that produce a deadlocked state. A fairness property
shouldn’t do that.
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Before going further, let’s see why UMSafe ∧UMLive doesn’t allow such
a deadlocked state to be reached. The reason is that the formula satisfies
this invariant:

¬(pc(0) = pc(1) = w2)(4.7)

This is an invariant of UMSafe ∧ UMLive because it is true initially and
it can be made false only by a step in which a process p executes its wait
statement in a state s with pc(1 − p) = w2; and we now show that such a
step cannot occur.

It’s an invariant of UMSafe, and hence of UMSafe ∧ UMLive, that
pc(p) = wait implies x (p) = false. Hence, pc(1−p) = w2 and x (p) = false
in state s, which implies E〈PNext(1− p)〉v is true. Therefore, UMLive im-
plies that 3〈PNext(1 − p)〉v must be true at state s of the behavior. This
implies that the process p step can’t occur, because it would lead to dead-
lock which would make such a 〈PNext(1− p)〉v step impossible. Therefore,
no step of the program can make (4.7) false. Since it is true in an initial
state, (4.7) is an invariant of UMSafe ∧UMLive.

Thus, UMLive should not be the fairness property for algorithm UM ,
because it disallows a program step allowed by UMSafe. Before determining
what the fairness property should be, let’s characterize exactly what’s wrong
with property UMLive.

4.2.2.2 Machine Closure

The general principle illustrated by program UM is that fairness for a pro-
gram should require only that something eventually happens, so it should
rule out only infinite behaviors in which that thing never happens. It should
not rule out finite behaviors.

A liveness property by itself does not rule out any finite behaviors. A
liveness property L by definition allows any finite behavior to be completed
to a behavior that satisfies L. Property UMLive is a liveness property, so the
finite behavior in which the program reaches a deadlocked state can be com-
pleted to a behavior satisfying UMLive. For example, we can concatenate
to that finite behavior a complete behavior satisfying UMSafe ∧ UMLive.
(There are many behaviors of UMSafe that don’t deadlock.) Since that con-
catenation contains infinitely many steps of each process, it satisfies UMLive.
However, it doesn’t satisfy UMSafe because the step between the last state
of the deadlocked finite behavior (which is a deadlocked state) and the first
state of a complete behavior does not satisfy the program’s next-state action.
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It is impossible to complete that deadlocked behavior to a behavior satis-
fying both UMLive and UMSafe because the next-state action of UMSafe
does not allow any non-stuttering step from a deadlocked state.

For a liveness property L to be a fairness property for UMSafe, it should
not just require that any finite behavior can be completed to a behavior
satisfying L; it should require that any finite behavior that satisfies UMSafe
can be completed to a behavior that satisfies UMSafe ∧ L.

In general, a pair 〈S ,L〉, where S is a safety property and L a liveness
property, is defined to be machine closed iff every finite behavior satisfying
S can be completed to a behavior satisfying S∧L. We require that a fairness
property for a program having the safety property S be a liveness property
L such that 〈S ,L〉 is machine closed. The following theorem, proved in the
Appendix, provides a nice mathematical characterization of machine closure.

Theorem 4.5 If S is a safety property and L a liveness property, then
〈S ,L〉 is machine closed iff |= C(S ∧ L) ≡ S .

4.2.3 Weak Fairness

Let’s now see how to describe fairness with a machine-closed liveness prop-
erty. Using the requirement that

E〈PNext(p)〉v ; 〈PNext(p)〉v(4.8)

is true for all p in Procs worked fine for program Increment . It failed for
program UM . The reason it worked for program Increment is that when
PNext(p) is enabled, it remains enabled until a PNext(p) step occurs. In
program UM , process p can reach a state in which pc(p) equals w2 and
PNext(p) is enabled, but process 1 − p can then take a step that disables
action PNext(p).

To obtain a machine-closed condition, we have to weaken (4.8) so it rules
out fewer behaviors. The obvious way to do that is by requiring a PNext(p)
step to occur not if PNext(p) just becomes enabled, but only if it remains
enabled until a PNext(p) step occurs. Let F U G be the temporal formula
asserting that F is true until G is true. (We’ll discuss later exactly what U
means.) As our choice of fairness property, we will replace property (4.8)
by:

( E〈PNext(p)〉v U 〈PNext(p)〉v ) ; 〈PNext(p)〉v(4.9)

However, rather surprisingly, (4.9) is equivalent to:

2 E〈PNext(p)〉v ; 〈PNext(p)〉v(4.10)
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To prove this, we first have to examine the definition of U . When we say
that E is true until P is true, we usually mean that P is eventually true
and E is true until P becomes true. But if E U P implies that 3P is true,
then (4.9) would be trivially true and thus useless, since it would assert that
〈PNext(p)〉v conjoined with some other condition leads to 〈PNext(p)〉v . So
we have to interpret E U P to mean that either P is eventually true and E
is true until it is, or P is not eventually true and E is true forever. Thus,
whatever the precise meaning of U is, we have:

|= (E U P) ≡ (3P ∧ E U P) ∨ (¬3P ∧2E )(4.11)

The equivalence of (4.9) and (4.10) follows from this RTLA theorem, which
is proved in the Appendix.

Theorem 4.6 (4.11) implies |= ((E U P) ; P) ≡ (2E ; P) for any
formulas E and P .

A liveness property commonly assumed of multiprocess algorithms, called
weak fairness, is that (4.10) is true for every process p. We generalize this
concept to define weak fairness of an arbitrary action A to be the formula
WFv (A) defined by:

WFv (A)
∆
= 2 E〈A〉v ; 〈A〉v(4.12)

Another form of fairness called strong fairness that is sometimes assumed
is discussed later. We will see how weak and strong fairness are used to
write machine-closed descriptions of abstract programs. A special case
of the general result is that if S is the formula Init ∧ 2[Next ]v and Next
equals ∃ p ∈ Procs : PNext(p), then 〈S , ∀ p ∈ Procs : WFv (PNext(p)〉 is ma-
chine closed. But before we get to all that, let’s examine weak fairness.

The first thing we observe is that for a multiprocess program described
with pseudocode, weak fairness of a process’s next-state action is equiva-
lent to the conjunction of weak fairness of all the actions described by the
process’s statements. That is, if PNext(p) equals ∃ i ∈ I : Ai(p) for a set I ,
where action Ai(p) describes the statement with label i , and v is the tuple
of program variables, then:

|= WFv (PNext(p)) ≡ ∀ i ∈ I : WFv (Ai(p))(4.13)

This is because 〈PNext(p)〉v is enabled iff 〈Apc(p)(p)〉v is enabled, in which
case pc(p) can be changed only by an 〈Apc(p)(p)〉v step. Thus, in any state
of a behavior with pc(p) = i , the formula E〈PNext(p)〉v ⇒ 3〈PNext(p)〉v
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is equivalent to E〈Ai(p)〉v ⇒ 3〈Ai(p)〉v . A rigorous justification of (4.13)
is that it is a special case of Theorem 4.8 in Section 4.2.7 below.

The following tautology is useful for deducing properties from weak fair-
ness assumptions:

|= WFv (A) ≡ (32 E〈A〉v ⇒ 23〈A〉v )(4.14)

It makes weak fairness look stronger than the definition because 23〈A〉v
is a stronger property than 3〈A〉v . Here’s an informal proof of (4.14).
The definition of WFv (A) implies the right-hand side of the equivalence be-
cause 32 E〈A〉v implies that eventually 〈A〉v is always enabled, whereupon
WFv (A) keeps forever implying that an 〈A〉v step occurs, so there must be
infinitely many 〈A〉v steps, making 23〈A〉v true. The opposite implica-
tion is true because 2 E〈A〉v implies 32 E〈A〉v , so the right-hand side of
the equivalence implies that 23〈A〉v is true and hence 3〈A〉v is true. A
rigorous proof of (4.14) is by the following RTLA4 reasoning, substituting
E〈A〉v for F and 〈A〉v for G :

2F ; G ≡ 2(2F ⇒ 3G) by definition (3.30) of ;

≡ 2(¬2F ∨3G) by propositional logic

≡ 2(3¬F ∨3G) by ¬2F = 3¬F (3.25)

≡ 23(¬F ∨G) by (3.23)

≡ 23¬F ∨23G by (3.27)

≡ ¬23¬F ⇒ 23G by propositional logic

≡ 32F ⇒ 23G ¬23¬F ≡ 3¬3¬F ≡ 32¬¬F by (3.25)

The following tautology is useful for proving a weak-fairness formula, be-
cause it has an additional hypothesis in the implication:

|= WFv (A) ≡ (2 E〈A〉v ∧2[¬A]v ; 〈A〉v )(4.15)

It is proved by expanding the definition of ; and applying the proposi-
tional logic tautology |= (F ⇒ G) ≡ (F ∧ ¬G ⇒ G) and the TLA tautol-
ogy |= ¬3〈A〉v ≡ 2[¬A]v . Using (4.15) to prove WFv (A) is essentially a
proof by contradiction.

Proving these kinds of temporal logic tautologies is a good exercise.
However, there are temporal logic theorem provers that can do it for you.

4With these definitions of F and G, the formula 23(¬F ∨G) is not a TLA formula.
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4.2.4 Temporal Logic Reasoning

Thus far, the only properties we’ve verified that programs satisfy have been
invariance properties. Proving invariance requires no temporal logic rea-
soning. To prove |= Init ∧2[Next ]v ⇒ 2Inv , we prove the LA formulas
|= Init ⇒ Inv and |= Inv ∧ [Next ]v ⇒ Inv ′ and then apply a single temporal
logic proof rule.

Nontrivial temporal logic reasoning is required for proving that programs
satisfy liveness properties. We often prove liveness properties of the form
P ; Q . This property asserts that something is true at all “times” in
a behavior—namely, that whenever P is true, Q is eventually true. The
description Init ∧2[Next ]v of a program cannot be used directly to prove
P ; Q because it asserts only that something is true initially. For that rea-
son, the first thing we do when proving P ; Q is to prove that some formula
Inv is an invariant of the program, so the program implies 2Inv ∧2[Next ]v .
We then use 2Inv ∧2[Next ]v to prove P ; Q .

A formula F that asserts something is true at all times is called a 2

formula. The formula 2Inv ∧2[Next ]v is a 2 formula because it’s equivalent
to the RTLA formula 2(Inv ∧ [Next ]v ). A formula F is a 2 formula iff
|= F ≡ 2F is true, because |= F ≡ 2G implies |= 2F ≡ 22G by (3.21),
and 22G is equivalent to 2G . By (3.17), the conjunction of 2 formulas is
a 2 formula. In general, (3.18) implies ∀ i ∈ S : F i is a 2 formula if each F i

is a 2 formula.
In a proof, we almost always want every temporal logic formula asserted

by a statement to be a 2 formula. A theorem with statement F asserts
|= F . The proof rule (3.16) tells us that |= F implies |= 2F . This means
that whenever we prove F , we have proved 2F . However, that does not
mean that when we have proved a step in a proof that asserts F , we have
proved 2F . When we prove a step

4.2.7. G ; H

we have not proved |= G ; H . We have proved |= Asp ⇒ (G ; H ), where
Asp is the conjunction of all the assumptions in effect at statement 4.2.7. By
the proof rule (3.21), |= Asp ⇒ (G ; H ) implies |= 2Asp ⇒ 2(G ; H ).
If Asp is a 2 formula, so it’s equivalent to 2Asp, then proving 4.2.7 proves
|= Asp ⇒ 2(G ; H ). Therefore proving 4.2.7 is equivalent to proving

4.2.7. 2(G ; H )

if Asp is a 2 formula. Since the conjunction of 2 formulas is a 2 formula,
Asp is a 2 formula if all the assumptions in effect at statement 4.2.7 are 2

formulas.



CHAPTER 4. SAFETY, LIVENESS, AND FAIRNESS 97

We assure that every statement that asserts a temporal formula F asserts
2F by making every temporal formula in an assume clause be a 2 formula.
Any temporal formula F asserted by a statement can then be considered to
assert 2F . The following are 2 formulas for all temporal formulas F and
G , state expressions v , and actions A: 23F (obviously), 32F by (3.29),
F ; G by the definition (3.30) of ;, and WFv (A) by the definition (4.12)
of WF.

4.2.5 Reasoning With Weak Fairness

We now see how to show that an abstract program with weak fairness con-
ditions satisfies a liveness property. We will do this with a modification
of algorithm UM called the One-Bit algorithm that is an acceptable mu-
tual exclusion algorithm. But first, we examine what liveness condition the
algorithm should satisfy.

4.2.5.1 Liveness for Mutual Exclusion

The liveness condition Dijkstra required of the mutual exclusion algorithm
outlined in Figure 4.1 was that if some process is at statement wait , then
eventually some process enters its critical section—expressed by:

(∃ p ∈ Procs : pc(p) = wait) ; (∃ p ∈ Procs : pc(p) = cs)(4.16)

This condition is usually called deadlock freedom. That’s a misuse of the
term, because deadlock freedom is actually the safety property asserting that
the program never reaches a deadlocked state—one in which no process
can take a step. Property (4.16) also rules out what is called livelock, in
which no process enters its critical section although some processes keep
executing statements in their waiting sections. However, when discussing
mutual exclusion, we will use deadlock freedom to mean property (4.16).
This condition allows one or more processes to be starved—that is, to remain
forever in their waiting section—while other processes enter and leave the
critical section.

Dijkstra also required that processes be allowed to remain forever in
their noncritical sections. Just because a process might send output to the
printer, we don’t want to insist that it does. This requirement rules out
simple algorithms in which processes take turns entering the critical section.
A process that does not want to enter its critical section cannot be required
to do anything to allow other processes to enter their critical sections.
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variables x = (p ∈ {0, 1} 7→ false) ;

process p ∈ {0, 1}
variables pc = ncs ;
while true do

ncs: skip ;
wait : x [p] : = true ;
w2: if p = 0 then await ¬ x [1]

else if x [0] then w3: x [1] : = false ;
w4: await ¬ x [0] ;

goto wait
end if

end if ;
cs: skip ;
exit : x [p] : = false

end while
end process

Figure 4.3: Algorithm OB.

4.2.5.2 The One-Bit Algorithm

The basic idea of the One-Bit algorithm is to modify algorithm UM to pre-
vent deadlock by having process 1 wait when both processes are concurrently
trying to enter the critical section. This is done by modifying process 1 so
that if it sees that x [0] equals true in statement w2, then it sets x [1] to
false and waits until x [0] equals false (so process 0 has exited its crit-
ical section) before going back to statement wait and trying again. The
pseudocode for the algorithm, which we call OB , is in Figure 4.3.5

Algorithm OB satisfies mutual exclusion because the processes use the
same protocol as in algorithm UM to enter the critical section: Each process
p sets x [p] to true and can then enter the critical section only if x [1 − p]
equals false. In fact, that OB satisfies mutual exclusion can be proved with
the same inductive invariant (4.6) as UM except that the type invariant
TypeOK must be modified because pc(1) can now also equal w3 or w4. For

5Algorithm OB is the two-process case of an N -process algorithm that was discovered
independently by James E. Burns and me in the 1970s, but not published until later [7, 30].



CHAPTER 4. SAFETY, LIVENESS, AND FAIRNESS 99

algorithm OB , we define:6

TypeOK
∆
= ∧ x ∈ ({0, 1} → {true, false})
∧ pc ∈ ({0, 1} → {ncs,wait ,w2,w3,w4, cs, exit})
∧ pc(0) /∈ {w3,w4}

(4.17)

However, the resulting inductive invariant isn’t strong enough for proving
liveness. We now consider liveness.

Let OBSafe, the safety property of OB described by the pseudocode, be
the formula Init ∧2[Next ]v , where v equals 〈x , pc 〉 and

Next
∆
= ∃ p ∈ {0, 1} : PNext(p)

The fairness condition we want OB to satisfy is weak fairness of each pro-
cess’s next-state action, except when the process is in its noncritical section.
A process p remaining forever in its noncritical section is represented in our
abstract program by no PNext(p) step occurring when pc(p) equals ncs.
The fairness condition we assume of program OB is therefore:

OBFair
∆
= ∀ p ∈ {0, 1} : WFv ((pc(p) 6= ncs) ∧ PNext(p))

The formula OBSafe ∧ OBFair , which we call OB , satisfies the liveness
property that if process 0 is in its waiting section, then it will eventually
enter its critical section. That is, OB implies:

(pc(0) ∈ {wait ,w2}) ; (pc(0) = cs)(4.18)

This implies deadlock freedom, because if process 0 stops entering and leav-
ing its critical section, then it eventually stays forever in its noncritical
section. If process 1 is then in its waiting section, it will read x [0] equal to
false and enter its critical section.

The inductive invariant obtained from the inductive invariant of UM
isn’t strong enough because it doesn’t assert that x [p] = false when process
p is in its noncritical section, which is at the heart of why OB is deadlock
free. For that we need this stronger invariant, where TypeOK is defined by
(4.17):

∧ TypeOK

∧ x [0] ≡ (pc[0] ∈ {w2, cs, exit})
∧ x [1] ≡ (pc[1] ∈ {w2,w3, cs, exit})
∧ ∀ p ∈ {0, 1} : (pc[p] = cs)⇒ (pc[1− p] 6= cs)

(4.19)

6For any infix predicate symbol like = or ∈, putting a slash through the symbol negates
it, so e /∈ S means ¬(e ∈ S).
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pc(0) ∈ {wait ,w2}
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pc(0) = wait
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2Inv ∧2[Next ]v ∧OBFair

Figure 4.4: Leads-to lattice for the proof of (4.18).

4.2.5.3 Proving Liveness

We will now see how to reason more rigorously about liveness. Even if
you never write rigorous correctness proofs, learning how to reason about
liveness will help you better understand liveness properties.

There are two kinds of liveness properties that we prove: that a program
implies leads-to properties such as (4.16), and that a program implies the
fairness properties of a more abstract program. Here we consider leads-to
properties. Proving fairness properties is discussed in Section 6.4.

The proof of a leads-to formula is usually decomposed into proving sim-
pler leads-to formulas. Figure 4.4 shows how we decompose the proof of
formula (4.18) using what is called a leads-to lattice [46].

First, let’s pretend that the box and the formula labeling it aren’t there.
We then have just a directed graph whose nodes are formulas. A formula F
and its outgoing edges represent the assertion that F leads to the disjunction
of the formulas those edges point to. (The edges are numbered so we can
refer to them.) Thus, the two edges numbered 1 assert the formula:

(pc(0) ∈ {wait ,w2}) ; ((pc(0) = wait) ∨ (pc(0) = w2))

By the meaning of leads to, the property asserted by each formula F in the
graph means that if the program is ever in a state for which F is true, then
it will eventually be in a state satisfying a formula pointed to by one of the
outgoing edges from F . The graph has a single sink node (one having no
outgoing edge). Every path in the graph, if continued far enough, leads to
the sink node. By transitivity of the ; relation, this means that if all the
properties asserted by the diagram are true of a behavior, then the behavior
satisfies the property F ; H , where H is the sink-node formula and F
is any formula in the lattice. In particular, the properties asserted by the
diagram imply formula (4.18). By (3.32), that every formula in the graph
leads to the sink-node formula means that the disjunction of all the formulas
in the graph leads to the sink-node formula.
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Now to explain the box. Let Λ equal 2Inv ∧ 2[Next ]v ∧ OBFair , the
formula that labels the box. Formula Λ is implicitly conjoined to each of the
formulas in the graph. It is a 2 formula, since the conjunction of 2 formulas
is a 2 formula, and OBFair is the conjunction of WF formulas, which are
2 formulas.

Since Λ is conjoined to every formula in it, the leads-to lattice makes
assertions of the form

Λ ∧G ; (Λ ∧H 1) ∨ . . . ∨ (Λ ∧H j )

Since Λ equals 2Λ, and once 2Λ is true it is true forever, this formula is
equivalent to Λ ∧ G ; H 1 ∨ . . . ∨ H j . (This follows from (3.33c) and
propositional logic.)

If H is the unique sink node of the lattice, then proving the assertions
made by the lattice proves |= Λ∧G ; H for every node G of the lattice. By
definition of ; and (3.22), |= Λ∧G ; H implies |= 2Λ⇒ (G ; H ). Thus,
if Λ is a 2 formula, then proving |= Λ ∧ G ; H proves |= Λ⇒ (G ; H ).
In general, we label a box in a leads-to lattice only with a 2 formula.

Remember what the proof lattice of Figure 4.4 is for. We want to prove
that OB implies (4.18). By proving the assertions made by the proof lattice,
we show that the formula Λ labeling the box implies (4.18). By definition of
OB and because OB implies 2Inv , formula Λ is implied by OB . Therefore,
by proving the leads-to properties asserted by the proof lattice, we prove that
OB implies (4.18). Note how we had to use the 2 formula 2Inv ∧2[Next ]v
instead of OBSafe, which is true only initially.

To complete the proof that OB implies (4.18), we now prove the leads-
to properties asserted by Figure 4.4. The leads-to property asserted by the
edges numbered 1 is:

Λ ∧ (pc(0) ∈ {wait ,w2}) ; ((pc(0) = wait) ∨ (pc(0) = w2))

It is trivially true, since pc(0) ∈ {wait ,w2} implies that pc(0) equals wait
or w2, and |= F ⇒ G implies F ; G .

The formula Λ ∧ (pc(0) = wait) ; (pc(0) = w2) asserted by edge
number 2 is true because Λ implies 2Inv ∧ 2[Next ]v , which implies that
if pc(0) = wait is true then it must remain true until a PNext(0) step makes
pc(0) = w2 true, and such a step must occur by the weak fairness assumption
of process 0, which Λ also implies.

The formula

Λ ∧ (pc(0) = w2) ; (pc(0) = cs)(4.20)
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Figure 4.5: Leads-to lattice for the proof of (4.20).

asserted by edge number 3 is the interesting one. Its proof is decomposed
with the proof lattice of Figure 4.5.

The property asserted by the edges numbered 1 in this leads-to lattice has
the form Λ∧F ; (G∨(F ∧2¬G)). This formula is a tautology. Intuitively,
it’s true because if F is true now, then either G is true eventually or F is
true now and ¬G is true from now on. It’s proved by:

Λ ∧ F ⇒ F ∧ (3G ∨ 2¬G) 3G ∨ 2¬G equals true

⇒ 3G ∨ (F ∧ 2¬G) by propositional logic

⇒ 3G ∨ 3(F ∧ 2¬G) by (3.23)

≡ 3(G ∨ (F ∧ 2¬G)) by (3.23)

which shows |= (Λ ∧ F ⇒ 3(G ∨ (F ∧2¬G)), from which we can deduce
|= Λ ∧ F ; (G ∨ (F ∧2¬G)) by (3.20) and the definition of ;.

The leads-to formula asserted by edge 2 is an implication. It’s true be-
cause 2Inv∧2[Next ]v implies that, if pc(0) = w2 and 2(pc(0) 6= cs) are ever
true, then pc(0) = w2 must remain true forever, which by 2Inv implies x (0)
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must equal true forever. It is proved by proving that (pc(0) = w2) ∧ x (0)
is an invariant of an abstract program. The initial predicate of this program
is Inv ∧ (pc(0) = w2). Its next-state relation is:

Next2
∆
= Inv ∧ Next ∧ (pc(0) 6= cs)′

The formula 2[Next2]v is implied by 2Inv and 2[Next ]v and the conjunct
2(pc(0) 6= cs) of the formula at the tail of the edge 2 arrow. (Note that the
prime in this formula is valid because pc(0) 6= cs always true implies that
it’s always true in the next state.) We are using an invariance property of
one program to prove a liveness property of another program. This would
seem strange if we were thinking in terms of code. But we’re thinking
mathematically, and a mathematical proof contains lots of formulas. It’s
not surprising if one of those formulas looks like the formula that describes
a program.

The edges numbered 3 enter a box whose label is the same formula from
which those edges come. In general, an edge can enter a box with a label
2F if it comes from a formula that implies 2F . This is because a box
labeled 2F is equivalent to conjoining 2F to all the formulas in the box,
and 2F ; (G1 ∨ . . . ∨Gn) implies 2F ; ((2F ∧G1) ∨ . . . ∨ (2F ∧Gn)).
An arrow can always leave a box, since removing the formula it points to
from the box just weakens that formula.

Proofs of the assertions represented by the rest of the lattice’s edges are
sketched below.

edges 3 The formula represented by these edges is true because the dis-
junction of the formulas they point to asserts that pc(1) is in the set
{ncs,wait ,w2,w3,w4, cs, exit}, which is implied by 2Inv .

edges 4 If pc(1) equals cs or exit , then 2Inv ∧ 2[Next ]v and the fairness
condition for process 1 imply that it will eventually be at ncs. Either
pc(1) equals ncs forever or eventually it will not equal ncs. In the
latter case, 2[Next ]v implies that the step that makes pc(1) = ncs
false must make pc(1) = wait true.

edge 5 This is an implication since 2Inv implies that if process 1 is forever
at ncs, then x (1) is forever false.

edge 6 If process 1 is at wait , w2, or w3, then its weak fairness condition
implies it is eventually at w4. When process 1 is at w4, formulas
2[Next ]v and 2x (0) (from the label of the inner box) imply that it
must remain forever at w4.
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edge 7 This is an implication, because Inv and pc(1) = w4 imply ¬x (1).

edge 8 2¬x (1), 2(pc(0) = w2) (implied by the inner box’s label), and
OBFair imply that a process 0 step that makes pc(0) equal to cs must
eventually occur. (Equivalently, these three formulas are contradic-
tory, so they imply false which implies anything.)

The proof sketches of the properties asserted by edges 4 and edge 6 skim
over more details than the proofs of the other properties asserted by the
lattice. A more detailed proof would be described by a lattice in which each
of the formulas pointed to by the edges numbered 3 were split into multiple
formulas—for example, the formula pc(1) ∈ {cs, exit ,ncs} would be split
into the formulas pc(1) = cs, pc(1) = exit , and pc(1) = ncs. A good check
of your understanding is to draw the more detailed lattice and write proof
sketches for its new edges.

4.2.6 Strong Fairness

4.2.6.1 Starvation Free Mutual Exclusion

Mutual exclusion was not motivated by sharing a printer. It’s needed when
multiple processes perform operations on the same data. As we saw from
the Increment example of Section 3.3, even sharing a simple counter without
synchronization can result in increment operations being lost. An easy way
to synchronize data sharing is to put every operation to the shared data in
a critical section.

The One-Bit Algorithm OB implements mutual exclusion with processes
that communicate using only simple reads and writes of shared variables.
Synchronizing processes in this way is inefficient. Dijkstra proposed the
communication mechanism called a binary semaphore or lock. A lock is a
variable that can have two values, traditionally taken to be 0 and 1. Let’s call
that variable sem. Initially sem equals 1. A process can execute two atomic
lock operations, P(sem) and V (sem). These operations are described in
pseudocode as:

P(sem)

await sem = 1;
sem : = 0

V (sem)

sem : = 1

Locks were originally implemented with operating system calls. Modern
multiprocessor computers provide machine instructions to implement them.
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variables sem = 1 ;

process p ∈ Procs
while true do

ncs: skip ;

wait : P(sem) ;

cs: skip ;

exit : V (sem)
end while

end process

Figure 4.6: Program LM : mutual exclusion with a semaphore.

Using a lock, mutual exclusion for any set Procs of processes can be imple-
mented with the trivial algorithm LM of Figure 4.6.

Let PNext(p) now be the next-state action of process p of program LM .
With weak fairness of (pc(p) 6= ncs) ∧ PNext(p) for each process p as its
fairness property, algorithm LM satisfies the deadlock freedom condition
(4.16). However, deadlock freedom allows individual processes to be starved,
remaining forever in the waiting section.

Let Wait(p), Cs(p), and Exit(p) be the actions described by the state-
ments in process p with the corresponding labels wait , cs, and exit . Weak
fairness of (pc(p) 6= ncs) ∧ PNext(p) is equivalent to the conjunction of
weak fairness of the actions Wait(p), Cs(p), and Exit(p). Program LM al-
lows starvation of individual processes because weak fairness of the Wait(p)
actions ensures only that if multiple processes are waiting to execute that
action, then some process will eventually execute it. But if processes con-
tinually reach the wait statement, some individual processes p may never
get to execute Wait(p).

It’s reasonable to require the stronger condition of starvation freedom,
which asserts that no process starves. This is the property

∀ p ∈ Procs : (pc(p) = wait) ; (pc(p) = cs)(4.21)

which asserts that any process reaching wait must eventually enter its critical
section. For LM to satisfy this property, it needs a stronger fairness property
than weak fairness of the Wait(p) actions.

4.2.6.2 The Definition of Strong Fairness

By the usual meaning of fair, the fairest lock would be one in which processes
execute their Wait(p) actions in the order in which they set pc(p) to wait .
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Some implementations of locks ensure this property. However, we don’t
consider it to be a fairness property because it produces a description of
program LM that is not machine closed. It rules out finite behaviors in which
processes execute their Wait(p) actions in the wrong order—executions in
which a process p reaches the wait statement after process q , but p enters
the critical section before q does. Machine closure means that the liveness
condition does not forbid any finite behaviors allowed by the program’s
safety property described by the pseudocode.

There is a standard way to strengthen weak fairness that produces
machine-closed program descriptions. Weak fairness of an action A asserts
that if ever A is always enabled, then an A action must eventually occur.
To strengthen this condition, we replace the requirement that A be always
enabled by the weaker requirement that it be infinitely often enabled. We
therefore define strong fairness, of A, written SFv (A), by:

SFv (A)
∆
= 23 E〈A〉v ; 〈A〉v(4.22)

Analogous to formulas (4.14) and (4.15) for weak fairness are:

|= SFv (A) ≡ (23 E〈A〉v ⇒ 23〈A〉v )(4.23)

|= SFv (A) ≡ (23 E〈A〉v ∧2[¬A]v ; 〈A〉v )(4.24)

The informal justification and the proof of (4.23) are similar to the ones for
(4.14). The proof of (4.24) is essentially the same as that of (4.15).

4.2.6.3 Using a Strongly Fair Semaphore

To make program LM starvation free, meaning that it satisfies (4.21), we
conjoin to the safety property LMSafe defined by the pseudocode the fairness
property LMFair equal to ∀ p ∈ Procs : LMPFair(p), where LMPFair(p) is
the fairness requirement for process p. If we let LMPFair(p) be the conjunc-
tion of strong fairness of Wait(p) and weak fairness of Cs(p) and Exit(p),
then the following argument shows LMSafe∧LMFair implies starvation free-
dom. Starvation means that a process p waits forever with pc(p) = wait .
That is possible only if other processes keep entering and leaving their crit-
ical sections. But whenever a process executes the Exit action, it sets sem
to 1, which makes E〈Wait(p)〉v true. Thus E〈Wait(p)〉v must be true in-
finitely often, which by strong fairness of Wait(p) implies that Wait(p) is
eventually executed, so p must enter its critical section.

There are several ways of writing formula LMPFair(p). First, we ob-
serve that weak and strong fairness are equivalent for the actions Cs(p) and
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Exit(p). This is because the action is enabled iff pc(p) has the appropriate
value, so it remains enabled until a step of that action occurs to change
pc(p). Thus, when the action is enabled, it is continuously enabled until it
is executed. We can therefore write LMFair as the conjunction of strong
fairness of the three actions Wait(p), Cs(p), and Exit(p).

The same sort of reasoning that led to (4.13) of Section 4.2.3, as well as
Theorem 4.8 of Section 4.2.7, imply that the conjunction of strong fairness
of these three actions is equivalent to strong fairness of their disjunction.
Therefore, we can write LMFair as strong fairness of their disjunction, which
equals (pc(p) 6= ncs) ∧ PNext(p).

While SFv ((pc(p) 6= ncs) ∧ PNext(p)) is compact, I prefer not to define
LMPFair(p) this way because it suggests to a reader of the formula that
strong fairness of Cs(p) and Exit(p) is required, although only weak fairness
is. Usually, the process’s next-state action will be the disjunction of many
actions, and strong fairness is required of only a few of them. I would define
LMFair to equal

WFv ((pc(p) 6= ncs) ∧ PNext(p)) ∧ SFv (Wait(p))

This is redundant because the first conjunct implies weak fairness of Wait(p)
and the second conjunct asserts strong fairness of it. But a little redundancy
doesn’t hurt, and its redundancy should be obvious because strong fairness
implies weak fairness.

4.2.7 Properties of WF and SF

This section presents three theorems that justify assertions made ear-
lier. First, Section 4.2.3 asserts that if Next is the disjunction of actions
PNext(p), and L is the conjunction of weak fairness of those actions, then
〈Init ∧2[Next ]v ,L〉 is machine closed. In general, this is true if L is the
conjunction of any countable set of weak and/or strong fairness conditions
on subactions of Next , where an action A is defined to be a subaction of
an action Next iff |= A ⇒ Next is true. The subactions of Next for which
fairness is asserted are usually disjuncts in the definition of Next—for exam-
ple, Wait(p) is a subaction of the next-state action Next of algorithm OB .
Often, we assert fairness of an action P∧A where A is a disjunct of Next and
P is a state predicate—for example, the action (pc(p) 6= ncs)∧PNext(p) of
OB . Here is the precise theorem, whose proof is in the Appendix.7

newpage added
to make
hyperlink to
the theorem
work.

7The two theorems stated here are true if we allow a subaction A to be one satisfying
|= Inv ∧A⇒ Next , where Inv is an invariant of the program. However, this generalization
does not seem to be needed in practice.
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Theorem 4.7 Let Init be a state predicate, Next an action, and v a tuple
of all variables occurring in Init and Next . If Ai is a subaction of Next for
all i in a countable set I , then the pair

〈 Init ∧2[Next ]v , ∀ i ∈ I : XFiv(Ai) 〉

is machine closed, where each XFiv may be either WFv or SFv .

The theorem allows I to be an infinite set. Writing an infinite conjunc-
tion of fairness properties may not seem to be something we would do in
practice. However, the next-state action of an abstract program sometimes
does contain an infinite disjunction—that is, existential quantification over
an infinite set of subactions—and we might want a fairness condition for
each of those subactions. For example, a program that dynamically creates
processes may be described as having an infinite number of processes, only
a finite number of which have their next-state action enabled at any time.
We might want a fairness condition for each of those processes.

Let Q equal (pc(p) 6= ncs) ∧ PNext(p). Section 4.2.3 also asserts that
for program LM , weak fairness of Q is equivalent to weak fairness of its
three subactions Wait(p), Cs(p), and Exit(p); and Section 4.2.6.3 asserts
this for strong fairness. Those assertions are true because when any one of
these subactions is enabled, a step of that subaction must occur before a
step of either of the other two subactions can occur. Let’s call these three
subactions A1, A2, and A3. This condition can then be asserted as:

∀ i ∈ 1 . . 3 : E〈Ai 〉v ⇒ ( E〈Q 〉v ⇒ E〈Ai 〉) U 〈Ai 〉v(4.25)

where U is the until operator with which we first defined weak fairness
of PNext(p) as (4.9). Similarly to what we did for weak fairness, we can
remove the U by observing that F U G implies that if G is never true,
then F must remain true forever. That 〈Ai 〉v is never true is asserted by
¬3〈Ai 〉v , which is equivalent to 2[¬Ai ]v . Therefore (4.25) implies

∀ i ∈ 1 . . 3 : E〈Ai 〉v ∧2[¬Ai ]v ⇒ 2( E〈Q 〉v ⇒ E〈Ai 〉)(4.26)

While (4.25) implies (4.26), the formulas are not equivalent. Formula (4.26)
is strictly weaker than (4.25). However, it’s strong enough to imply that
strong or weak fairness of all the Ai is equivalent to strong or weak fairness
of Q—assuming that Q is the disjunction of the Ai . Here is the precise
theorem. Its proof is in the Appendix.

newpage added
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Theorem 4.8 Let Ai be an action for each i ∈ I , let Q
∆
= ∃ i ∈ I : Ai ,

and let XF be either WF or SF. Then

|= (∀ i ∈ I : 2( E〈Ai 〉v ∧ 2[¬Ai ]v ⇒
2[¬Q ]v ∧2( E〈Q 〉v ⇒ E〈Ai 〉v ) )

⇒ ( XFv (Q) ≡ ∀ i ∈ I : XFv (Ai) )

It is perhaps interesting, but of no practical significance, that the theorem
is valid even if the set of actions Ai is uncountably infinite.

Section 4.1.2 asserts that the completeness result for safety properties in
Theorem 4.2 can be extended to arbitrary properties. Here is that extension,
whose proof is sketched in the Appendix.

Theorem 4.9 Let x be the list x 1, . . . , xn of variables and let F be a
property such that F (σ) depends only on the values of the variables x in σ,
for any behavior σ. There exists a formula S equal to Init ∧2[Next ]〈x,y 〉 ∧
WF〈x,y 〉(Next), where Init and Next are defined in terms of F , y is a variable
not among the variables x, and the variables of S are x and y , such that
|= F ⇒ [[G ]] iff |= S ⇒ G , for any property G . If F is a safety property,
then the conjunct WF〈x,y 〉(Next) is not needed.

Like Theorem 4.2, this result is of theoretical interest only.

4.2.8 What is Fairness?

Before TLA, concurrent abstract programs were generally written in some-
thing like a coding language. Fairness meant that each process had to exe-
cute its next atomic statement when it could. Viewed in terms of TLA, each
atomic statement was described by an action, and fairness meant fairness
of those actions. Usually that meant weak fairness of the action, but when
the statement was a synchronization primitive, it sometimes meant strong
fairness. For rigorous reasoning, those fairness requirements were expressed
as requirements on when control in the process had to move from one control
point to another [46].

With TLA, fairness was generalized to weak and strong fairness of arbi-
trary actions. We have considered a fairness property for a safety property
S to be a formula L that is the conjunction of weak and strong fairness con-
ditions on actions such that 〈S ,L〉 is machine closed. However, weak and
strong fairness of an action are defined in terms of how the action is written,
not in terms of its semantics. While we have given semantic definitions of
safety, liveness, and machine closure; we have not done it for fairness.
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I only recently learned that a semantic definition of fairness was pub-
lished in 2012 by Völzer and Varacca [50]. Their definition of what it means
for a property L to be a fairness property for a safety property S can be
stated in terms of the following infinite two-player game. Starting with seq
equal to the empty sequence, the two players forever alternately take steps
that append a finite number of states to seq . The only requirement on the
steps is that after each one, seq must satisfy S . The second player wins
the game if she makes seq an infinite sequence that satisfies L. (Since S
is a safety property, seq must satisfy S .) They defined L to be a fairness
property for S iff the second player can always win, regardless of what the
first player does (as long as he follows the rules).

It is mathematically meaningless to say that a definition is correct. How-
ever, this seems to be the only reasonable definition that includes weak and
strong fairness such that fairness implies machine closure and the conjunc-
tion of countably many fairness properties is a fairness property. This defi-
nition also encompasses other fairness properties that have been proposed,
including one called hyperfairness [34].

I believe that weak and strong fairness of actions are the only fairness
properties that are relevant to abstract programs. However, this general
definition is interesting because it provides another way to think about fair-
ness. More importantly, it’s interesting because concepts we are led to by
mathematics often turn out to be useful.



Chapter 5

Interlude

We have seen how to use TLA to write abstract programs and show that
they satisfy simple safety and liveness properties. In this chapter, we pause
in our development to consider two problems. The first is determining if an
abstract program written in TLA expresses what we want it to. We consider
an approach to this problem that is different from what we have been doing—
determining what the program might do, rather than what it must or must
not do. The second problem is describing and reasoning about the real-time
behavior of systems. I hope that seeing how this problem is addressed with
TLA helps you appreciate the power of thinking of an abstract program as
a predicate on behaviors rather than a generator of behaviors.

5.1 Possibility and Accuracy

5.1.1 Possibility Conditions

Informally, a safety property states what an abstract program is allowed to
do and a liveness property states what it must do. If a behavior violates a
safety property, then it does so at a particular step in the behavior. There-
fore, we can also view a safety property as stating what a program must not
do—that is, it must not take a step that violates the property. So, liveness
says what must happen and safety says what must not happen. That a
program eventually sets x to 0 is a liveness property, that it never sets x to
0 is a safety property.

Possibility says what might happen. That a program might set x to 0 is
a possibility condition. It is not a property, because it is not a predicate on
behaviors. It is satisfied by an abstract program iff there is some behavior
of the program in which x is set to 0. We can tell that the program satisfies
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it if we see such a behavior. But seeing one behavior that doesn’t satisfy it
doesn’t tell us whether or not some other behavior might satisfy it. However,
we will see that possibility conditions can be expressed as properties that
explicitly mention the program’s actions.

Knowing that something might be true of a system, but knowing nothing
about the probability of its being true, is of almost1 no practical use. The
only way I know of calculating such probabilities is to view the abstract
program as a state-transition system, attach probabilities to the various
transitions, and mathematically analyze that system—for example, using
Markov analysis [51]. Usually, the state-transition system would be a more
abstract program implemented by the program of interest.

While possibility conditions of systems are of little interest, we don’t
reason about systems; we reason about abstract programs that describe sys-
tems. Verifying that a program satisfies a possibility condition can be a way
of checking what we will call here the accuracy of an abstract program—that
it accurately describes the system it is supposed to describe. For example,
if the system doesn’t control when users send it input, a program that ac-
curately describes the system and its users should satisfy the condition that
it’s always possible for users to enter input.

5.1.2 Expressing Possibility in TLA

There exist logics for expressing possibility properties and tools for checking
them. Such tools could be built to check those properties for abstract TLA
programs, and it might be worthwhile to do so. But we will see how that
can be avoided.

Even though a possibility condition is not a property, that an abstract
program satisfies a possibility condition can be expressed by a TLA formula
that depends on the program and the possibility condition. For example,
suppose S is a TLA description of an abstract program and the action Input
is a subaction of its next-state action that describes users entering input.
That it is always possible for users to enter input could be considered to mean
that the Input action is enabled in every reachable state of the program,
which is asserted by

|= S ⇒ 2 E(Input)

However, “always possible” might instead mean that from any reachable
state, there is a sequence of possible steps that reach a state with E(Input)

1Section 8.1 explains one way in which a possibility condition can be used to verify a
property of a system and could therefore be of practical use.
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true—a condition we will call “always eventually possible”. To express this
and other possibility conditions in TLA, we can use the action composition
operator defined in Section 3.4.1.4. Recall that for any action A, the action
A+ is true of a step s → t iff t is reachable from s by a sequence of one or
more A steps.

Now consider an abstract program Init ∧2[Next ]v where Init is a state
predicate, Next is an action, and v is the tuple of all variables that appear
in Init or Next . Let’s abbreviate ([Next ]v )+ as [Next]+v . If s is a reachable
state of the program, then s → t is a [Next]+v step iff it is possible for an
execution of the program to go from state s to state t . (Since [Next ]v allows
stuttering steps, t can equal s. In fact, [Next]+v is equivalent to [Next+]v .)
A state t is a reachable state of the program iff there is a state s satisfying
Init such that s → t is a [Next]+v step. In other words, t is a reachable state
of the program iff there is a state s such that s → t is an Init ∧ [Next]+v
step.

We can now express the condition that it is always eventually possible for
the user to enter input, meaning that from any reachable state it is possible
to reach a state in which E(Input) is true. We generalize this condition by
replacing E(Input) with an arbitrary state predicate P . For the abstract
program Init ∧ 2[Next ]v , that P is always eventually possible is expressed
as:

|= Init ∧2[Next ]v ⇒ 2 E([Next]+v ∧ P ′)(5.1)

This example indicates that it should be possible to express possibility
conditions in TLA using Next+ and the E operator. However, like (5.1),
the resulting TLA formulas are quite different from the ones that arise in
checking that an abstract program satisfies a property. Different tools would
be needed to verify that a program satisfies a possibility condition expressed
in this way. It would be nice to be able to verify possibility conditions by
verifying the same kind of properties that arise in verifying that an abstract
program satisfies a liveness property. Here is how it can be done for the
condition that it is always eventually possible to reach a state satisfying P .

This condition obviously holds if the program satisfies the property that
in any reachable state, a state satisfying P must eventually occur—that is,
if the program satisfies the property 23P . Let S equal Init ∧ 2[Next ]v .
The safety property S will not imply the liveness property 23P unless P
is true in all reachable states of F—that is, unless S implies 2P . However,
if F is a fairness property for S , so 〈S ,F 〉 is machine closed, then S ∧ F
has the same set of reachable states as S . So, any state satisfying P can
be reached from a reachable state of S iff it can be reached from a state
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satisfying S ∧F . Therefore, it suffices to verify that a state satisfying P can
be reached from every reachable state of S ∧F , which is true if S ∧F implies
23P . Therefore, we can verify that P is always possible by verifying

|= Init ∧2[Next ]v ∧ F ⇒ 23P

for a fairness property F of Init ∧2[Next ]v . By Theorem 4.7, we can ensure
that F is a fairness property for S by writing it as the conjunction of strong
fairness properties. (Since strong fairness implies weak fairness, there is no
need to use weak fairness properties.) There is a completeness result that
essentially says that such a fairness property always exists for any state
predicate P if S has the standard form Init ∧2[Next ]v [33].

I suspect that TLA can in a similar way express possibility for a more
general class of possibility conditions than the two possible interpretations
of “always possible”. However, the only other possibility condition I have
found to be useful for checking the accuracy of an abstract program is a
very simple one, discussed in the following section.

5.1.3 Checking Accuracy

Using TLA to check that a state predicate P is always eventually possible
may not be easy, since it requires finding a fairness condition that implies P
is true infinitely often. There’s a simpler condition that is easier to check:
it’s possible for P to be true (at least once). It would be more useful to
check the stronger condition of always eventually possible. However, I have
found that most people, including me, don’t spend enough time checking
the accuracy of their abstract programs. The weaker check is likely to be
more helpful in practice because it’s more likely to be done than one that
requires more effort.

It’s possible for P to be true means that it is true in some reachable
state. This is equivalent to the assertion that ¬P is not true in all reachable
states—in other words, that ¬P is not an invariant of the program. We
can check this by asking a tool for checking invariance to check if ¬P is
an invariant. If the tool reports that it isn’t, then it’s possible for P to be
true. For example, if a model checker reports that your mutual exclusion
algorithm satisfies mutual exclusion, you should check that it’s possible for a
process to enter its critical section. This is especially true if you did not have
to make many corrections to reach that point. Remember that a program
that takes no non-stuttering steps satisfies most safety properties.

Tools can provide other ways of checking the accuracy of a program. For
example, if Input is a subaction of the program’s next-state action, a TLA+
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model checker called TLC reports how many different steps satisfying Input
occur in behaviors of the program. If it finds no such steps, then it is not
always possible for an Input step to occur with either definition of “always
possible”. Finding too few such steps can also be an indication that the
program is not accurate.

Accuracy of an abstract program cannot be formally defined. It means
that a program really is correct if it implements the abstract program. In
other words, an abstract program is accurate iff it means what we want it
to mean, and our desires can’t be formally defined. That accuracy can’t
be formally defined does not mean it’s unimportant. There are quite a few
important aspects of programs that lie outside the scope of our science of
correctness.

5.2 Real-Time Programs

Real-time abstract programs are ones in which timing constraints ensure
that safety properties hold. Real time is most often used in concrete pro-
grams to ensure not safety but liveness. It appears in timeouts that guaran-
tee something eventually happens. For example, to guarantee that a message
is eventually delivered despite possible message loss, a timeout occurs if an
acknowledgement of the message is not received soon enough after it is sent,
and the message is then resent. A program that uses timeouts only in this
way is not a real-time program. The actual time at which a timeout occurs
affects only performance, not correctness. Therefore, timeout can be mod-
eled in an abstract program as an event that must eventually occur but can
occur at any time. The program can use liveness to abstract away time.
We need to write a real-time abstract program only if timing constraints are
used to ensure safety properties.

Scientists have been dealing mathematically with real-time systems for
centuries by simply representing time as the value of a variable. It has
been known for decades that this works for real-time programs too [6]. I
will illustrate how it is done with a mutual exclusion algorithm of Michael
Fischer.2

I believe that most work on the correctness of real-time programs has
considered only safety properties. Instead of requiring that something even-
tually happens, it requires the stronger property that it happens within
some fixed amount of time, which is a safety property. Fischer’s Algorithm

2Fischer sent this algorithm in an email to me [13]. I believe Mart́ın Abadi and I were
the first to describe it in print [1].



CHAPTER 5. INTERLUDE 116

is more general because in addition to using real-time to ensure mutual ex-
clusion, a safety property, it uses fairness to ensure deadlock freedom, a
liveness property.

In the past 40 years, I have had essentially no contact with engineers who
build real-time systems. I know of only one case in which TLA was used
to check that a commercial system satisfied a real-time property [5].3 From
the point of view of our science, there is nothing special about real-time
programs. However, how well tools work can depend on the application
domain. The TLA+ tools were not developed with real-time programs in
mind, and it’s unclear how useful they are in that domain.

Math VI

Definitions Within an Expression The scope of an ordinary definition
includes everything that comes logically after it in the current context, which
in this book might end at the end of the current section. It’s sometimes
convenient to make a definition whose scope is limited to a single expression
exp. This is often done for “common subexpression elimination”, where
exp contains multiple occurrences of the same subexpression subexp, and we
want to give that subexpression a name nm and rewrite exp as the expression
nmexp in which each occurrence of subexp has been replaced by nm. We do
that by rewriting exp as:

let nm
∆
= subexp in nmexp

Note that if exp occurs in the scope of bound variables and we wanted to do
this with an ordinary definition, we would have to define nm as an operator
with one argument for each of those bound variables. The general form of
the let/in construct is

let defs in exp

where exp is an expression and defs consists of one or more definitions.
The scope of those definitions is the expression exp, and the definitions can
include definitions of mappings that take arguments.

The Mapping Set Constructor ZF contains a set constructor that I
call the mapping constructor. Its general form is {exp : v ∈ S}, where v is
a bound variable whose scope is the expression exp. It equals the set of all

3The TLA+ design of the real-time operating system mentioned in Section 1.6 was not
used to check its real-time properties.
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values obtained by substituting an element of the set S for v in exp. For
example, {2 ∗ n : n ∈ N} is the set of all even natural numbers. As another
example, if S is a set of n-tuples, then it is a subset of S1 × . . .× Sn , where
S i is the set {v(i) : v ∈ S}.

Don’t confuse the mapping constructor with the subsetting constructor,
whose form is {v ∈ S : exp}. The set of all even natural numbers can be
written with the subsetting constructor as {n ∈ N : n % 2 = 0}.4

5.2.1 Fischer’s Algorithm

The algorithm without its timing constraints is described by the pseudocode
in Figure 5.1. The constant Procs is the (finite) set of processes, and none is
some constant that is not in Procs. The global variable x is read and written
by all the processes and, as usual, the value of pc(p) is the label of the next
statement to be executed by process p. As explained in Section 4.2.2.1, the
statement await P is a synchronization primitive that allows the process to
continue only when the state predicate P is true. Thus, the wait statement
of process p is described by the action:

∧ pc(p) = wait
∧ x = none
∧ pc′ = (pc except p 7→ w1)
∧ x ′ = x

With no time constraints, mutual exclusion is easily violated. Two processes
can execute the wait statement when x equals none, then statements w1 and
w2 can both be executed by the first process and then by the second one,
putting both processes in the critical section. Mutual exclusion is ensured
by timing constraints.

We assume that each step is executed instantaneously at a certain time,
and that each process executes w1 at most δ seconds after it executes wait
and executes w2 at least ε seconds after it executes w1, for constants δ and
ε with δ < ε. (The algorithm doesn’t specify what the time units are; we
will call them seconds for convenience.) It’s a nice exercise to show that this
ensures mutual exclusion by assuming that two processes are in their critical
sections and showing that the necessary reads and writes of x that allowed
them both to enter the critical section must have occurred in an order that
violates the timing constraints if δ < ε. While it may be good enough for

4The expression {v ∈ S : v ∈ T} is ambiguous; it could be either a subsetting or a
mapping constructor. We will never write such an expression, so we won’t worry about
which it is.
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variables x = none ;

process p ∈ Procs
variables pc = ncs ;
while true do

ncs: skip ; noncritical section

wait : await x = none ;
w1: x : = p ;
w2: if x 6= p then goto wait end if ;

cs: skip ; critical section

exit : x : = none
end while

end process

Figure 5.1: Fischer’s Algorithm.

such a simple algorithm, this kind of behavioral reasoning is unreliable for
more complicated programs.

To verify mutual exclusion more rigorously, we describe Fischer’s Al-
gorithm with its timing constraints as an abstract program. This requires
adding a variable whose value represents the current time. Scientists usu-
ally call that variable t , but I like to call it now . We also add a variable rt ,
where the value of rt(p) records the time at which certain actions of process
p were executed. The program also contains an additional process called
Time that advances time.

The algorithm is written in pseudocode in Figure 5.2. The initial value
of now can be any number in the set R of real numbers, and the initial value
of rt can be any function from the set of processes to R. Let’s now examine
the code of process p. Two assignments to rt(p) have been added. Each
sets rt(p) to the time at which the action in which it appears is executed,
the actions being the ones performed when the program is at control points
wait and w1. Also added is an await statement at w2 that allows the
action to be performed only when now − rt(p) ≥ ε. This await enforces
the requirement that the w2 action must not be executed until at least ε
seconds after execution of the w1 action.

Let’s now examine the Time process. It repeatedly performs a single
atomic action, so it has just one control point that needs no label. That
action increases the value of now . The :∈ operation is like the assignment
operation : = except with = replaced by ∈. That is, a step of the Time
process’s action assigns to now an arbitrary element of the set on the right-
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variables x = none, now ∈ R, rt ∈ (Procs → R) ;

process p ∈ Procs
variables pc = ncs ;
while true do

ncs: skip ; noncritical section

wait : await x = none ;
rt(p) : = now ;

w1: x : = p ;
rt(p) : = now ;

w2: await now − rt(p) ≥ ε ;
if x 6= p then goto wait end if ;

cs: skip ; critical section

exit : x : = none
end while

end process

process Time
while true do

now :∈ {t ∈ R :
∧ t > now
∧ ∀ p ∈ Procs : (pc(p) = w1)⇒ (t ≤ rt(p) + δ) }

end while
end process

Figure 5.2: Fischer’s Algorithm with explicit time.

hand side of the :∈ . The action can assign to now any value t greater than
its current value, subject to the condition that t ≤ rt(p)+δ for every process
p at control point w1. It is this condition that enforces the requirement that
a process must execute statement w1 within δ seconds of when it executes
the wait statement.

Fischer’s Algorithm illustrates the basic method of representing real-
time constraints in an abstract program. Lower bounds on how long it
must take to do something are described by enabling conditions on the
algorithm’s actions. Upper bounds are described by enabling conditions on
the action that advances time. There are a number of ways of enforcing these
bounds. The use of the variable rt in Fischer’s algorithm shows one way.
Another is to use variables whose values are the number of seconds remaining
before an action must be executed (lower bounds) or can be executed (upper
bounds)—variables whose values are decremented by the time-advancing
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action.
The idea of an abstract program constraining the advance of time is

mind-boggling to most people, since they view a program as a set of in-
structions. They see it as the program stopping time. You should by now
realize that an abstract program is a description, not a set of instructions.
It describes a universe in which the algorithm is behaving correctly. That
description may constrain the algorithm’s environment, which is the part
of the universe that the algorithm doesn’t control—for example, its users.
Time is an important part of that environment if the amount of time it takes
to perform the algorithm’s actions is relevant to its correctness.

5.2.2 Correctness of Fischer’s Algorithm

Having written Fischer’s algorithm as an abstract program, we know how
to verify its correctness. Mutual exclusion is an invariance property, and
to understand why the algorithm satisfies it we need to find the inductive
invariant that explains why the algorithm satisfies that property. As usual,
the inductive invariant asserts type-correctness of all the variables. The
interesting part of the invariant makes the following assertions about each
process p:

• If control is at w1, then the current time is at most δ seconds after
the time at which p just executed the wait statement.

• If control is at cs or exit , then x = p and in no process is control at
w1. (This condition implies mutual exclusion.)

• If p is at w2 and x = p, then any process with control at w1 must
execute statement w1 before p can execute statement w2.

These assertions about every process p are expressed mathematically as:

∀ p ∈ Procs :
∧ (pc(p) = w1)⇒ (rt(p) ≤ now ≤ (rt(p) + δ))

∧ (pc(p) ∈ {cs, exit}) ⇒ (x = p) ∧ (∀ q ∈ Procs : pc(q) 6= w1)

∧ (pc(p) = w2) ∧ (x = p) ⇒
∀ q ∈ Procs : (pc(q) = w1) ⇒ ((rt(q) + δ) < (rt(p) + ε))

You should understand why the three conjuncts in this formula are the three
assertions expressed informally above. Adding the type-correctness part and
proving that it is an inductive invariant is a good exercise if you want to
learn how to write proofs.
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Under suitable fairness assumptions, Fischer’s Algorithm is deadlock
free. Recall that deadlock freedom for a mutual exclusion algorithm means
it’s always true that if some process is trying to enter the critical section,
then some process (not necessarily the same process) will eventually do so.
Deadlock freedom of Fischer’s Algorithm follows from the algorithm having
this additional invariant:

(x 6= none) ⇒ (pc(x ) ∈ {w2, cs, exit})(5.2)

Here’s a sketch of a proof by contradiction that the algorithm is deadlock
free. Suppose some process is at wait and no process is ever in its critical
section. Eventually, some set of processes will be forever in their noncritical
sections, and one or more processes will forever have control at wait , w1,
or w2. Eventually the latter processes will all wind up waiting at the wait
statement with x 6= none. But that contradicts the invariant (5.2), which
implies that process x cannot be at wait .

5.2.3 Fairness and Zeno Behaviors

What fairness requirements of the abstract program of Figure 5.2 are as-
sumed in the informal argument that the program is deadlock free? If
procStep(p) is the next-state action of a process p in Procs, then we nat-
urally assume weak fairness of the action procStep(p) ∧ (pc 6= ncs). What
about fairness of the Time process? Let’s call that process’s action timeStep.
The obvious choice is to let it be strong fairness of timeStep. However, that
allows the following behavior: While all other processes in Procs remain in
their noncritical sections, a process p executes the wait statement and then,
at time t , executes statement w1 that sets rt(p) to t . Repeated executions
of action timeStep then set now to t + ε/2, then t + 2 ∗ ε/3, then t + 3 ∗ ε/4,
and so on. Process p must wait forever at w2 because now is always less
than t + ε and the w2 action is enabled only when now ≥ t + ε. Such a
behavior, in which time remains bounded, is called a Zeno behavior.

The most natural way to avoid the problem of Zeno behaviors is to
make the abstract program describing Fischer’s Algorithm disallow them.
The obvious way to do that is to conjoin this liveness property:

∀ t ∈ R : 3(now > t)(5.3)

which asserts that the value of time is unbounded. However, this isn’t neces-
sarily a fairness property. It’s easy to write an abstract program that allows
only Zeno behaviors, so conjoining the liveness property (5.3) produces a
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program that allows no behaviors. For example, we can add timing con-
straints to the program of Figure 5.1 that require a process both to execute
statement w1 within δ seconds after executing statement wait and to wait
at least ε seconds after executing wait before executing w1, with δ < ε. If a
process executes wait at time t , then now ≤ t + δ must remain true forever.
If we added fairness properties that required processes eventually to reach
the wait statement and execute it if it’s enabled, then the program would
allow only Zeno behaviors.

We can ensure that Fischer’s Algorithm satisfies (5.3) by having it require
an appropriate fairness condition on the advancing of time. The condition
we need is strong fairness of the action timeStep ∧ (now ′ = exp), where exp
is the largest value of now ′ permitted by the values of rt(p) for processes p
with control at w1, or now + 1 if there is no such process. More precisely:

exp
∆
= let T

∆
= {rt(p) + δ : p ∈ {q ∈ Procs : pc(q) = w1}}

in if T = {} then now + 1 else Min(T )

where Min(T ) is the minimum of the nonempty finite set T of real numbers.
With this fairness condition on advancing time and the conjunction of the
fairness conditions for the processes in Procs, Fischer’s Algorithm satisfies
(5.3) and the proof sketch that the algorithm is deadlock free can be made
rigorous.

If we are interested only in safety properties, there is no need for an
abstract program to rule out Zeno behaviors. A program satisfies a safety
property iff all finite behaviors allowed by the program satisfy it, and a Zeno
behavior is an infinite behavior. In many real-time programs, liveness prop-
erties are of no interest. Correctness means not that something eventually
happens but that it happens within a certain length of time, which is a
safety property. Zeno behaviors then make no difference, and there is no
reason to disallow them.

Even if Zeno behaviors don’t matter, the absence of non-Zeno behaviors
can be a problem. Since real time really does increase without a bound,
an abstract program in which it is not always possible for time to become
arbitrarily large is unlikely to be accurate. Therefore, we almost always
want to ensure that a real-time program satisfies the condition that for any
t ∈ R, it is always possible for now > t to be true. This is true iff, for
any t ∈ R, from any reachable state of the program it is always possible
for now > t to be true. This is the kind of possibility condition considered
in Section 5.1. We saw there that if the program Safe is a safety property
that satisfies this condition, then we can verify that it does so by finding a
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conjunction F of fairness properties for Safe and verifying:

|= Safe ∧ F ⇒ 23(now > t)(5.4)

for all t ∈ R. (Since a real-time program never allows now to decrease, it
suffices to verify that Safe ∧ F implies (5.3).)

5.2.4 Discrete Time

Verifying properties of real-time programs is easier if we assume time is dis-
crete and now always equals a multiple of some time unit. It may seem
obvious that, since concrete programs run on real computers reading the
current time from a clock that advances in discrete steps, we can always
assume discrete time. However, different processes can be executed on dif-
ferent computers whose clocks can run at slightly different rates. Still, it
seems likely that an abstract program will be sufficiently accurate if it as-
sumes time changes only in one yoctosecond (10−24 second) increments. So,
in practice we should be able to assume that the values of now and any time
constants are integers, leaving unspecified how long one time unit is.

When writing proofs, there doesn’t seem to be much reason to use dis-
crete time. The main advantage of discrete time is that tools for automat-
ically verifying properties of ordinary abstract programs can, in principle,
handle discrete real-time programs. For example, I didn’t prove that what I
claimed in Section 5.2.2 to be an inductive invariant of Fischer’s Algorithm
actually is one. Instead, I used a model checker to check that it is, which
gave me enough confidence to make the claim.

Many model checkers are based on enumerating reachable states, usually
on a small instance of the program—for example, with a small number of
processes. This is impossible with continuous time, in which a single state
can have possible next states with uncountably many values of now . There
are still infinitely many reachable states with discrete time because the values
of now are unbounded, but counterexamples to incorrect safety properties
and to (5.3) for a particular time t can be found by examining all reachable
states with now less than some value.

The number of reachable states that must be examined can be reduced
for real-time programs that satisfy a condition called symmetry under time
translation.

This condition asserts that for every d ∈ R there is a time-translation
mapping T d from states to states such that: For every state s, the value of
now in state T d (s) equals d plus its value in s, and any step s → t satisfies
the program’s next-state action iff T d (s) → T d (t) does. For example,



CHAPTER 5. INTERLUDE 124

Fischer’s Algorithm is symmetric under the time translations T d defined by
letting the values of now and rt(p) in T d (s) equal d plus their values in s,
and letting the values of x and pc be the same in s and T d (s).

Suppose S is a program symmetric under the time-translation functions
T d , and for simplicity assume that the program’s initial predicate asserts
now = 0. Let’s call states s and t translation equivalent iff t = T d (s) for
some d . If P is a safety property containing only variables whose values
are left unchanged by the functions T d , then to verify that P is satisfied by
S we can verify that it is satisfied by the program Ŝ obtained from S by
considering two translation equivalent states to be the same state. Often,
there will be some time λ such that every reachable state of S is translation
equivalent to a state in which now ≤ λ, in which case now ≤ λ in every
state of Ŝ . This implies we can verify that S satisfies (5.3) by checking that
it satisfies 3(now ≥ λ+ 1), which requires examining only reachable states
with now ≤ λ+ 1. The details can be found elsewhere [36].

Being able to reduce verification of a discrete-time program to examining
reachable states with now less than some value would still leave an enor-
mous number of states to consider if now advanced in yoctosecond steps.
Henzinger, Manna, and Pnueli proved that for a class of programs called
timed transition systems, certain properties can be verified with discrete
time in which now advances only in reasonably sized steps [18]. Timed tran-
sition systems are essentially programs in which, like Fischer’s Algorithm,
time is used only to require minimum and maximum delays between when
a program action becomes enabled and when it either must be executed
(maximum delay) or may be executed (minimum delay). If those delays are
constants that are all multiples of some time unit ∆, then a certain class of
properties can be verified by letting time always be a multiple of ∆. That
class of properties are ones in which replacing each state in a behavior by
time-translating it by d with −∆ < d ≤ 0 does not change whether the
behavior satisfies the property. It includes properties that depend only on
variables whose values are unchanged by time translation. It also includes
the property (5.3).

One reason that has been given for preferring continuous time is that
it is necessary for composing programs. It would be difficult to compose a
program in which a clock tick represents a nanosecond with one in which a
clock tick represents a millisecond. However, we can easily describe a pro-
gram in terms of a clock that ticks at an unspecified rate and an unspecified
constant that equals the number of clock ticks in a second.

Program composition is discussed in Section 8.2, where it is shown how
the composition of two abstract programs can be represented as the con-
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junction of the TLA formulas that describe them. Moreover, a real-time
abstract program can be written as the conjunction of two formulas, one
describing an ordinary, untimed program, the other specifying the required
timing constraints [1]. However, this kind of abstract program composition
is not yet usable in practice.

5.2.5 Hybrid Systems

A hybrid computer system is one that controls physical processes—for exam-
ple, one that flies an airplane or runs a chemical plant. An abstract program
that describes such a system is a real-time program that describes not only
the passage of time but also other physical quantities like altitude or pres-
sure. There is no fundamental difference between programs that describe
hybrid systems and other real-time programs. The current altitude or pres-
sure is represented by a variable like any other variable. Abstract programs
describing hybrid systems differ from other real-time abstract programs only
in the math used to describe them. If the variable prs describes the current
pressure, then the time-advancing subaction of the next-state action might
contain a subformula like:

prs′ = prs+

∫ now′

now
exp dt(5.5)

for some expression exp containing the bound variable t and other vari-
ables [31].

It may seem that a representation of the behavior of a continuous process
by a sequence of discrete states would not be sufficiently accurate. For
example, if it is required that the pressure not be too high, violation of that
requirement would not be found if it occurred during the time between two
successive states of the behavior. This is not a problem because correctness
means that a property is true of all possible behaviors, and the possibility of
the pressure being too high at some time is revealed by a behavior containing
a state in which now equals that time.

Other than the differences implied by the use of continuous math, such
as calculus in (5.5), rather than discrete math, proving properties of hybrid
programs is the same as proving properties of other real-time abstract pro-
grams. Automatic tools like model checkers for ordinary abstract programs
seem to be unsuitable for checking abstract programs in which variables
represent continuously varying quantities. Methods have been developed
for checking such programs [11].
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Refinement

We have discussed one abstract program implementing another. We now
consider more carefully what that means. We write abstract programs with
TLA formulas, and it is rather weird to talk about one formula implementing
another. Computer scientists who view programs mathematically generally
use the term refinement rather than implementation. Henceforth, we will
use the two terms interchangeably. There are two aspects to refinement:

Step Refinement The refining program has a finer grain of atomicity.
This means that a non-stuttering step of the high-level program can
correspond to multiple steps of the refining program, all but one of
them implementing stuttering steps of the high-level program. In the
example of Section 3.5.1, the hour-minute-second clock HMS refines
the hour-minute clock HM . Every non-stuttering step of HM , which
advances the minute, corresponds to 60 steps of HMS , each changing
the second and one of them changing the minute.

Data Refinement A program refining another program can also refine the
representation of data used by the higher-level program. This will be
illustrated by refining a higher-level program that uses numbers with
a program that implements a number by a sequence of digits.

Refinement usually involves both step and data refinement, with step re-
finement manifest as operations on the lower-level data requiring more non-
stuttering steps than the corresponding operations on the higher-level pro-
gram’s data. As we saw with the example of the hour-minute and hour-
minute-second clocks in Section 3.5.2, without data refinement, a program
S is refined by a program T means that T implies S . We will see that

126
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with data refinement, T refines S means that T implies the formula ob-
tained from S by substituting expressions containing the variables of T for
the variables of S . To describe this precisely, we need some notation for
substitution.

Mathematicians have no standard way of describing substitution, and
the notation I’ve seen used by computer scientists is impractical for the
formulas that arise in describing programs. The notation used in this book,
illustrated with substitution for three variables, is that

E with v1 ← exp1, v2 ← exp2, v3 ← exp3

is the expression obtained from the expression E by simultaneously substi-
tuting exp1 for v1, exp2 for v2, and exp3 for v3; where v1, v2, and v3 are
distinct variables and exp1, exp2, and exp3 are expressions. For example:

( p ∗ (q + r) with q ← r , r ← q + s ) = p ∗ (r + (q + s))

As in this example, the with expression is usually enclosed in parentheses
when it appears as a subexpression in a larger expression, otherwise parsing
would be difficult.

When a program S is refined by a program T , the variables in formula
T are usually different from the variables in formula S , and the two sets of
variables have non-overlapping scopes. Showing that T refines S involves
reasoning in the scope of T about formulas containing the variables of S .
To do this, we import an expression E containing variables of S into the
scope of the variables of T as the expression

E with v1 ← exp1, . . . , vm ← expm

where the v i are the variables of S and the expi are expressions containing
the variables of T . The same thing applies to the constants of T and S ,
so the v i are both the variables and constants of S . If v i is a constant,
then expi is usually a constant expression. We adopt the convention that
if the expression expi (which may be a constant or variable) of T has the
same name as the constant or variable v i of S , then we omit the substitution
v i ← v i . (This is a common case, because the programs S and T are usually
abstract views of the same system, where an expression of T and a variable
or constant of S have the same name only if they describe the same part of
the system’s state.)
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6.1 A Sequential Algorithm

In step refinement, the additional steps taken by the lower-level program
correspond to stuttering steps in the higher-level one. We consider an ex-
treme example of this: a program that terminates after taking a single
non-stuttering step that is refined by a traditional sequential program that
computes a value and stops.

This example is used because it’s simple and nicely illustrates data re-
finement. Its use does not imply that this way of looking at refinement is
the best one to use for traditional programs. There are other methods for
reasoning about refinement of traditional programs that are probably better
than our science of more general programs [21]. We consider only safety in
this example; liveness is straightforward.

The high-level abstract program Add begins with variables x and y equal
to arbitrary natural numbers, sets the variable z to their sum, and termi-
nates. Termination is indicated by changing the value of a Boolean-valued
variable end to true. Here is the definition:

InitA
∆
= (end = false) ∧ (x ∈ N) ∧ (y ∈ N)

NextA
∆
= ¬end ∧ (z ′ = x + y) ∧ (end ′ = true)

vA
∆
= 〈x , y , z , end 〉

Add
∆
= InitA ∧ 2[NextA]vA

The initial-state predicate InitA does not specify the value of z ; its initial
value doesn’t matter. The next-state action NextA does not specify the
values of x ′ or y ′. As we know, this doesn’t mean that they have the same
values as x and y ; it means that their new values are unspecified. We are
assuming that the final values of x and y don’t matter; we care only about
the final value of z .

Math VII

Sequence Operators We now define some operators for sequences. They
are defined for both ordinal and cardinal sequences. For any sequences σ
and τ such that σ is finite, we define σ ◦ τ to be the sequence obtained by
concatenating σ and τ . For example, 〈4, 5〉 ◦ 〈1, 2〉 equals 〈4, 5, 1, 2〉, and
(4→ 5) ◦ (1→ 2→ 3→ · · ·) equals 4→ 5→ 1→ 2→ 3→ · · · .

For any (finite or infinite) nonempty sequence σ, we define Head(σ) to be
the first item of σ and Tail(σ) to be the sequence obtained by removing the
first element of σ. For example, Head(〈1, 2, 3〉) and Head(1→ 2→ 3→ · · ·)
both equal 1; Tail(〈1, 2, 3〉) equals 〈2, 3〉; and Tail(1 → 2 → 3 → · · ·)
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equals 2 → 3 → · · · . If σ is a nonempty ordinal sequence, then it equals
〈Head(σ)〉 ◦ Tail(σ).

For any finite sequence σ, we define Len(σ) to be the number of items
in σ. Thus, domain(σ) equals 1 . .Len(σ) if σ is a finite ordinal sequence;
and it equals 0 . . (Len(σ)− 1) if σ is a finite cardinal sequence.

We need the following two operators only for ordinal sequences, so we
don’t define them for cardinal sequences. For any ordinal sequence σ and
value v , we define Append(σ, v) to equal σ ◦ 〈v 〉, the sequence obtained by
appending the item v to the end of σ. We define Seq(S ) to be the set of
all finite ordinal sequences whose items are in S . Thus, if σ ∈ Seq(S ) then
σ ∈ (1 . .Len(σ)→ S ) .

Set Difference The set difference operator \ is defined by

S \T
∆
= {v ∈ S : ¬(v ∈ T )}

In other words, S \T is the set of elements of S that are not elements of T .

6.1.1 A One-Step Program

We refine Add by a program AddS in which a natural number is represented
by a finite ordinal sequence of decimal digits—that is, by an element of the
set Seq(0 . . 9). For convenience, we number the digits from right to left, so
the sequence 〈1, 2, 3〉 represents the number 321. Thus a sequence seq of
digits represents the number Val(seq) defined as follows, where the empty
sequence is defined to represent 0.

Val(seq)
∆
= if seq = 〈 〉 then 0

else Head(seq) + 10 ∗Val(Tail(seq))

Let ⊕ be addition of numbers represented in this way as sequences of digits.
In other words, ⊕ satisfies

Val(s ⊕ t) = Val(s) + Val(t)

for all sequences s and t of digits. We would expect Add to be refined by
the program AddS obtained by replacing + by ⊕ and N by Seq(0 . . 9) in
the definition of Add . To avoid confusing the variables of the two programs,
we’ll also replace x , y , z , and end by u, v , w , and fin, so AddS is defined
by:

InitS
∆
= (fin = false) ∧ (u ∈ Seq(0 . . 9)) ∧ (v ∈ Seq(0 . . 9))

NextS
∆
= ¬fin ∧ (w ′ = u ⊕ v) ∧ (fin ′ = true)

vS
∆
= 〈u, v ,w ,fin 〉

AddS
∆
= InitS ∧ 2[NextS ]vS
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Exactly what does it mean for AddS to refine Add? I believe the natural
definition is: If we look at any behavior of AddS and interpret the numbers
represented by the sequences u, v , and w of digits to be the values of x ,
y , and z , and we interpret the value of fin to be the value of end , then we
get a behavior of Add . More precisely, let “←” mean “is represented by”.
That AddS refines Add means that a behavior satisfying AddS represents a
behavior satisfying Add with this representation of the variables of Add in
terms of the variables of AddS :

x ← Val(u) y ← Val(v) z ← Val(w) end ← fin(6.1)

Here’s an example to illustrate this, where the first two-state sequence is
a finite behavior satisfying AddS and the second two-state sequence is the
finite behavior it represents. Remember that AddS leaves unspecified the
value of w in an initial state and the values of u and v in a halting state.
A “?” in the second behavior means the value is unspecified because, as
explained in Section 2.6, Val(seq) is a meaningless expression if seq isn’t a
sequence of numbers.

u :: 〈1, 2, 3〉
v :: 〈3, 2〉
w ::

√
2

fin :: false


0

→


u :: 〈5〉
v :: −27
w :: 〈4, 4, 3〉
fin :: true


1

x :: 321
y :: 23
z :: ?
end :: false


0

→


x :: 5
y :: ?
z :: 344
end :: true


1

As you can see, the second finite behavior satisfies Add , since 321+23 equals
344 and end has the values the abstract program Add says it should.

Let’s look closely at this example. What it shows is that when we per-
form the substitutions (6.1) for the variables of Add in a behavior satisfying
formula AddS , we get a behavior that satisfies formula Add . In other words,
in any behavior: if the behavior satisfies AddS , then it satisfies the formula
Add when we perform the substitutions (6.1). This means that the following
formula is true:

|= AddS ⇒
(Add with x ← Val(u), y ← Val(v), z ← Val(w), end ← fin)

(6.2)

This is what it means for AddS to refine Add under the representation de-
fined by (6.1). That representation is called a refinement mapping . Formula
(6.2) asserts that AddS implements Add under this refinement mapping.
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I find (6.2) beautiful. We’ve already seen that, viewed in terms of
TLA, step refinement is implication. Now we see that data refinement is
substitution—the ordinary mathematical operation of substituting expres-
sions for variables in a formula. How beautifully simple! In science, beauty
is not an end in itself. It’s a sign that we’re doing something right.

6.1.2 Two Views of Refinement Mappings

There are two ways to view the refinement mapping (6.1) that appears
in (6.2). To understand them, let’s simplify things by ignoring irrelevant
variables and letting state mean program state—an assignment of values
to the program’s variables. Let an S -state be a state of AddS , which is
an assignment of values to the variables u, v , w , and fin of AddS ; and let
an A-state be an assignment of values to the variables x , y , z , and end of
Add . Let an S -behavior or A-behavior be a sequence of S -states or A-states,
respectively.

The first way to view the refinement mapping is as a mapping f that
maps S -states to A-states. For any S -state s, the values of the variables x , y ,
z , and end that define the state f (s) are related to the vales of the variables
u, v , w , and fin that define the state s by (6.1). We can define the mapping

f̂ from S -behaviors to A-behaviors in terms of f by f̂ (σ)(i)
∆
= f (σ(i)) for any

S -behavior σ. That AddS implements Add under the refinement mapping
f means [[AddS ]](σ)⇒ [[Add ]](f̂ (σ)) for every S -behavior σ.

The second way to view refinement is expressed in (6.2), which states that
AddS implements Add under the refinement mapping means [[AddS ]](σ) ⇒
[[Add with . . . ]](σ) for every S -behavior σ.

In the first view, the refinement mapping maps low-level behaviors to
high-level behaviors—that is, behaviors of AddS to behaviors of Add . In
the second view, it maps the high-level formula Add to the low-level formula
Add with . . . . It may not be obvious, but these two views are equivalent.
They’re equivalent because

[[Add with . . . ]](σ) ≡ [[Add ]](f̂ (σ))(6.3)

is true for every S -behavior σ. And this equivalence is true if Add is replaced
by any RTLA formula containing only the variables of Add . It’s true because
the values of the variables of Add in the state s and the values of the variables
of AddS in the state f (s) are related by (6.1).
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6.1.3 A Step and Data Refinement

Section 3.5.1 illustrated step refinement by showing that an hour-minute-
second clock refines an hour-minute clock. We have just illustrated data
refinement by showing that AddS implements Add under a refinement map-
ping. We now show an example that involves both step and data refinement.

The example involves an algorithm AddSeq that adds numbers the way
you probably learned to add them as a child. However, we represent those
numbers as sequences of digits in the reverse order, as they are in program
AddS , with the low-order digit being the first one in the sequence. It sets
sum equal to u ⊕ v , where u and v are numbers represented by strings of
digits. The algorithm computes sum digit by digit, keeping it equal to the
right-most digits of the sum computed so far. Each step removes the first
(right-most) digit from u and v and appends the next (left-most) digit to
sum, setting carry equal to the value 0 or 1 “carried over” from that sum.

A pseudocode description of the algorithm is in Figure 6.1, but it uses
some notation that requires explanation. Recall that Append(seq , val) is
defined in Section 2.8.3 to equal seq ◦ 〈val 〉, the sequence obtained by ap-
pending the value val to the end of the ordinal sequence seq of values. The
code assumes that DigitSeq is the set Seq(0 . . 9) \ {〈 〉} of nonempty finite
sequences of the digits 0 through 9. If u and v are of unequal length, then
the number of steps taken by the algorithm you learned in school is usually
equal to or one greater than the length of the longer number. For simplicity,
the number of steps taken by AddSeq always equals one plus the length of
the longer number. To simplify the description of what happens when the
algorithm runs out of digits in one of the numbers, it uses the operator Fix
defined as follows to replace the empty sequence by 〈0〉:

Fix (seq)
∆
= if seq = 〈 〉 then 〈0〉 else seq

The algorithm’s define statement defines digit to equal the indicated ex-
pression within that statement. The value of bn/10c is the greatest integer
less than or equal to n/10. To simplify the invariant, AddSeq specifies the
initial value of carry to equal 0 and ensures that it equals 0 at the end. Since
the low-order digit of a two-digit number n is n % 10 and its high-order digit
is bn/10c, it should be clear that AddSeq describes an algorithm for adding
two decimal numbers. (If it’s not, execute it by hand on an example.)

The usual way to express correctness of a program that computes a value
sum and stops is with an invariant asserting that if the program has stopped
then sum has the correct value. We can’t do that with AddSeq because the
correct value of sum is the initial value of u ⊕ v , and those initial values
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variables u ∈ DigitSeq , v ∈ DigitSeq , sum = 〈 〉, carry = 0, pc = a ;

while a: (u 6= 〈 〉) ∨ (v 6= 〈 〉) ∨ (carry 6= 0) do

define digit
∆
= Fix (u)(1) + Fix (v)(1) + carry ;

sum : = Append(sum, digit % 10) ;

carry : = bdigit / 10c
end define ;

u : = Tail(Fix (u)) ;

v : = Tail(Fix (v))

end while ;

carry : = 0

Figure 6.1: Algorithm AddSeq.

have disappeared by the time the program stops. To express correctness, we
can add a constant ans that equals the initial value of u⊕ v . Since stopping
means pc equals done for our pseudocode, correctness means:

|= AddSeq ⇒ 2((pc = done)⇒ (ans = sum))(6.4)

The key part of an inductive invariant to prove (6.4) is the assertion that
ans equals the final value of sum. A first approximation to the final value
of sum is:

sum ◦ (〈carry 〉 ⊕ (u ⊕ v))

We haven’t said what s ⊕ t means if s or t is the empty sequence, but it’s
clear that we should define the empty sequence to represent 0. However, a
close examination of the algorithm indicates that if u and v both equal 〈 〉
and carry = 0, then this expression equals a sequence with an extra 0 at the
end. The correct assertion that is the key to the inductive invariant is

ans = if (u ◦ v = 〈 〉) ∧ (carry = 0)
then sum else sum ◦ (〈carry 〉 ⊕ (u ⊕ v))

(6.5)

The remainder of the inductive invariant asserts type correctness and that
pc = done implies that u, v , and carry have their correct final values.

However, the point of this example is not that AddSeq implements a
particular procedure for adding sequences of digits; it’s that it refines the
abstract program Add that adds two integers in a single step. This is a
dramatic example of step refinement, in which a program that can take ar-
bitrarily many non-stuttering steps to finish refines one that always finishes
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in one non-stuttering step. And we don’t have to add the constant ans to
do it.

Under the refinement mapping, one step in an execution of AddSeq must
refine a NextA step of Add ; all the other steps must refine stuttering steps
of Add . The initial values of the variables x and y of Add should equal the
initial values of Val(u) and Val(v). The initial values of u and v are no
longer deducible from the state after AddSeq takes its first step. This tells
us that the NextA step of Add must be refined by the first non-stuttering
step of AddSeq .

An Add step changes the value of its variable done from false to true.
So, the refinement mapping must assign to done an expression whose value
is changed from false to true by the first non-stuttering step of AddSeq .
Since further steps of AddSeq refine stuttering steps of Add , the expression
assigned to done must remain true for the rest of the execution of Add . A
suitable expression is sum 6= 〈 〉, so we let the refinement mapping include
done ← sum 6= 〈 〉.

In the initial state of AddSeq , the refinement mapping should assign to x
and y the values of u and v . Since Add allows x and y to have any values in
its final state, it doesn’t matter what values the refinement mapping assigns
to x and y after the first step of AddSeq . However, since later steps must
refine stuttering steps of Add , the values of x and y must not change. Zero
seems like a nice value to let x and y equal when their value no longer
matters, so we let the refinement mapping include:

x ← if sum 6= 〈 〉 then 0 else Val(u) ,

y ← if sum 6= 〈 〉 then 0 else Val(v)

Finally, we must decide what value the refinement mapping assigns to z .
If we add to AddSeq the constant ans that always equals the result the al-
gorithm finally computes, then we can substitute Val(ans) for z . But we
don’t have to add it because the invariant (6.5) tells us what expression con-
taining only the variables of AddSeq always equals ans. We could therefore
substitute for z the expression obtained by applying Val to the right-hand
side of equation (6.5). However, there’s a simpler expression that we can
use. Convince yourself that the following substitution works:

z ← Val(sum) + 10Len(sum) ∗ (carry + Val(u) + Val(v))

This completes the refinement mapping. That AddSeq implements Add
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under the refinement mapping means that this theorem is true:

|= AddSeq ⇒ (Add with
done ← sum 6= 〈 〉 ,
x ← if sum 6= 〈 〉 then 0 else Val(u) ,

y ← if sum 6= 〈 〉 then 0 else Val(v) ,

z ← Val(sum) + 10Len(sum) ∗ (carry + Val(u) + Val(v)))

6.2 Invariance Under Refinement

If an abstract program T implements an abstract program S under a refine-
ment mapping, and Inv is an invariant of S , then the refinement mapping
maps Inv to an invariant of T . The precise statement of this is the following
theorem, where “. . . ” is any refinement mapping.

Theorem 6.1 |= T ⇒ (S with . . .) and |= S ⇒ 2Inv imply
|= T ⇒ 2(Inv with . . .) .

The proof is simple:

1. |= S ⇒ 2Inv implies |= (S ⇒ 2Inv) with . . . .

Proof: Substitution in a true formula produces a true formula

2. |= (S ⇒ 2Inv) with . . . equals |= (S with . . .)⇒ 2(Inv with . . .) .

Proof: By definition of what substitution means.

3. Q.E.D.

Proof: The theorem follows from steps 1 and 2 by propositional logic.

Recall the trick used in Section 3.2.3 to obtain an invariant of FGSqrs
from an invariant of the coarser-grained algorithm Sqrs. We replaced the
variable y by the expression yy in the invariant of Sqrs. That trick was
an application of the theorem, because FGSqrs implements Sqrs under the
refinement mapping x ← x , y ← yy .

6.3 An Example: The Paxos Algorithm

We’ve seen step and data refinement for a sequential abstract program. Con-
currency adds nothing new. Refinement works exactly the same for concur-
rent programs. This is illustrated with the Paxos consensus algorithm, an
example chosen for the following reasons:
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• It’s a distributed algorithm. Quite a few researchers used to believe
that different techniques are needed to reason about correctness of dis-
tributed programs; perhaps some still do. Paxos illustrates that there
is no mathematical difference between distributed and non-distributed
concurrent programs. In fact, Paxos is obtained as a refinement of a
non-distributed algorithm.

• It’s a widely used algorithm. If you perform any commercial transac-
tion on the Web, there is a good chance that Paxos or an algorithm
inspired by it is being executed by a program running on the computers
that perform the transaction.

• It illustrates the importance of abstraction. Thinking scientifically
means thinking abstractly. The abstract programs in this example are
more abstract than ones most computer scientists and engineers would
think of. Learning to think more abstractly is the key to building
better complex computer systems.

• The complete TLA+ specifications of the abstract programs, as well
as videos of a pair of lectures that explain them, are available on the
Web [27]. Therefore, the abstract programs are only sketched here.

The Paxos algorithm was invented (at least) twice, first by Barbara Liskov
and Brian Oki [43] and then by me. Its consensus algorithm had been
invented by Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer [12].

6.3.1 The Consensus Problem

One reason for building distributed systems is fault tolerance. Systems
implemented by multiple computers are often required to operate normally
even if one or more of the computers fail. What a system should do can be
described as a single-process abstract program that executes a sequence of
commands it receives as inputs. Correct execution of the system by multiple
computers requires that all the computers agree on what that sequence of
inputs is. This is achieved by having all the computers agree on what the i th

input is for every i . Ensuring that all the computers agree on a single input
is called consensus. A fault-tolerant system repeatedly executes a consensus
algorithm to choose a sequence of inputs.

I was inspired to invent the Paxos algorithm because colleagues were
building a distributed fault-tolerant system. I realized that the system
had to implement consensus, so it should implement a consensus algorithm.
However, my colleagues were writing code; they didn’t have an algorithm. I
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never found out how their program implemented consensus. But based on
the state of the art of programming at the time, here is what their program
might have done.

A process called the leader, running on a single computer, receives all
input requests and decides what input should be chosen next. A new leader
will have to be selected if the initial leader fails, but we’ll worry about that
later. (Failure of a process usually means failure of the computer executing
the process.) For the system to keep running despite the failure of individual
computers, a set of processes called acceptors, each running on a different
computer, have to know what value was chosen. Moreover, only a subset of
the acceptors should have to be working (that is, not failed) for an input to
be chosen. If an input v is chosen by a leader and a set of acceptors, and
the leader and those acceptors fail, then a different leader and a different set
of acceptors must not choose an input different from v . The obvious way
to ensure that is to require a majority of the acceptors to agree upon the
input v in order for that input to be chosen. Any two majorities have at
least one acceptor in common, and that acceptor will know that it agreed
to the choice of v .

This reasoning leads to the following algorithm: The leader decides what
input v should be chosen. It sends a message to the acceptors saying that
they should agree to the choice of v . Any working acceptor that receives the
message replies to the leader with a message saying “v is OK”. When the
leader receives such an OK message from a majority of acceptors, it sends
a message to all the acceptors telling them that v has been chosen.

This algorithm works fine, and the system keeps choosing a sequence of
inputs, until the leader fails. At that point, a new leader is selected. The
new leader sends a message to all the acceptors asking them what they’ve
done. In particular, the new leader finds out from the acceptors if inputs
were chosen that it was unaware of. It also finds out if the previous leader
had begun trying to choose an input but failed before the input was chosen.
If it had, then the new leader completes the choice of that input. When the
new leader has received this information from a majority of acceptors, it
can complete any uncompleted choices of an input and begin choosing new
inputs. Let’s call this algorithm the naive consensus algorithm.

There’s one problem with the naive algorithm: How is the new leader
chosen? Choosing a single leader is just as hard as choosing a single input.
The naive consensus algorithm thus assumes the existence of a consensus
algorithm. However, because leader failures should be rare, choosing a leader
does not have to be done efficiently. So, programmers would probably have
approached the problem of choosing a leader the way they approached most
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programming problems. They would have found a plausible solution and
then debugged it. Debugging usually means thinking of all the things that
could go wrong and adding code to handle them.

Let’s pause and look at the science of consensus. Before Paxos, there
were consensus algorithms that worked no matter what a failed process
could do [47]. However, they were synchronous algorithms, meaning that
they assumed known bounds on the time required for messages sent by one
process to be received and acted upon by another process. They were not
practical for the loosely coupled computers that had become the norm by the
1980s. Although asynchronous algorithms were required, they had to solve a
simpler problem because sufficiently reliable systems could be based on the
assumption that a process failed by stopping and could not perform incorrect
actions. However, the FLP theorem, named after Michael Fischer, Nancy
Lynch, and Michael Paterson who discovered and proved it, states that no
asynchronous algorithm can implement consensus if even a single process can
fail in this benign way [14]. More precisely, any algorithm that ensures the
safety property that two processes never choose different values must allow
behaviors that violate the liveness property that requires a value eventually
to be chosen if enough processes are working and can communicate with one
another. Asynchronous algorithms that ensure liveness must allow behaviors
in which processes disagree about what input is chosen.

The leader-selection code programmers would have written therefore had
to allow either behaviors in which two processes thought they were the
leader, probably with serious consequences, or else behaviors in which no
leader is selected, causing the system to stop choosing values. With a prop-
erly designed algorithm, the probability of never choosing the leader is zero,
and a leader will be chosen fairly quickly if enough of the system is working
properly. The system my colleagues built ran for several years with about
60 single-user computers, and I don’t think their consensus code caused any
system error or noticeable stalling. There is no way to know if it had errors
that would have appeared in today’s systems with thousands of computers
and many thousands of users.

6.3.2 The Paxos Consensus Algorithm

We develop the Paxos consensus algorithm as a series of three abstract
programs: a trivial specification of the problem the algorithm solves, which
is refined by a non-distributed multiprocess algorithm, which is refined by
the Paxos algorithm. I believe that this description—in particular, its view
of Paxos as a refinement of the non-distributed algorithm—mirrors how I
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actually found the algorithm.
Only the safety properties of these abstract programs are described. In

most applications, violation of safety in a consensus algorithm can be quite
serious—for example, causing money deposited to a client’s bank account
to disappear. We will see later how the algorithm can be implemented to
almost always achieve liveness while never violating safety. As mentioned
above, the abstract programs are just sketched; complete descriptions are
available on the Web [27].

6.3.2.1 The Specification of Consensus

Instead of talking about inputs, we define consensus as choosing an element
of some set Value of values. Most correctness proofs of consensus algorithms
prove only that they satisfy the invariance property that two processes never
choose different values. A consensus algorithm must also not allow a value
to be unchosen and a different value then chosen. Proving the invariance
property is usually sufficient because it’s obvious that the algorithm doesn’t
allow a value to be unchosen. But to illustrate refinement, we write a high-
level abstract program that rules out such a possibility.

There are a number of reasonable ways to describe consensus as an ab-
stract program, and it makes little difference which one is used. Perhaps
the most obvious way is with a multiprocess abstract program in which
each process independently learns what value is chosen. The next-state ac-
tion would allow a process p that has not learned a value to learn one, with
the constraint that if any process has learned that the value v was chosen,
then p must also learn that v was chosen.

We take a different approach and let the abstract program describe only
the choosing of a value, without mentioning processes that learn the chosen
value. This abstract program has a single variable chosen that represents
the set of values that have been chosen. (In any behavior allowed by the pro-
gram, that set always contains at most one element.) The initial predicate
is chosen = {}, and the next-state action is:

(chosen = {}) ∧ (∃ v ∈ Value : chosen ′ = {v})

As explained above, there is no fairness condition.

6.3.2.2 The Voting Algorithm

In the naive algorithm, leader and acceptor processes communicate by send-
ing messages. It’s natural to think about a consensus algorithm in terms
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of messages being sent. However, remember that we reason about an ab-
stract program in terms of its state, so we should be thinking about states,
not about sending messages. And the important part of the state is the
state of the acceptors. So, we refine the Consensus program with an ab-
stract program called the Voting algorithm whose state is just the state of
the acceptors. This is not just a nice way to describe the Paxos algorithm.
Viewing Paxos as a refinement of the non-distributed voting algorithm is
what enabled me to discover Paxos.

In good programming, we begin by abstracting away lower-level details
and getting the high-level design right. There’s a kind of bad programming
that sounds similar: We begin writing something that handles the normal
behavior, and we then modify it to handle non-normal situations. That’s
the way the naive consensus algorithm was described, and it’s a recipe for
creating incorrect programs—both abstract and concrete ones. We should
start thinking about the general case, not the normal case.

The general state of acceptors in the naive algorithm is one that is
reached after a number of leaders have begun trying to get a value cho-
sen, and some of them may have succeeded. When a leader tries to get a
particular value chosen, we say that the leader has begun a ballot. When
an acceptor has sent an OK message for a value v in that ballot, we say
that the acceptor has voted for v in that ballot. The algorithm will assign
a unique natural number to each ballot.1 The state of the Voting algorithm
records all the votes that each acceptor has cast. This is described by a
variable votes whose value is a function that assigns to each acceptor a a
set votes(a) of pairs 〈b, v 〉, where b ∈ N and v ∈ Value. The pair 〈b, v 〉 in
votes(a) means that a has voted for v in ballot number b.

Choosing a leader is the weak point in the naive algorithm. The Voting
algorithm abstracts away the leaders. A leader serves two functions. The
first is to ensure that in any ballot, acceptors can cast votes only for the
value proposed by the leader. The Voting algorithm’s next-state action
takes care of that by not letting an acceptor cast a vote for a value v in
ballot b if a vote has already been cast in ballot b for a different value. The
second function of the leader is to learn that a value has been chosen, which
it does when it has received enough OK messages. The Voting algorithm
does away with that function by declaring that the value has been chosen
when the requisite number of OK messages have been sent—that is, when

1Don’t confuse different ballots with the different instances of the consensus algorithm
being executed. Execution of an instance of the consensus algorithm can consist of multiple
ballots.
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there are enough votes cast for the value in the ballot. More precisely, we
define ChosenAt(b, v) to be true iff a majority of acceptors has voted for v in
ballot b. The Voting algorithm implements the Consensus abstract program
under the refinement mapping

chosen ← {v ∈ Value : ∃ b ∈ N : Chosen(b, v)}(6.6)

In addition to votes, the algorithm has one other variable maxBal whose
value is a function that assigns to each acceptor a a number maxBal(a).
The significance of this number is that a will never in the future cast a vote
in any ballot numbered less than maxBal(a). The value of maxBal(a) is
initially 0 and is never decreased. The algorithm can increase maxBal(a) at
any time.

It may seem strange that the state does not contain any information
about what processes have failed. We are assuming that a failed process does
nothing. Since we are describing only safety, a process is never required to
do anything, so there is no need to tell it to do nothing. A failed process that
has been repaired can differ from a process that hasn’t failed because it may
have forgotten its prior state when it resumes running. A useful property
of a consensus algorithm is that, even if all processes fail, the algorithm can
resume its normal operation when enough processes are repaired. To achieve
this, we require that a process maintains its state in stable storage, so it is
restored when a failed process restarts. A process failing and restarting is
then no different from a process simply pausing.

The heart of the Voting algorithm is a state expression SafeAt(b, v) that
is true iff ChosenAt(c,w) is false and will remain false forever for any c < b
and w 6= v . That it will remain false forever can be deduced from the current
state, because the next-state action implies both that a process a will not
cast a vote in ballot c when c < maxBal(a) and that maxBal(a) can never
decrease. The key invariant maintained by the algorithm is

∀ a ∈ Acceptor , b ∈ N, v ∈ Value :

(〈b, v 〉 ∈ votes(a)) ⇒ SafeAt(b, v)

(6.7)

where Acceptor is the set of acceptors. The next-state action allows a process
a to perform either of two actions:

• Increase maxBal(a). This action is always enabled.

• Vote for a value v in a ballot numbered b. As already explained, this
action is enabled only if no process has voted for a value other than
v in ballot b and b ≥ maxBal(a). An additional enabling condition is
required to maintain the invariance of (6.7).
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I have given you all the information you need to figure out the definition
of SafeAt(b, v) and the enabling condition on acceptors needed to maintain
the invariance of (6.7). Can you do it? Few people can. I was able to
only because I had simplified the problem to finding an abstract program
whose only processes are the acceptors and whose state consists only of the
set of votes cast and the value of maxBal . I had abstracted away leaders,
messages, and failures.

The Voting algorithm requires an acceptor to know the current state of
other acceptors to decide what vote it can cast. How can this lead to a
distributed consensus algorithm? I abstracted away leaders and messages; I
didn’t ignore them. I knew that an acceptor didn’t have to directly observe
the state of other acceptors to know that they hadn’t voted for some value
other than v in a ballot. The acceptor could know that because of a message
it received from a leader. I also knew that it could deduce that the other
enabling conditions were satisfied from messages it received. Abstracting
away leaders and messages enabled me to concentrate on the core problem
of achieving consensus. The solution to that problem told me what the
leaders should do and what messages needed to be sent.

6.3.2.3 The Paxos Abstract Program

The Voting algorithm told me what messages needed to be sent. But I had to
decide how to represent message passing in an abstract program. Languages
expressly designed for describing distributed algorithms usually don’t re-
quire us to make that decision because they provide built-in message-passing
primitives. However, different distributed algorithms and distributed sys-
tems have different requirements for message passing. They may or may not
tolerate lost messages; they may or may not require messages to be deliv-
ered in the order they are sent; they may or may not require that the same
message not be received twice; and so on. Our abstract programs require
that we choose how to represent message passing, but they make it easy to
represent any form of message passing we want.

I have found that most computer scientists and engineers are constrained
by thinking in terms of how messages are transmitted in actual systems.
They think of messages being sent on communication channels between pro-
cesses. Few of them would come up with the simple representation of mes-
sage passing I used in the Paxos abstract program—a representation that is
obvious if one thinks mathematically.

Paxos doesn’t require that messages be delivered in the order in which
they are sent, so there is no need for message channels. The receiver of
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a message can be inferred from the message, so we can just have a set of
messages. Paxos tolerates the same message being received multiple times
by a process, so there is no need to remove a message when it is received.
This means that if the same message is sent to multiple recipients, there
is no need for multiple copies of the message. There is also no need for a
separate action of receiving a message. An action that should be taken upon
receipt of a message simply has the existence of that message in the set of
sent messages as an enabling condition. Paxos tolerates message loss. But
since we are describing safety, there’s no difference between a lost message
and a message that is sent but never received. So, there is no need ever to
remove messages that have been sent.

We can therefore represent message passing with a variable msgs whose
value is the set of all messages that have been sent. A message is sent by
adding it to the set msgs. The presence of a message in msgs enables an
action that should be triggered by the receipt of the message. The algorithm
has a variable maxBal that implements the variable of the same name in
the Voting algorithm. It also has two other variables maxVBal and maxVal
whose values are functions with domain the set of acceptors. They are
explained below.

The Paxos consensus algorithm can be viewed as a multiprocess algo-
rithm containing two sets of processes: the acceptors that implement the
acceptors of the Voting algorithm, and an infinite set of processes, one for
each natural number, where process number b is the leader of ballot num-
ber b. More precisely, the ballot b leader orchestrates the voting by the
acceptors in ballot b of the Voting algorithm.

The next-state action of the algorithm could be (but isn’t literally) writ-
ten in the form ∃ b ∈ N : BA(b) where BA(b) describes how ballot b is per-
formed. The ballot consists of two phases. In phase 1, the ballot b leader
sends a message to the acceptors containing only the ballot number b. An
acceptor a ignores the message unless b > maxBal(a), in which case it sets
maxBal(a) to b and replies with a message containing a, b, maxVBal(a),
and maxVal(a). When the ballot b leader receives those messages from a
majority of the acceptors, it can pick a value v to be chosen, where v is ei-
ther a value picked by the leader of a lower-numbered ballot or an arbitrary
value. The complete algorithm describes how it picks v . Phase 2 begins
with the leader sending a message to the acceptors asking them to vote for
v in ballot b. An acceptor a ignores the message unless b ≥ maxBal(a), in
which case a sets maxBal(a) to b and replies with a message saying that it
has voted for v in ballot b.

The Paxos algorithm implements the Voting algorithm under a refine-
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ment mapping in which the variable votes of Voting is implemented by the
expression defined in the obvious way from the set of votes reported by
acceptors’ phase 2 messages in msgs, and in which the variable maxBal
of Voting is implemented by the variable of the same name in the Paxos
abstract program.

The values of maxVBal and maxVal can be described as functions of
the value of votes. For any acceptor a, the pair 〈maxVBal(a),maxVal(a)〉
equals the pair 〈b, v 〉 in the set votes(a) with the largest value of b. (Ini-
tially, when votes(a) is the empty set, it equals 〈−1,None 〉 for some special
value None.) Making maxVBal and maxVal variables rather than state
expressions makes it clear that they are the only information about what
messages have been sent that needs to be part of the acceptors’ states.

6.3.3 Implementing Paxos

An implementation of the Paxos consensus algorithm would add a third
phase to each ballot in which the leader sends a message announcing that a
value v had been chosen after it receives phase 2 messages telling it that a
majority of acceptors had voted for v in the ballot. With that addition, a
ballot of the Paxos algorithm looks like what the naive algorithm does when
a new leader has been selected. Phase 1 of a Paxos ballot corresponds to
the new leader finding out if it needs to complete the choosing of a value
proposed by the failed leader. Phase 2 corresponds to the leader completing
the choosing of a previously proposed value or choosing a new value.

In Paxos, a leader performs phase 1 in every instance of the consensus al-
gorithm, while in the naive algorithm it performs the corresponding actions
only once when it is selected. This makes Paxos seem much less efficient,
since leaders are infrequently replaced. However, the value to be chosen isn’t
selected until phase 2. This means that phase 1 can be executed simulta-
neously for a ballot numbered b in all instances of the consensus algorithm
the first time ballot b is executed for any instance. A single message can
serve as the leader’s phase 1 message for all instances. A single message
can also contain the phase 1 responses of a particular acceptor for all the
instances, since there is only information to be transmitted for consensus
instances that have begun but not yet chosen a value. Thus Paxos uses the
same number of messages to choose a value as the naive algorithm.

The Paxos consensus algorithm is an efficient algorithm that has been
proved to satisfy the safety requirement of consensus. We still have to see
how to get it to satisfy the liveness requirement of actually choosing a value.
To solve a problem, we need to understand it, and it’s easy to understand
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what prevents Paxos from choosing a value. An acceptor a participating in
ballot number b sets maxBal(a) to b, preventing it from responding to any
message from the leader of any ballot numbered less than b. Even in the
absence of failures or message loss, no value will ever be chosen if higher and
higher numbered ballots are begun before any ballot chooses a value.

Conversely, if ballot number b is started and no higher-numbered ballot
is begun, and if the ballot b leader and a majority of acceptors are work-
ing, then liveness assumptions that require working processes eventually to
perform enabled actions (which implicitly assume that messages sent are
eventually delivered) imply that a value is eventually chosen. This observa-
tion can be stated mathematically as a temporal logic formula and proved.
However, it is so obviously true that, to my knowledge, no one has ever
bothered doing it.

How do we assure that a ballot numbered b is started and no higher-
numbered ballots are? Paxos uses an infinite number of leader processes—
one for each ballot number. Those infinitely many processes are executed
by a finite number of computers, with each ballot number pre-assigned to
a single computer that executes the leader of the corresponding ballot. A
single computer, called the coordinator, is selected to be the only one that
executes leader processes, and it is easy to add messages that allow it to
find a ballot number higher than the values of mbal(a) for a majority of
acceptors a.

Like the naive algorithm, Paxos depends on selecting a single coordina-
tor. However, the naive algorithm can fail to maintain its safety requirement
if two different computers believe they are the coordinator. If that happens
with Paxos, safety is preserved; the algorithm just fails to make progress.
An algorithm for choosing a coordinator in Paxos needs to work only most of
the time, a much easier problem to solve. One solution uses a synchronous
algorithm that implements consensus assuming known bounds on the times
needed to transmit and process messages. That algorithm chooses the coor-
dinator assuming values for those bounds that will be satisfied most of the
time.

6.4 Proving Refinement

This section sketches how to prove that one abstract program refines an-
other. We use as an example the proof that the One-Bit mutual exclusion
algorithm OB of Figure 4.3 in Section 4.2.5.2 refines program LM of Fig-
ure 4.6 in Section 4.2.6.1, assuming a weakly fair semaphore.
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The proof uses identifiers from the definition of OB and ones from the
definition of LM . To avoid confusion, we indicate to which program an
identifier belongs with a subscript. We defined OB to equal:

Init ∧ 2[Next ]v ∧ Fair

where Next
∆
= ∃ p ∈ {0, 1} : PNext(p)

Fair
∆
= ∀ p ∈ {0, 1} : WFv (PNext(p))

We now add subscripts to that definition, so OB equals:

InitOB ∧ 2[NextOB]vOB ∧ FairOB

We assume LM has the same definition, except with the subscripts LM .
We sometimes use subscripts even when they aren’t necessary—for example
writing xOB even though LM has no variable named x .

We define OBSafe and OBFair as in Section 4.2.5.2, so OB equals
OBSafe ∧ OBFair . We define LMSafe and LMFair similarly. As expected,
safety and liveness are proved separately. We first show that OBSafe re-
fines LMSafe. (By machine closure of 〈OBSafe,OBFair 〉 and Theorems 4.3
and 4.5, OBFair isn’t needed to prove that OB refines LMSafe.) We then
show that OB implies LMFair . However, first we must define the refinement
mapping under which OB implements LM .

Math VIII

Hierarchical Proofs Thus far, our structured proofs have consisted of a
single list of steps. That doesn’t work for the long proofs needed to prove
complex results, such as correctness of the abstract programs that engineers
write. The method of handling complexity that’s obvious to an engineer is
hierarchical structuring. With structured proofs, a proof consists of either a
paragraph proof or a sequence of steps, each step having a proof. The last
step in a proof that consists of a sequence of steps is a Q.E.D. step.

The steps of a top-level proof are numbered 1, 2, etc. The steps of a
proof of step number 2 are numbered 2.1, 2.2, . . . . The steps of a proof of
step number 3.4 are 3.4.1, 3.4.2, . . . and so on. The lowest-level proofs are
paragraph proofs. A step can be used only in the proof of later steps of the
same proof. For example, the assertion proved as step 3.4.2 can be used in
the proofs of steps 3.4.4 and 3.4.5.1, but not in the proof of step 3.5. This
ensures that a step is used only where the assumptions under which the step
was proved still hold.

This numbering scheme works for three or four levels. For deeper proofs,
we can abbreviate step number 2.7.4 as 〈3〉4 because it’s step number 4 of
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a depth-3 proof. Although many step numbers can have the same abbrevi-
ation, at most one of those steps can be used at any point in the proof [38].

For reliable proofs, the paragraph proofs should be short enough so
they’re easy to understand and obviously correct. If a paragraph proof isn’t
obviously correct, it should be decomposed into a sequence of steps. Some
steps need deeper proofs than others. The proofs of Q.E.D. steps should
usually be paragraphs. My rule of thumb is to decompose a proof until I’m
sure that every paragraph proof is correct, then decompose the paragraph
proofs one level further. The proofs in this book haven’t been carried down
to that level. This was to keep the book from being too long, and because no
program will crash if there’s a small mistake in one of the book’s theorems.

For machine-checked proofs, paragraph proofs are replaced by instruc-
tions to the prover. The proof must be decomposed into steps that are simple
enough for the prover to check, which may sometimes be infuriatingly sim-
ple. This should eventually change as machine learning is applied to proof
checking. Some proof checkers don’t support hierarchical structuring. They
require you to do the structuring by hand. If you don’t structure the proof,
you will wind up with an unmanageable unstructured mass of lemmas when
trying to prove the correctness of a complex abstract program.

Suffices Proof Steps A mathematical proof of a formula G often begins
by showing that, to prove G , it suffices to prove F . That step in a proof is
represented in our structured proof style by a Suffices step.

At any step in a proof, there is a current goal. The current goal at the
first step is the assertion to be proved. The statement Suffices: F changes
the current goal to F . If G is the current goal at this Suffices statement,
then the statement’s proof must prove Assume: F Prove: G . That is, the
proof must prove G assuming that F is true.

The Suffices statement can be used with an Assume/Prove to assert
that to prove the current goal, it suffices to assume E is true and prove F
is true. The statement

Suffices: Assume: E
Prove: F

changes the current goal to F , and it adds E to the set of formulas that can
be assumed true by the following steps of the current proof. The proof of
this statement is the same as the proof of Suffices: E ⇒ F .
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6.4.1 The Refinement Mapping

To define the refinement mapping under which OB implements LM , it’s
helpful to think of a single behavior in which the variables xOB and pcOB

describe a behavior of program OB and the variables semLM and pcLM de-
scribe the corresponding behavior of LM that is implemented by OB under
the refinement mapping. To determine what the refinement mapping should
be, for each possible step in such a behavior that changes the values of the
variables of LM , we decide how that step should change the values of OB .

For example, if a step of the behavior describes the execution of state-
ment cs by a process p of LM , then it should describe the execution of cs by
process p of OB . Thus, when the value of pcLM(p) changes from cs to exit ,
the value of pcOB(p) should also change from cs to exit . Reasoning in this
way, we see that the values of pcLM(p) and pcOB(p) should be equal, except
that when pcLM(p) equals wait , the value of pcOB(p) can be wait , w2, w3,
or w4. This tells us that the refinement mapping must substitute for pcLM

the value pcBarOB defined by:

pcBarOB

∆
= p ∈ {0, 1} 7→ if pcOB(p) ∈ {w2,w3,w4} then wait

else pcOB(p)

In a behavior satisfying LM , the value of semLM can be deduced from the
value of pcLM. In particular, semLM equals 0 iff pcLM(p) equals cs or exit for
one of the processes p. From the definition of pcBarOB, this means that the
refinement mapping must substitute for semLM the value semBarOB defined
by:

semBarOB

∆
= if (∃ p ∈ {0, 1} : pcOB(p) ∈ {cs, exit}) then 0 else 1

That OB refines LM under this refinement mapping means:

|= OB ⇒ (LM with pcLM ← pcBarOB, semLM ← semBarOB)(6.8)

We’ll be using a lot of formulas that are obtained from formulas FLM by
making the substitutions defined by the refinement mapping for the variables
of LM . To keep from having lots of withs, we use this abbreviation, for
any formula FLM:

FLM

∆
= (FLM with pcLM ← pcBarOB, semLM ← semBarOB)

Thus, (6.8) can be written |= OB ⇒ LM . Also, pcLM equals pcBarOB and
semLM equals semBarOB (which explains the suffix Bar in the names pcBar
and semBar).
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6.4.2 Refinement of Safety

We now sketch the proof that OBSafe refines LMSafe, which means the
proof of

|= OBSafe ⇒ LMSafe(6.9)

By the definitions of these formulas, this requires proving:

(a) |= InitOB ⇒ InitLM

(b) |= InitOB ∧ 2[NextOB]vOB ⇒ 2[NextLM]vLM

(6.10)

The proof of (a) is simple. To prove (b), we use the invariant InvOB of OB ,
which is defined by (4.19), where TypeOK is defined by (4.17). That is, we
assume:

|= OBSafe ⇒ 2InvOB(6.11)

To prove (6.10b), it suffices to prove

|= InvOB ∧ [NextOB]vOB ⇒ [NextLM]vLM(6.12)

By definition of [. . .]v , we can prove (6.12) by proving:

(a) |= InvOB ∧ NextOB ⇒ NextLM ∨ (vLM
′ = vLM)

(b) |= (vOB
′ = vOB) ⇒ (vLM

′ = vLM)
(6.13)

Part (b) is trivial, since vLM is defined in terms of the variables of vOB. For
part (a), propositional logic tells us that we prove F ∧ (G1 ∨ . . .∨Gn)⇒ H
by proving F ∧G i ⇒ H for each i . So, we decompose the proof of part (a)
by writing NextOB as the disjunction of subactions.

We use the notation introduced in Section 4.2.6.1 of naming the action
described by a labeled statement with the capitalized label. For example,
CsOB(p) is the action described by statement cs of process p of program
OB . We decompose the proof of (6.13a) into proving:

|= InvOB ∧ LblOB(p) ⇒ NextLM ∨ (vLM
′ = vLM)(6.14)

for each label lbl in Figure 4.3 and p in {0, 1}.
Condition (6.14) asserts that a step of OB described by the statement

labeled lbl implements a step of LM under the refinement mapping. We
defined the refinement mapping to make that true, so we should be able
to prove this assertion. We prove it by showing that each action LblOB(p)
implements some particular subaction of NextLM. In particular, we prove the
following seven assertions R1–R7. Three of them assert that actions of OB
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imply actions of the form 〈ALM 〉vLM . For proving that OB implies LMSafe,
we need only the weaker assertions obtained by replacing such an action by
ALM. However, we will need the stronger assertions later for proving that
OB implies LMLive.

R1. |= InvOB ∧ NcsOB(p) ⇒ NcsLM(p)

R2. |= InvOB ∧ WaitOB(p) ⇒ (vLM
′ = vLM)

R3. |= InvOB ∧ W 2OB(p) ⇒
if p = 0 then 〈WaitLM(0)〉vLM

else if xOB(0) then vLM
′ = vLM

else 〈WaitLM(1)〉vLM
R4. |= InvOB ∧ W 3OB(p) ⇒ (vLM

′ = vLM)

R5. |= InvOB ∧ W 4OB(p) ⇒ (vLM
′ = vLM)

R6. |= InvOB ∧ CsOB(p) ⇒ 〈CsLM(p)〉vLM
R7. |= InvOB ∧ ExitOB(p) ⇒ 〈ExitLM(p)〉vLM

Assertion R3 is equivalent to these three assertions:

R3a. |= InvOB ∧ W 2OB(0) ⇒ 〈WaitLM(0)〉vLM
R3b. |= InvOB ∧ W 2OB(1) ∧ xOB(0) ⇒ (vLM

′ = vLM)

R3c. |= InvOB ∧ W 2OB(1) ∧ ¬xOB(0) ⇒ 〈WaitLM(1)〉vLM
All these assertions are proved by expanding the definitions of the actions
and of the refinement mapping. To see how this works, we consider R3a.
We haven’t written the definitions of the actions corresponding to the pseu-
docode statements of algorithms OB and LM . The definitions of W 2OB(0)
and WaitLM(0) as well as the other relevant definitions are in Figure 6.2.
Here is the proof of R3a.

1. Suffices: Assume: InvOB ∧ W 2OB(0)

Prove: 〈WaitLM(0)〉vLM
Proof: Obvious.

2. (pcLM(0) = wait) ∧ (pcLM
′ = (pcLM except 0 7→ cs))

Proof: By the step 1 assumption and the definitions of W 2OB(0) and
pcBarOB(0), since pcLM equals pcBarOB .

3. (semLM = 1) ∧ (semLM
′ = 0)

Proof: W 2OB(0) implies (pcOB(0) = w2)∧¬xOB(1), and InvOB and ¬xOB(1)
imply pcOB(1) /∈ {cs, exit}. Hence, semBarOB = 1, so semLM = 1. The
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W 2OB(0) ≡
∧ pcOB(0) = w2
∧ ¬xOB(1)
∧ pcOB

′ = (pcOB except 0 7→ cs)
∧ xOB

′ = xOB

WaitLM(0) ≡
∧ pcLM(0) = wait
∧ semLM = 1
∧ pcLM

′ = (pcLM except 0 7→ cs)
∧ semLM

′ = 0

InvOB

∆
= ∧ TypeOKOB

∧ ∀ p ∈ {0, 1} : ∧ (pcOB(p) ∈ {w2, cs})⇒ xOB(p)

∧ (pcOB(p) = cs)⇒ (pcOB(1− p) 6= cs)

TypeOKOB

∆
= ∧ xOB ∈ ({0, 1} → {true, false})
∧ pcOB ∈ ({0, 1} → {ncs,wait ,w2,w3,w4, cs, exit})
∧ pcOB(0) /∈ {w3,w4}

pcBarOB

∆
= p ∈ {0, 1} 7→ if pcOB(p) ∈ {w2,w3,w4} then wait

else pcOB(p)

semBarOB

∆
= if ∃ p ∈ {0, 1} : pcOB(p) ∈ {cs, exit} then 0 else 1

pcLM = pcBarOB semLM = semBarOB

Figure 6.2: Definitions used in the proofs.

definition of W 2OB(0) and InvOB (which implies pcOB is a function with
domain {0, 1}) imply pcOB

′(0) = cs. Hence semBarOB
′ = 0, so semLM

′ = 0.

4. Q.E.D.

Proof: Steps 2 and 3 and the definition of WaitLM(0) imply WaitLM(0).
Step 3 implies semLM

′ 6= semLM which implies v ′LM 6= vLM, proving the goal
〈WaitLM(0)〉vLM introduced by step 1.

How we decomposed the proof that OBSafe implies LMSafe into proving
R1–R7 was determined by the structure of NextOB as a disjunction of seven
subactions and knowing which disjuncts of NextLM each of those subactions
implements, which followed directly from the definition of the refinement
mapping. The decomposition of R3 into R3a–R3c followed from the struc-
ture of R3. As illustrated by the proof of R3a, the proof of each of the
resulting nine formulas is reduced to ordinary mathematical reasoning by
expanding the appropriate definitions. The only place where not under-
standing the algorithms could result in an error is in the definition of the in-
variant InvOB or of the refinement mapping. Catching such an error requires
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only careful reasoning about simple set theory and a tiny bit of arithmetic,
using elementary logic. Someday, computers should be very good at such
reasoning.

6.4.3 Refinement of Fairness

This section shows how to prove that a program refines the fairness property
of another program by sketching the proof of one example: OB implies
LMFair . Define

OBB
∆
= 2(InvOB ∧ InvLM) ∧ 2[NextOB]vOB ∧ OBFair

where InvOB is the invariant satisfied by OB defined by (4.19) and (4.17),
and InvLM is an invariant of LM . For our example, we just require that
InvLM implies type correctness of LM . Formula OBB is a 2 formula that is
implied by OB . (We have proved that OB implies LMSafe, which implies
that InvLM is an invariant of OB .) We now prove |= OBB ⇒ LMFair .

We use Theorem 4.8 to write LMFair as the conjunction of weak fairness
of WaitLM(p), CSLM(p), and ExitLM(p), for p ∈ {0, 1}. So, we have to prove
|= OBB ⇒ WFvLM(ALM) for ALM equal to each of those six actions. By
(4.12), we can do this by proving:

|= OBB ⇒ (2 E〈ALM 〉vLM ; 〈ALM 〉vLM)(6.15)

We prove (6.15) by finding an action BOB and state predicates POB and QOB

satisfying the following conditions:

A1. 1. |= InvOB ∧ InvLM ∧ E〈ALM 〉vLM ⇒ QOB

2. |= OBB ⇒ (2QOB ; 2POB)

A2. 1. |= InvOB ∧ InvLM ∧ POB ⇒ E〈BOB 〉vOB

2. |= OBB ⇒ WFvOB(BOB)

A3. |= InvOB ∧ InvLM ∧ POB ∧ 〈BOB 〉vOB ⇒ 〈ALM 〉vLM
To show that these conditions imply (6.15), we have to show that they imply
that in any behavior σ satisfying OBB , if 2 E〈ALM 〉vLM is true of σ+m , then
σ(n) → σ(n + 1) is an 〈ALM 〉vLM step for some n ≥ m. Condition A1.1

implies 2QOB is true of σ+m , which by A1.2 implies 2POB is true of σ+q for
some q ≥ m. By the definition of WF, conditions A2 imply σ(n)→ σ(n +1)
is a 〈BOB 〉vOB step for some n ≥ q , and A3 implies that 〈BOB 〉vOB step is
an 〈ALM 〉vLM step.
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ALM QOB BOB POB

WaitLM(0) ∧ pcOB(0) ∈ {wait, w2}
∧ pcOB(1) /∈ {cs, exit}

W2OB(0) ∧ pcOB(0) = w2
∧ ¬x(1)

WaitLM(1) ∧ pcOB(1) ∈
{wait, w2, w3, w4}

∧ pcOB(0) /∈ {cs, exit}

W2OB(1) ∧ pcOB(1) = w2
∧ ¬x(0)

CSLM(p) pcOB(p) = cs CSOB(p) pcOB(p) = cs

ExitLM(p) pcOB(p) = exit ExitOB(p) pcOB(p) = exit

Figure 6.3: Formulas BOB, POB, and QOB for the actions ALM, with p ∈ {0, 1}.

The formulas BOB, POB, and QOB used for the six actions ALM are shown
in Figure 6.3. Condition A2.1 for the actions ALM follows easily from the
definitions of BOB and POB. To show that A2.2 is satisfied, we apply Theo-
rem 4.8 to write OBFair as the conjunction of weak fairness of the actions
described by each process’s statements other than its ncs statement. That
A3 is satisfied for the four actions ALM in Figure 6.3 follows from conditions
R3a, R3c, R6, and R7 of Section 6.4.2.

This leaves condition A1 for the actions. A1.1 is proved by using
the type correctness invariant implied by InvLM to show that E〈ALM 〉vLM
equals E(ALM) , and then substituting pcBarOB for pcLM and semBarOB

for semLM in E(ALM) . For our example, this actually shows that InvLM

implies E〈ALM〉vLM ≡ QOB for all the actions ALM. A1.2 is trivially satisfied
for CSLM(p) and ExitLM(p), since QOB and POB are equal. The interesting
conditions are A1.2 for WaitLM(0) and WaitLM(1). They are the kind of
leads-to property we saw how to prove in Section 4.2.5. In fact, we now
obtain a proof of A1.2 for WaitLM(0) by a simple modification of the proof
in Section 4.2.5.3 that OB implies:

(pc(0) ∈ {wait ,w2}) ; (pc(0) = cs)(6.16)

Let’s drop the subscript OB , so the variables in any formula whose name
has no subscript are the variables of OB . The proof of (6.16) is described
by the proof lattice of Figures 4.4 and 4.5. A 2 formula in a label on a
box in a proof lattice means that the formula is conjoined to each formula
inside the box. Since F ; G implies (2H ∧ F ) ; (2H ∧ G) for any F ,
G , and H , we obtain a valid proof lattice (one whose leads-to assertions are
all true) by conjoining 2InvLM ∧ OBFair ∧ 2Q to the labels of the outer
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boxes in the lattices of Figures 4.4 and 4.5. This makes those labels equal
to OBB ∧ 2Q . Since Q implies pc(0) ∈ {wait ,w2} , we obtain a valid
proof lattice by replacing the source node of the lattice in Figure 4.4 by
2Q . Moreover, since the new label’s conjunct 2Q implies 2(pc(0) 6= cs),
so it’s impossible for pc(0) ever to equal cs, we can remove the sink node
pc(0) = cs and the edges to and from it from the lattice of Figure 4.5.2

Since the label on the inner box containing 2¬x (1) , which is the new sink
node, implies 2(pc(0) = w2) , we now have a valid proof lattice that shows:

|= OBB ⇒ (2Q ; 2((pc(0) = w2) ∧ ¬x (1)))

This proves A1.2 for the action WaitLM(0).
To prove A1.2 for action WaitLM(1), it suffices to assume OBB and prove

2Q ; 2P for the formulas P and Q given in Figure 6.3 for the action. Here
is the proof sketch, which uses without mention some simple temporal logic,
including transitivity of ;.

1. 2Q ⇒ 2¬x (0)

1.1. 2Q ⇒ 2(pc(0) /∈ {wait ,w2})
Proof: We proved in Section 4.2.5.3 that pc(0) ∈ {wait ,w2} leads to
pc(0) = cs, and 2Q implies 2(pc(0) 6= cs).

1.2. 2Q ∧ 2(pc(0) /∈ {wait ,w2}) ⇒ 2(pc(0) = ncs)

Proof: Q implies pc(0) /∈ {cs, exit}, which by Inv and pc(0) /∈ {wait ,w2}
implies pc(0) = ncs.

1.3. Q.E.D.

Proof: By steps 1.1 and 1.2, since Inv ∧Q imply pc(0) = ncs, and Inv
and pc(0) = ncs imply ¬x (0).

2. 2Q ∧ 2¬x (0) ; 2P

2.1. 2Q ∧ 2¬x (0) ; (pc(1) = w2)

Proof: Q implies pc(1) ∈ {wait ,w2,w3,w4}, and a straightforward
proof using fairness of PNext(1) and 2¬x (0) shows

(pc(1) ∈ {wait ,w2,w3,w4}) ; (pc(1) = w2)

2.2. 2Q ∧ 2¬x (0) ∧ (pc(1) = w2) ⇒ 2(pc(1) = w2)

Proof: 2Q implies 2(pc(1) 6= cs), and (pc(1) = w2) ∧ 2[Next ]v ∧
2(pc(1) 6= cs) implies 2(pc(1) = w2).

2Equivalently, we can remove edge 8 and add an edge from pc(0) = cs to false and
an edge from false to 2¬x (1), since false implies anything.
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2.3. Q.E.D.

Proof: Steps 2.1 and 2.2 imply 2Q ∧ 2¬x (0) ; 2(pc(1) = w2), and
2P equals 2(pc(1) = w2) ∧2¬x (0).

3. Q.E.D.

Proof: By steps 1 and 2.

6.4.4 A Closer Look at E

6.4.4.1 A Syntactic View

Section 4.2.1 explained E semantically, defining E(A) to be true of a state
s iff there exists a state t such that action A is true of the step s → t . We
now translate this semantic definition into a syntactic definition of E(A). A
state is an assignment of values to variables, so we can restate that definition
as:

E1. E(A) is true for an assignment of values to the unprimed variables
iff there exists an assignment of values to the primed variables that
makes A true.

A state predicate is true of a state iff it is true when its variables have the
values assigned to them by the state. We can therefore restate E1 as:

E2. E(A) is true (of a state) iff there exist values of the primed variables
for which A is true.

We now translate E2 into a precise syntactic definition of E.
To do this, for any variable x , we regard x and x ′ as two unrelated

symbols. For an expression exp, we take exp′ to be the expression obtained
by priming all the variables in exp. If exp contains a defined symbol whose
definition contains variables, then all the variables in that definition are
primed in exp′.

We now define awith to be substitution like with, except regarding x ′

as being a different variable from x . For example, if x , y , and z are variables,
then:

(x ′ = x + 1) with x ← y − z equals (y − z )′ = (y − z ) + 1

(x ′ = x + 1) awith x ← y − z equals x ′ = (y − z ) + 1

(x ′ = x + 1) awith x ′ ← y − z equals (y − z ) = x + 1

If sym is a defined symbol, then

(x ′ = x + sym) awith x ′ ← y − z
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equals

(y − z ) = x + (sym awith x ′ ← y − z )

If sym
∆
=
√

2 ∗ x ′, then this equals

(y − z ) = x +
√

2 ∗ (y − z )

Now let A be an action and let x 1, . . . , xn be all the variables that
appear in A. We can then write E2 as:

E(A)
∆
= ∃ c1, . . . , cn : (A awith x ′1 ← c1, . . . , x ′n ← cn)(6.17)

Thus, we obtain E(A) from A by replacing the primed variables by bound
constants that are existentially quantified. We informally describe this def-
inition by saying that E(A) is obtained from A by existentially quantifying
its primed variables.

6.4.4.2 Computing E

The syntactic definition (6.17) of E immediately provides rules for writing
E(A) in terms of formulas E(B i), for B i subactions of A. From the rule

|= (∃ c : A ∨ B) ≡ (∃ c : A) ∨ (∃ c : B)

we have

E1. |= E(A ∨ B) ≡ E(A) ∨ E(B)

For example, in program LM defined in Section 4.2.6.1, the next-state action
PNext(p) is the disjunction of actions Ncs(p), Wait(p), Cs(p), and Exit(p).
Therefore, rule E1 implies

E(PNext(p)) ≡ E(Ncs(p)) ∨ E(Wait(p)) ∨ E(Cs(p)) ∨ E(Exit(p))

The generalization of E1 is:

E2. |= E(∃ i ∈ S : Ai) ≡ ∃ i ∈ S : E(Ai)

where S is a constant or state expression.
Another rule of existential quantification is that if the constant c does

not occur in A, then ∃ c : (A ∧ B) is equivalent to A ∧ (∃ c : B). From this
we deduce:

E3. If no variable appears primed in both A and B , then |= E(A ∧ B) ≡
E(A) ∧ E(B).
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For example, in program LM we have:

Wait(p)
∆
= ∧ (sem = 1) ∧ (pc(p) = wait)
∧ sem ′ = 0
∧ pc′ = (pc except p 7→ cs)

Therefore, rule E3 implies

E(Wait(p)) ≡ ∧ E((sem = 1) ∧ (pc(p) = wait))
∧ E(sem ′ = 0)
∧ E(pc′ = (pc except p 7→ cs))

(6.18)

The following two rules also follow easily from (6.17) and properties of ex-
istential quantification:

E4. If P is a state predicate, then |= E(P) ≡ P .

E5. If x is a variable and exp is a state expression, then |= E(x ′ = exp) ≡
true.

From (6.18), E4, and E5, we deduce that E(Wait(p)) equals (sem = 1) ∧
(pc(p) = wait). Here is another obvious rule, which can be considered a
generalization of E5, since c = exp is equivalent to c ∈ {exp} :

E6 If x is a variable and exp is a state expression, then |= E(x ′ ∈ exp) ≡
(exp 6= {}).

Rules E1– E6 are sufficient for computing E(A) for almost all subactions
A that, like PNext(p), appear in the definition of a program’s next-state
action. However, the definition of fairness does not contain such formu-
las E(A). Instead, it contains formulas of the form E〈A〉v , which equals
E(A ∧ (v ′ 6= v)). None of those rules apply to such a formula. In particular,
E3 does not apply because v is the tuple of all the program’s variables.

Most of the time, a subaction A in the definition of a program’s next-
state action does not allow stuttering steps. Therefore, 〈A〉v equals A, so
E〈A〉v equals E(A) and we can apply the rules. For example, E〈PNext(p)〉v
equals E(PNext(p)) because a PNext(p) step changes the value of pc(p), so
it can’t be a stuttering step. We are using the substitutivity rule (3.35) of
ordinary math to deduce

|= (A ≡ B) ⇒ ( E(A) ≡ E(B))

(Even though substitutivity is not valid for TLA or the Logic of Actions, we
can apply it to the syntactic definition (6.17) of E, which treats x and x ′ as
two different variables of ordinary math—that is, two different constants.)
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However, we can’t deduce PNext(p) ≡ 〈PNext(p)〉v from the definition
of PNext(p). For example, if pc(p) = cs, then the definition of PNext(p)
asserts

pc′ = (pc except p 7→ exit)

If p is not in the domain of pc, then pc′(p) = pc(p). If pc is not a function,
then we have no idea what pc′(p) equals, so it could equal pc(p). Fortu-
nately, we care what E〈PNext(p)〉v equals only in reachable states of LM .
So, we just have to prove that Inv implies E〈PNext(p)〉v ≡ E(PNext(p))
for an invariant Inv of LM that asserts type correctness. To do this, we
observe that for any action A and state predicate P , rules E3 and E4 imply
P ∧ E(A) ≡ E(P ∧ A). So, to prove that Inv implies E〈PNext(p)〉v ≡
E(PNext(p)), it suffices to prove

|= Inv ⇒ (〈PNext(p)〉v ≡ PNext(p))

which is straightforward. In general, we reason about liveness under the
assumption that the program’s safety property is satisfied, so we can assume
2Inv is true for an invariant Inv of the program.

Since the formula 2[Next ]v always allows stuttering steps, there is no
need for a next-state action Next to allow them. Usually, it doesn’t. How-
ever, there is no reason for Next not to allow stuttering steps, and sometimes
it’s more convenient to write a subaction A that allows them. In that case,
we have to use the definition (6.17) to compute E〈A〉v . However, we apply
the definition to E(Inv ∧ 〈A〉v ), which equals E〈Inv ∧ A〉v , for a program
invariant Inv .

6.4.4.3 The Trouble With E

Refinement is based on substitution. Program OB refines LM means:

|= OB ⇒ (LM with pc ← pcBar , sem ← semBar)(6.19)

We no longer need the subscripts that were added to help us understand
which program an identifier refers to. We continue using the abbreviation
that, for any formula F :

F
∆
= (F with pc ← pcBar , sem ← semBar)

Almost without thinking, we replaced Init ∧2[Next ]v with the equivalent
property Init ∧2[Next ]v . We were actually using these three rules:

• F ∧G ≡ F ∧G for any formulas F and G .
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• 2F ≡ 2F for any formula F .

• [A]v ≡ [A]v for any action A and state expression v .

The first asserts that substitution distributes over ∨; the second asserts
that substitution distributes over 2; and the third asserts that substitution
distributes over the construct [. . .]....

We expect substitution to distribute in this way over all mathematical
operators, so we would expect E(A) and E(A) to be equal for any action A.
In fact, they are equal for most actions encountered in practice. But here’s
an action A for which they aren’t for the refinement mapping of (6.19):

A
∆
= ∧ pc′ = (p ∈ {0, 1} 7→ wait)
∧ sem ′ = 0

Rules E3 and E5 imply that E(A) equals true, so E(A) equals true. By
definition of the refinement mapping:

A
∆
= ∧ pcBar ′ = (p ∈ {0, 1} 7→ wait)
∧ semBar ′ = 0

A implies pcBar ′(p) = wait for p ∈ {0, 1}. By definition of pcBar , this
implies:

(1) pc′(p) ∈ {w2,w3,w4,wait} for p equal to 0 or 1.

But A also implies semBar ′ = 0, which by the definition of semBar implies:

(2) pc′(p) ∈ {cs, exit} for p equal to 0 or 1.

Both (1) and (2) can’t be true, so A must equal false and thus E(A)
equals false. Therefore, E(A) does not equal E(A), so substitution does
not always distribute over E.

The reason substitution doesn’t distribute over E is that E(A) performs
the substitutions pc ← pcBar and sem ← semBar for the primed variables
pc′ and sem ′. However, as we see from (6.17), those primed variables do not
occur in E(A); they are replaced by bound constants. The substitutions
should be performed only on the unprimed variables. Therefore:

E(A) with pc ← . . . , sem ← . . .

does not equal

E(A with pc ← . . . , sem ← . . .)
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Instead, it equals

E(A awith pc ← . . . , sem ← . . .)

which substitutes only for unprimed variables.
Since WF and SF are defined in terms of E, substitution does not dis-

tribute over them either. We proved that OB refines LM by proving that OB
implies WFv (A) for six actions A. To evaluate WFv (A), we expanded the
definition of WF. Since substitution distributes over all the operators other
than E in the definition of WFv (PN ), including in the definition PN (p),
we could perform the substitutions everywhere in the resulting formula ex-
cept in E〈A〉v ). We could then have used (6.17) to expand the definition
of E and perform the substitution on the resulting formula, which contains
no primed variables. (This is equivalent to performing the substitution in
E〈A〉v , except using awith instead of with.)

While expanding the definition of E in this way would have allowed
E〈A〉v to be evaluated, it would have required applying E to an action
that was more complicated than 〈A〉v . That’s not what we did in the proof
sketch in Section 6.4.3. Instead we showed that 〈A〉v equals A and performed
the substitution on E(A). Showing 〈A〉v ≡ A required an invariant Inv of
LM , but because OB refines LMSafe, the formula Inv is an invariant of OB ,
allowing us to deduce that E〈A〉v equals A.

Substitution not distributing over E makes E mathematically weird.
You should be suspicious of such weird things. The operators 2 and ′

(prime) that TLA adds to ordinary math are weird because they are not
substitutive. But substitution does distribute over them. Moreover, tempo-
ral logic is a well-studied field of math. I find E weirder than the temporal
logic operators.

However, fairness is an important concept in concurrent programs. The
WF and SF operators are the mathematical expressions of what fairness has
meant since Dijkstra introduced the assumption of weak fairness in 1965 [9].
There seems to be no good way to express it mathematically without the
operator E.

A similarly weird operator has been at the heart of traditional programs
since the earliest coding languages—namely, the action composition operator
“·” introduced in Section 3.4.1.4. If x 1, . . . , xn are all the variables that
appear in actions A and B , then A · B can be defined syntactically by:

A · B ∆
= ∃ c1, . . . , cn : ∧ (A awith x ′1 ← c1, . . . , x ′n ← cn)

∧ (B awith x 1 ← c1, . . . , xn ← cn)
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The primed variables of A and the unprimed variables of B are replaced by
bound constants, and substitution does not distribute over “·” for the same
reason it doesn’t distribute over E.

The common methods for reasoning about traditional programs written
in an imperative language can be viewed as a form of Hoare logic. As ex-
plained in Appendix Section A.5, such a logic can be viewed mathematically
as defining the meaning of a statement S to be an action AS . If the mean-
ings of statements S and T are the actions AS and AT , then the meaning
of S ; T is the action AS ·AT .

With this way of reasoning, the semicolon of imperative coding languages
therefore has the same weirdness as the E operator. I suspect this was never
discovered because people thought of programs in terms of conventional
code, and it makes no sense to implement a variable x by an expression
when x can appear in an assignment statement x : = . . . .

6.5 A Warning

We have defined correctness of a program S to mean |= S ⇒ P for some
property P . We have to be careful to make sure that we have chosen P so
that this implies what we really want correctness of the program to mean.
As discussed in Section 5.1, we have to be concerned with the accuracy of P .

When correctness asserts that S refines a program T , the property P
is T with . . . for a refinement mapping “. . .”. That refinement mapping
is as important a part of the property as the program T , and it must be
examined just as carefully to be sure that proving refinement means what
you want it to. As an extreme example, OB also implements LM under this
refinement mapping:

pcLM ← (p ∈ {0, 1} 7→ ncs), semLM ← 1

Implementation under this refinement mapping tells us nothing about OB ,
because under it, every behavior of OB implements a behavior in which all
processes remain forever in their noncritical sections. The program obtained
by replacing the next-state action of OB by false also implements LM
under this refinement mapping.

Such an egregiously useless refinement mapping can often be detected
because, under a refinement mapping that implements behaviors of a pro-
gram T by behaviors of program S that do nothing, S won’t implement
the fairness properties of T . However, programs often don’t require that
actions representing the initiation of an operation by the environment ever
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occur. In such a case, it’s a good idea to make sure that S refines T when
fairness requirements are added to those actions in both programs. This is
an application of the general idea of adding fairness to verify possibility that
was introduced in Section 5.1.2.



Chapter 7

Auxiliary Variables

An auxiliary variable is a variable that is added to an abstract program
without altering the values assumed by the program’s regular variables. It’s
sometimes necessary to add auxiliary variables to a program in order to prove
that it refines another program. Sections 7.2, 7.3, and 7.4 define the three
kinds of auxiliary variables that may be needed, illustrating them with silly
little examples. Section 7.6 describes a realistic example that makes use of
all three kinds of auxiliary variables. We begin with a section that explains
variable hiding, which is the basis for auxiliary variables and is also used in
Chapter 8.

7.1 Variable Hiding

Math IX

Reasoning About ∃ Variable hiding in abstract programs is performed
with an existential quantifier of temporal logic. That quantifier obeys the
same rules as the unbounded quantifier ∃ of ordinary math, so we now
examine those rules. We are concerned with two rules: the ∃ Introduction
rule used for proving a formula ∃ v : F , and the ∃ Elimination rule used
for proving that ∃ v : F implies a formula G . Rules for reasoning about the
bounded quantifier ∃ v ∈ S can be obtained from these rules by replacing F
with (v ∈ S ) ∧ F and then replacing ∃ v : (v ∈ S ) ∧ F with ∃ v ∈ S : F .

∃ Introduction To prove ∃ v : F , we have to show that there is a value of
v that makes F true. We do this by explicitly describing that value. This

163
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is asserted by the following rule, where exp is an arbitrary expression:

|= (F with v ← exp) ⇒ (∃ v : F )

∃ Elimination Suppose ∃ v : F is true and F ⇒ G is true when v has any
value. This implies that G is true for the particular value of v that makes
F true, so ∃ v : G is true. Stated precisely, this rule is:

|= F ⇒ G implies |= (∃ v : F )⇒ (∃ v : G)

This doesn’t look like an ∃ elimination rule because we use ∃ v : F to prove
another existentially quantified formula ∃ v : G , so we haven’t eliminated
the ∃ . It becomes an elimination rule if v is not a free variable of G ,
because then ∃ v : G is equivalent to G . The rule is usually stated with
∃ v : G replaced by G and the side condition that v is not a free variable
of G . This syntactic side condition can be replaced by the more general
mathematical condition that substituting 0 (or any other fixed value) for v
leaves G unchanged. (This condition is satisfied by the formula v = v , in
which v occurs.) In practice, the syntactic condition is good enough. But
the mathematical condition makes it clear that v not occurring free in G
means that v does not occur in G after the definitions of all defined symbols
that appear in G have been expanded. With this understanding of what it
means, the rule used to eliminate the quantifier from ∃ x : G is:

|= (∃ v : G) ≡ G if v does not occur free in G(7.1)

Of course, the same rule holds for the quantifier ∀ as well.

7.1.1 Introduction

Recall the behavior predicate F12, discussed in Section 4.1.2, that is true of
a behavior iff the value of x can equal 2 in a state only if x equaled 1 in a
previous state. We gave a semantic definition of F12; it can’t be expressed
in RTLA or TLA as those languages have been defined so far. We observed
that F12 can be expressed as the abstract program S 12, defined in (4.2), by
introducing an additional variable y .

The variable x that we’re interested in is called an interface variable.
The variable y that’s used only to describe how the values of x can change
is called an internal variable. There’s a problem with using the internal
variable y to describe F12. Consider the abstract program S x that starts
with x = 0 and can keep incrementing x by one:

S x
∆
= (x = 0) ∧ 2[x ′ = x + 1]x
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Since S x allows x to equal 2 only after it has equaled 1, it satisfies property
F12. However, S x doesn’t imply S 12 because S 12 describes how the values of
x and y change, while S x allows behaviors in which y can have any values.

We want to express F12 by a formula that asserts of a behavior σ that
there is some way to assign values to y that makes S 12 true, but says nothing
about the actual values of y . As mentioned in Section 4.1.2, that formula is
written ∃∃∃∃∃∃ y : S 12. The operator ∃∃∃∃∃∃ is explained here.

In ordinary math, the formula ∃ y : x ∗ y2 = 36 asserts that there is some
value y for which x ∗y2 equals 36, but says nothing about the actual value of
y . The variables of ordinary math correspond to the constants of temporal
logic. The y in ∃ y : S 12 is a constant, so that formula asserts that there is a
constant value y that satisfies S 12; and that value equals true if the initial
value of x is 1, otherwise it equals false. Formula ∃ y : S 12 asserts that x
can never equal 2 unless the initial value of x is 1, which is not what F12

asserts.
The formula ∃∃∃∃∃∃ y : S 12 is true of a behavior iff the values of x in that

behavior are the same as its values in a behavior satisfying S 12, where y
is a variable rather than a constant; but it says nothing about the actual
values assumed by y . Thus, y is a bound variable, not a free variable, of
∃∃∃∃∃∃ y : S 12. The precise definition of ∃∃∃∃∃∃ is subtle and is given below. For now,
we just need to know that [[∃∃∃∃∃∃ y : S 12]] equals F12. I like to say that ∃∃∃∃∃∃ y : S 12

is formula S 12 with y hidden, because ∃∃∃∃∃∃ does what hiding is supposed to
do in coding languages.

We now generalize abstract programs to allow quantification over vari-
ables. As with the operator ∃ , we let ∃∃∃∃∃∃ y1, . . . , yn : F be an abbreviation
for ∃∃∃∃∃∃ y1 : . . . ∃∃∃∃∃∃ yn : F . The general form of an abstract program with hidden
variables is:

∃∃∃∃∃∃ y1, . . . , yk : Init ∧2[Next ]v ∧ L(7.2)

with internal (bound) variables y1, . . . , yk . (The interface variables are the
free variables of the formula.) Theorem 4.9 shows that any property that
can be described mathematically can be written in this form, with a single
bound variable. However, ∃∃∃∃∃∃ is of little use in practice. The only role it
plays is telling us that, when implementing the program, it doesn’t matter
how the internal variables are refined. That can be stated just as well in a
comment; we don’t need to introduce a new operator just for that. In fact,
although ∃∃∃∃∃∃ is an operator of TLA+ and is recognized by the parser, none of
the current tools handle it. Model checking formulas containing ∃∃∃∃∃∃ seems to
be computationally infeasible. I don’t know of any engineer wanting to use
it.
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The reason to understand the temporal existential quantification oper-
ator ∃∃∃∃∃∃ is that it is the logical underpinning of important concepts such as
the auxiliary variables discussed in this chapter.

7.1.2 Reasoning About ∃∃∃∃∃∃

Allowing an abstract program to be described with a formula of the form
(7.2) raises the question of how to reason about such formulas. The answer
is that the operator ∃∃∃∃∃∃ obeys the same introduction and elimination rules as
the quantifier ∃ of ordinary math, except with program variables (now called
variables) replacing the mathematical variables (now called constants). In
principle, ∃∃∃∃∃∃ has the same problem of variable capture as ∃ , but in practice,
∃∃∃∃∃∃ is used in such a restricted way that variable capture is not an issue.

We want to reason about a formula of the form ∃∃∃∃∃∃ y1, . . . , yk : F . Apply-
ing the ∃ introduction rule k times to ∃∃∃∃∃∃ , we get the following rule, where
the expi may be any expressions:

|= G ⇒ (F with y1 ← exp1, . . . , yk ← expk )

implies |= G ⇒ ∃∃∃∃∃∃ y1, . . . , yk : F

Applying the ∃ elimination rule k times to ∃∃∃∃∃∃ , we get the rule:

|= F ⇒ G implies |= (∃∃∃∃∃∃ y1, . . . , yk : F )⇒ G

if no variable y i occurs free in G .

Of course, we can always ensure that no y i occurs free in G by renaming
the internal variables y i of F .

Combining these two rules, we see that we can prove that one program
of the form (7.2) implements another program of that form by proving an
assertion of the form

T ⇒ (S with y1 ← exp1, . . . , yk ← expk )(7.3)

where S and T have the standard form Init ∧2[Next ]v ∧ L of an abstract
program, and none of the internal variables of T are interface variables of
S . For every interface variable x of S , which in practice must also be an
interface variable of T , the with clause includes an implicit substitution
x ← x that substitutes the variable x of T for the variable x of S . Thus,
the with clause describes a refinement mapping under which T refines S .

This raises a question: If |= T ⇒ ∃∃∃∃∃∃ y1, . . . , yk : S is true, do there al-
ways exist expressions expi for which (7.3) is true? The answer is no, if
we can use only the variables that appear in T to define the refinement
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mapping. If S has the form Init ∧ 2[Next ]v ∧ L, then the answer is yes if
we’re allowed to add auxiliary variables to T . Adding an auxiliary variable
a (which does not occur in T ) to T means writing a formula T a such that
∃∃∃∃∃∃ a : T a is equivalent to T . By this equivalence, we can verify |= T ⇒ S by
verifying |= (∃∃∃∃∃∃ a : T a)⇒ S . By the ∃∃∃∃∃∃ Elimination rule, we do this by veri-
fying |= T a ⇒ S . And to verify this, we can use a as well as the variables of
T to define the refinement mapping. Auxiliary variables are the main topic
of this chapter and are discussed after the definition of ∃∃∃∃∃∃ .

7.1.3 The Definition of ∃∃∃∃∃∃

The standard way temporal existential quantification is defined in most tem-
poral logics is not suitable for TLA because it does not preserve stuttering
insensitivity (SI), defined in Section 3.5.3. It’s the natural way to define it
for RTLA, so we will call the operator defined in that way ∃∃∃∃∃∃rtla.

To define ∃∃∃∃∃∃rtla, we first define s =y t to be true for states s and t iff the
values of all variables except y are the same in states s and t . Remembering
that σ(i) is state number i of a behavior σ, we define the relation ' y on
behaviors by:

σ 'y τ
∆
= ∀ i ∈ N : σ(i) =y τ(i)

Therefore, σ 'y τ asserts that behaviors σ and τ are the same except for
the values assigned to y by their states. We then define ∃∃∃∃∃∃rtla y : F to be
satisfied by a behavior σ iff it is satisfied by some behavior τ with σ 'y τ .

The operator ∃∃∃∃∃∃rtla is not a suitable hiding operator for properties, and
hence not suitable for TLA, because the formula ∃∃∃∃∃∃rtla y : F need not be SI,
and thus not a property, even if F is. For example, let F be the following
formula, where brc is the largest integer less than or equal to r :

(x = y = 0) ∧ 2[(y ′ = y + 1) ∧ (x ′ = by ′/2c)]〈x ,y 〉(7.4)

Ignoring the values of other variables, the property F is satisfied by this
non-halting behavior with no stuttering steps:[

x :: 0
y :: 0

]
0

→
[

x :: 0
y :: 1

]
1

→
[

x :: 1
y :: 2

]
2

→
[

x :: 1
y :: 3

]
3

→
[

x :: 2
y :: 4

]
4

→ · · ·

The non-halting behaviors of ∃∃∃∃∃∃rtla y : F consist of this behavior:[
x :: 0

]
0
→
[
x :: 0

]
1
→
[
x :: 1

]
2
→
[
x :: 1

]
3
→
[
x :: 2

]
4
→ · · ·(7.5)
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and behaviors obtained from it by adding stuttering steps. An SI formula
containing the one free variable x that allows behavior (7.5) should also
allow this behavior:[

x :: 0
]
0
→
[
x :: 1

]
1
→
[
x :: 2

]
2
→
[
x :: 3

]
3
→
[
x :: 4

]
4
→ · · ·(7.6)

Since ∃∃∃∃∃∃rtla y : F does not allow this behavior, it is not SI, so it is not a
property.

To obtain the proper quantifier ∃∃∃∃∃∃ for TLA, we modify the definition of
∃∃∃∃∃∃rtla so ∃∃∃∃∃∃ y : F is satisfied by (7.6). The definition of ∃∃∃∃∃∃ is the same as that
of ∃∃∃∃∃∃rtla except with the relation ' y on behaviors replaced by a relation
∼y . This relation is defined so σ ∼y τ means approximately that σ can be
obtained from τ by adding and removing stuttering steps and then changing
the values of y . The precise definition of ∼y is subtle. (In fact, its definition
in [35] is wrong.)

To define ∼y , we first define the operator \y on behaviors. This operator
is the same as the operator \ defined in Section 3.5.3, except it removes
“almost stuttering” steps instead of just stuttering steps, where a step s → t
is almost stuttering if s =y t . The precise definition is that \y(σ)(n) equals
σ(f y,σ)(n), where the definition of f y,σ is obtained from the definition of f σ
in Section 3.5.3 by replacing = and 6= by =y and 6=y in “σ(i) = ” and
“σ(i) 6= ”.

We now define σ ∼y τ to equal \y(σ) 'y \y(τ) and define ∃∃∃∃∃∃ y : F to be
satisfied by a behavior F iff there is a behavior τ satisfying F such that
σ ∼y τ . Observe that σ 'y τ implies σ ∼y τ , so ∃∃∃∃∃∃rtla y : F implies ∃∃∃∃∃∃ y : F
for any behavior predicate F .

One reason not to use ∃∃∃∃∃∃ is that if S is a safety property, then ∃∃∃∃∃∃ y : S
need not be a safety property. Temporal quantification destroys the nice
separation of safety and liveness provided by our way of describing abstract
programs. For example, let F be this safety property for an abstract pro-
gram:

∧ (x = 0) ∧ (y ∈ N)

∧ 2 [(y > 0) ∧ (x ′ = x + 1) ∧ (y ′ = y − 1)]〈x ,y 〉

(7.7)

In a behavior satisfying this formula, x cannot be incremented forever be-
cause eventually y would equal 0, making any further non-stuttering steps
impossible. Therefore, formula ∃∃∃∃∃∃ y : F is equivalent to

(x = 0) ∧ 2[x ′ = x + 1]x ∧ 32[x ′ = x ]x(7.8)

To see that this is not a safety property, remember that a behavior σ satisfies
a safety property iff every finite prefix of σ satisfies that property. Consider
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a behavior σ in which x does keep being incremented forever. Every finite
prefix of σ satisfies (7.8), since completing the prefix with stuttering steps
makes the behavior satisfy the liveness property 32[x ′ = x ]x . However, σ
doesn’t satisfy (7.8) because it doesn’t satisfy this liveness property. There-
fore, even though formula F , defined to equal (7.7), is a safety property,
formula ∃∃∃∃∃∃ y : F , which is equivalent to (7.8), is not a safety property.

7.2 History Variables

The simplest kind of auxiliary variable is a history variable. As the name
implies, a history variable is used to remember things that happened in the
past and can’t be deduced from the current state. We may need to add a
history variable to T to prove |= T ⇒ S when the internal state of S records
information about past events that isn’t needed to describe the behavior of
its interface variables.

7.2.1 How to Add a History Variable

Except in one unusual case described in Section 7.3.5, we add an auxiliary
variable to an abstract program by adding it to the safety part of the pro-
gram. Thus, if T equals Init ∧2[Next ]v ∧ L for a liveness property L, then
the formula T h obtained by adding a history variable h will equal

Inith ∧2[Nexth ]vh ∧ L

where Inith and Nexth are obtained by augmenting Init and Next to de-
scribe, respectively, the initial value of h and how h can change; and vh is
the tuple v ◦ 〈h 〉 of the variables of v and the variable h. Since h does not
appear in L, the formula ∃∃∃∃∃∃ h : T h equals

(∃∃∃∃∃∃ h : Inith ∧2[Nexth ]vh) ∧ L

We can therefore ignore L for now, so we assume T equals Init ∧2[Next ]v
and show how to define Inith and Nexth .

We use a tiny example to illustrate history variables. There is an abstract
program in which a user inputs a sequence of real numbers and the system
displays the average of the numbers entered thus far. The interface variables
are inp and avg . Initially, inp equals a value rdy that is not a number and
avg = 0. The user’s input action sets inp to a real number and leaves avg
unchanged. The system’s output action sets avg to the new average of the
inputs and resets inp to rdy .
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InitS
∆
= (inp = rdy) ∧ (avg = 0) ∧ seq = 〈 〉

User
∆
= ∧ inp = rdy
∧ inp′ ∈ R
∧ (avg ′ = avg) ∧ (seq ′ = seq)

Syst
∆
= ∧ inp ∈ R
∧ seq ′ = Append(seq , inp)
∧ avg ′ = SeqSum(seq ′) /Len(seq ′)
∧ inp′ = rdy

NextS
∆
= User ∨ Syst

IS
∆
= InitS ∧2[NextS ]〈inp,avg,seq 〉

S
∆
= ∃∃∃∃∃∃ seq : IS

Figure 7.1: The abstract averaging program S.

This abstract program is described by formula S of Figure 7.1. It uses an
internal variable seq whose value is the ordinal sequence of numbers input
so far. Recall that R is the set of real numbers, and Section Math VII
defines these operators on sequences seq : Append(seq , inp) is the sequence
obtained by appending inp to the end of seq ; Len(seq) is the length of seq ;
and Tail(seq) is the sequence obtained by removing the first element of
seq if seq is nonempty. The operator SeqSum is defined as follows so that
SeqSum(sq) is the sum of the elements of a finite sequence sq of numbers:

SeqSum(sq)
∆
= if sq = 〈 〉 then 0 else sq(1) + SeqSum(Tail(sq))

Using the internal variable seq to write the behavior predicate S is arguably
the clearest way to describe the values assumed by the interface variables inp
and avg . It’s a natural way to explain that the value of avg is the average of
the values that have been input. However, it’s not a good way to describe
how to implement the system. There’s no need for an implementation to re-
member the entire sequence of past inputs; it can just remember the number
of inputs and their sum. In fact, it doesn’t even need an internal variable to
remember the sum. We can implement it with an abstract program T that
implements S using only a single internal variable num whose value is the
number of inputs that the user has entered.

We first describe T in pseudocode and construct T h by adding a history
variable h to the code. The TLA translations of the pseudocode show how
to add a history variable to an abstract program described in TLA.
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variables inp = rdy , avg = 0, num = 0 ;

while true do
usr : inp :∈ R ;
sys: avg : = (avg ∗ num + inp) / (num + 1) ;

num : = num + 1 ;
inp : = rdy

end while

Figure 7.2: Abstract program T in pseudocode.

variables inp = rdy , avg = 0, num = 0, h = 〈 〉 ;

while true do
usr : inp :∈ R ;
sys: avg : = (avg ∗ num + inp) / (num + 1) ;

num : = num + 1 ;
h : = Append(h, inp) ;
inp : = rdy

end while

Figure 7.3: Abstract program T h in pseudocode.

It’s natural to think of the user and the system in this example as two
separate processes. However, the abstract programs S and T are predicates
on behaviors, which are mathematical objects. Process is not a mathemat-
ical concept; it’s a way in which we interpret predicates on behaviors. For
simplicity, we write T as a single-process program.

The pseudocode for program T is in Figure 7.2. It uses the operator :∈
introduced in Figure 5.2, so statement usr sets inp to an arbitrary element
of R. Since we’re not concerned with implementing T , there’s no reason to
hide its internal variable num.

Because the sum of n numbers whose average is a is n ∗ a, it should be
clear that program T implements program S . But showing that T imple-
ments S requires defining a refinement mapping under which T implements
IS (program S without variable seq hidden). And that requires adding an
auxiliary variable that records the sequence of input values. Adding the
required auxiliary variable h is simple and obvious. We just add the two
pieces of code shown in black in Figure 7.3.

It is a straightforward exercise to prove

|= T h ⇒ (IS with inp ← inp, avg ← avg , seq ← h)
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using that fact that

avg ≡ if h = 〈 〉 then 0 else SeqSum(h) /Len(h)

is an invariant of T h . To show that this proves |= T ⇒ S , we have to show
that T h actually is obtained by adding the auxiliary variable h to T—that
is, we have to show that T is equivalent to ∃∃∃∃∃∃ h : T h . This requires showing
(i) |= (∃∃∃∃∃∃ h : T h)⇒ T and (ii) |= T ⇒ (∃∃∃∃∃∃ h : T h).

To show (i) we have to show |= T h ⇒ T , which is obvious because it’s
easy to see that the initial predicate and next-state action of T h imply the
initial predicate and next-state action of T . To show (ii), we have to show
that for any behavior σ satisfying T , there is a behavior τ satisfying T h

with τ ∼h σ. From the code for T h , it’s easy to obtain a recursive definition
of the value of h in each state τ(i) of τ . The declaration of h provides the
value of h in state τ(0), and the rest of the code defines the value of h in
state τ(i + 1) as a function of its value and the value of pc in state τ(i).

It’s pretty obvious how to generalize from this example to adding a
history variable h to any abstract program T described by pseudocode. We
let the initial value of h be any expression that can contain the variables of
T . We modify the pseudocode by adding at most one statement assigning a
value to h to any action of the code. The right-hand side of the assignment
can contain h as well as the variables of T . Making this precise would
require making pseudocode precise, which we don’t want to do. When we
want to be precise, we use math.

So, let’s now see how we add a history variable when the abstract pro-
gram T is written in TLA. The translation of the code in Figure 7.2 to TLA
defines

T
∆
= Init ∧ 2[Next ]〈inp,avg,num 〉 where Next

∆
= Usr ∨ Sys

Actions Usr and Sys are the actions executed from control points usr and
sys, respectively. The TLA translation of the code in Figure 7.3 is

T h ∆
= Inith ∧ 2[Nexth ]〈inp,avg,num,h 〉

where Inith
∆
= Init ∧ (h = 〈 〉)

Nexth
∆
= Usrh ∨ Sysh

Usrh ∆
= Usr ∧ (h ′ = h)

Sysh
∆
= Sys ∧ (h ′ = Append(h, inp))

(7.9)

Here is the general result that describes how to add a history variable to a
program. Its proof is a simple generalization of the proof for our example.

newpage added
to make
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theorem work



CHAPTER 7. AUXILIARY VARIABLES 173

Theorem 7.1 (History Variable) Let T equal Init ∧ 2[Next ]v , where
Next equals ∃ i ∈ I : Ai and v is the tuple of variables in T , and assume h
is not one of those variables. If T h equals Inith ∧2[Nexth ]vh , where

• Inith
∆
= Init ∧ (h = exp)

• Nexth
∆
= ∃ i ∈ I : Ai ∧ (h ′ = expi)

• vh
∆
= v ◦ 〈h 〉

• exp is a state expression that does not contain the variable h, and the
expi are step expressions that do not contain h ′,

then |= T ≡ ∃∃∃∃∃∃ h : T h .

7.2.2 History Variables and Fairness

We add a history variable h to a safety property T of the form Init∧2[Next ]v
to obtain a formula T h such that ∃∃∃∃∃∃ h : T h is equivalent to T . If a program
also contains a liveness condition L, this gives us the program T h ∧L. Since
the variable h does not occur in L, the formula ∃∃∃∃∃∃ h : T h ∧ L is equivalent to
(∃∃∃∃∃∃ h : T h) ∧ L which equals T ∧ L. Therefore the history variable h is an
auxiliary variable for T h ∧ L.

As explained in Section 4.2.7, the standard form for the liveness condition
of a program is the conjunction of weak and/or strong fairness conditions
of subactions of its next-state action. Even if T ∧ L has this form, T h ∧ L
will not because a subaction of Next will not be a subaction of Nexth . (An
action that does not mention h cannot imply Nexth .) This means that we
can’t apply Theorem 4.7 to show that 〈T h ,L〉 is machine closed. However,
we can show as follows that if 〈T ,L〉 is machine closed, then 〈T h ,L〉 is also
machine closed. By definition of machine closure, this means showing that
any finite behavior ρ satisfying T h can be extended to an infinite behavior
satisfying T h ∧ L. Since T h implies T , machine closure of 〈T ,L〉 implies ρ
can be extended to a behavior ρ ◦ σ satisfying T ∧ L. By definition of T h ,
we can modify the values of h in the states of σ to obtain a behavior τ such
that ρ ◦ τ satisfies T h . Since the truth of L does not depend on the values
of h, the behavior ρ ◦ τ also satisfies L, as required.

When using TLA, the fact that L will contain fairness conditions on
actions that are not subactions of Nexth makes no difference. However, not
everyone uses TLA. In some approaches, abstract programs are described
in something like a coding language, and they define fairness only in terms
of weak and strong fairness of subactions of the next-state action. So, it is
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interesting to know if we can replace a fairness condition on a subaction B i

of T with the same fairness condition on a corresponding subaction Bh
i of

T h . We can, under the following condition, which is likely to be satisfied
by programs written in those other languages: The next-state action of T
must be the disjunction of actions Ai , and each B i must be a subaction of
Ai such that a B i step is not an Aj step for j 6= i . The precise result is
the following, whose proof is in the Appendix. In this theorem, letting B i

equal false is equivalent to omitting that fairness condition because weak
and strong fairness of false are trivially true. (The action false is never
enabled, so (4.23) implies SFv (false) equals 23false⇒ 23false, which
equals true.)

Theorem 7.2 With the assumptions of Theorem 7.1, for all i ∈ I let B i

be a subaction of Ai such that T ∧ (i 6= j ) ⇒ 2[¬(B i ∧ Aj )]v for all j in

I ; and let Bh
i

∆
= 〈B i 〉v ∧ (h ′ = expi). Then

T ∧ (∀ i ∈ I : XFiv(Bi)) ≡ ∃∃∃∃∃∃ h : T h ∧ (∀ i ∈ I : XFivh(Bh
i ))

where each XFi is either WF or SF.

7.2.3 A Completeness Result for History Variables

A popular approach to proving safety properties of concurrent programs,
derived from work by Owicki and Gries [44], can prove only invariance
properties. We can, in theory, reduce proving safety properties to prov-
ing invariance. We do this by adding a history variable h to a program T to
obtain a program T h . For any safety property F , we can then define a state
predicate IF that is an invariant of T h iff (every behavior of) T satisfies F .
The idea is simple: We define the value of h to be the sequence of program
states in the current behavior up to and including the current state. We
then define IF to be true iff the value of h satisfies F . The result is stated
in the following theorem, whose proof is sketched in the Appendix.

Theorem 7.3 Let T equal Init ∧2[Next ]〈x〉 where x is the list of all vari-
ables of S ; let F be a safety property such that F (σ) depends only on the
values of the variables x in σ, for any behavior σ; and let h be a variable not
one of the variables x. We can add h as a history variable to T to obtain
T h and define a state predicate IF in terms of F such that |= [[T ]]⇒ F is
true iff IF is an invariant of T h .

A simple example of the theorem is when F is the safety property F12 defined
semantically by (4.1) of Section 4.1.2. That property asserts x must equal 1
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before it can equal 2. A program Init ∧2[Next ]v satisfies F 12 iff the formula
(x = 2)⇒ h is an invariant of the program obtained by adding the history
variable h to that program as follows:

(Init ∧ (h = false)) ∧ 2[Next ∧ (h ′ = h ∨ (x = 1))]v◦〈h 〉

Theorem 7.3 assumes only that F is a safety property. This might suggest
we can show that one program satisfies the safety part of another program by
verifying an invariance property. However, I have never seen this done, and
in practice it seems unlikely to be possible to describe any but the simplest
abstract programs with an invariant.

7.3 Stuttering Variables

Typically, when a lower-level abstract program T implements a higher-level
abstract program S , program T takes more steps than S does to perform an
operation. Under the refinement mapping, the extra steps of T implement
stuttering steps of S . It’s also possible for S to take more steps than T . In
that case, defining a refinement mapping requires adding steps to behaviors
of T that implement those extra steps of S . This is done by adding a
stuttering variable s to T . The extra steps are ones that change only s, so
when s is hidden, those steps become stuttering steps of T .

There are two kinds of stuttering variables used in practice: ones that
add stuttering steps immediately after steps of an action, and ones that add
stuttering steps immediately before steps of an action. They are described
in Sections 7.3.2 and 7.3.3. Multiple such variables can be combined into a
single stuttering variable. Section 7.3.5 explains another kind of stuttering
variable that is never needed in practice but could, in theory, be required.

This section talks about adding stuttering steps, which literally makes no
sense because it’s impossible to require or forbid stuttering steps in a TLA
formula. Here, adding stuttering steps to an abstract program T means
writing a formula T s containing s and the variables of T by adding steps
that change s and leave the variables of T unchanged, so that ∃∃∃∃∃∃ s : T s is
equivalent to T . In this section, a stuttering step usually means one of those
additional steps that leave the variables of T unchanged and change s.

Math X

Case Proof Steps A common proof method is case splitting—for exam-
ple, splitting the proof of a formula containing a number x into proving it
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first if x ≥ 0 and then if x < 0. This is done with Case statements, where
if G is the current goal, then Case: F is an abbreviation of F ⇒ G . A
proof by case splitting usually ends with a sequence of Case steps followed
by a Q.E.D. step showing that those steps cover all possible cases.

Well-Founded Relations A relation � is said to be well-founded on a
set S iff there is no infinite sequence s1 � s2 � . . . with s i ∈ S for all i . If
we think of s � t meaning that t is smaller than s, then well-founded on
S means that if you keep taking smaller and smaller elements of S , then
you’ll eventually reach a minimal element. (There may be many minimal
elements.) The prototypical example of a well-founded relation on a set is
the relation > on the set N of natural numbers.

7.3.1 The Example

Stuttering variables are explained with the silly example of a tiny censoring
system. An artist paints pictures and submits them to a censor, who decides
either to display or reject each picture. This system is described by the
abstract program Cen1 defined as follows.

There are two interface variables inp and disp. The artist submits a
picture w , which is an element of the set Art of all possible pictures, by
setting the value of the variable inp to w . The censor then either displays w
by setting the value of the variable disp to 〈w , i 〉, where i is set alternately
to 0 and 1, or else rejects w . (The second component of disp is needed
so displaying the same picture twice isn’t a stuttering step, which would
needlessly complicate the example.) The censor then acknowledges receipt
of the picture by setting the value of inp to a special value NotArt that is
not an element of Art .

There is also an internal variable aw that is hidden. The value of aw is
initially the empty sequence 〈 〉. It is set to 〈w 〉 when the artist submits a
picture w , and it is reset to 〈 〉 when w is either displayed or rejected. The
value of aw records whether or not the display/reject decision has been made.
That information is encoded in aw this way so the example is more easily
modified to obtain an example in Section 7.4. The complete description of
the abstract program is formula Cen1 in Figure 7.4, where ICen1 is the
program without aw hidden. (Initially, any painting may be displayed.)

There is another way to describe the artist/censor system as an ab-
stract program. In ICen1, submission of a picture w by the artist is de-
scribed by an input action that sets inp to w and aw to 〈w 〉. A separate
action DispOrNot either displays or rejects w . We define Cen2 to equal
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Cen1
∆
= ∃∃∃∃∃∃ aw : ICen1

ICen1
∆
= Init ∧ 2[Next1]v

v
∆
= 〈inp, disp, aw 〉

Init
∆
= ∧ inp = NotArt
∧ aw = 〈 〉
∧ disp ∈ Art × {0, 1}

Next1
∆
= Input ∨ DispOrNot ∨ Ack

Input
∆
= ∧ (inp = NotArt) ∧ (aw = 〈 〉)
∧ inp′ ∈ Art
∧ aw ′ = 〈inp′ 〉
∧ disp′ = disp

DispOrNot
∆
= ∧ aw 6= 〈 〉
∧ ∨ disp′ = 〈aw(1), 1− disp(2)〉
∨ disp′ = disp

∧ aw ′ = 〈 〉
∧ inp′ = inp

Ack
∆
= ∧ (inp ∈ Art) ∧ (aw = 〈 〉)
∧ inp′ = NotArt
∧ (aw ′ = aw) ∧ (disp′ = disp)

Figure 7.4: The program Cen1.

∃∃∃∃∃∃ aw : ICen2 where ICen2 describes a program in which it is the input ac-
tion that decides whether to display or reject w , setting aw to 〈w 〉 iff it
decides to display w . The displaying action always displays w if aw equals
〈w 〉. The program Cen2 is defined in Figure 7.5, where v , Init , and Ack
are the same as in Cen1 and are defined in Figure 7.4.

If we ignore the values of aw , the only difference between behaviors
of ICen1 and ICen2 is that, when a picture is rejected, the behavior of
ICen1 takes one more step than the corresponding behavior of ICen2—a
step that leaves inp and disp unchanged. Since inp and disp are the only
free variables in the two definitions of Cen, stuttering insensitivity implies
that the formulas Cen1 and Cen2 are equivalent, so they describe the same
abstract program.

To show that the two definitions are equivalent, we have to show that
ICen1 and ICen2 each implement the other under a suitable refinement map-
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Cen2
∆
= ∃∃∃∃∃∃ aw : ICen2

ICen2
∆
= Init ∧ 2[Next2]v

Next2
∆
= InpOrNot ∨ Display ∨ Ack

InpOrNot
∆
= ∧ (inp = NotArt) ∧ (aw = 〈 〉)
∧ inp′ ∈ Art
∧ ∨ aw ′ = 〈inp′ 〉
∨ aw ′ = aw
∧ disp′ = disp

Display
∆
= ∧ aw 6= 〈 〉
∧ disp′ = 〈aw(1), 1− disp(2)〉
∧ aw ′ = 〈 〉
∧ inp′ = inp

Figure 7.5: The program Cen2.

ping. We will see here how to define the refinement mapping under which
ICen2 implements ICen1. Section 7.4 shows how to define the refinement
mapping under which ICen1 implements ICen2.

7.3.2 Adding Stuttering Steps After an Action

To define the refinement mapping that shows ICen2 implements ICen1, we
have to add a stuttering step to an execution of ICen2 for each operation of
receiving an input and rejecting it. We do that by adding a stuttering vari-
able that adds a stuttering step after each InpOrNot step of the execution
that rejects the input—that is, after InpOrNot steps that set aw to 〈 〉.

The simplest stuttering variable s is one whose value is a natural number
that equals 0 except when it is adding stuttering steps (steps that change
only s), in which case s equals the number of such steps it has yet to take.
Here’s how we add such a variable that adds stuttering steps after a subac-
tion A of the next-state action.

Let T equal Init ∧2[Next ]v , where Next equals A ∨ (∃ j ∈ J : B j ) for
actions A and B j . We define T s to equal Inits ∧2[Nexts ]vs , where Nexts

equals As ∨ (∃ j ∈ J :Bs
j) and Inits , As , B s

j , and vs are defined as follows:

S1. vs is the tuple of variables obtained by appending s to the tuple v of
variables.

S2. Inits
∆
= Init ∧ (s = 0).



CHAPTER 7. AUXILIARY VARIABLES 179

S3. As ∆
= ∨ (s = 0) ∧ A ∧ (s ′ = exp)

∨ (s > 0) ∧ (v ′ = v) ∧ (s ′ = s − 1)

where exp is an expression whose value is a natural number; it can
contain the original variables primed or unprimed.

S4. Bs
j

∆
= (s = 0) ∧ B j ∧ (s ′ = 0), for j ∈ J .

Ignoring the value of s, the behaviors satisfying T s are the same as behaviors
satisfying T , except each A step in a behavior of T is followed in T s by a
finite number (possibly 0) of steps that leave the variables of T unchanged.
Therefore, by stuttering insensitivity, T and ∃∃∃∃∃∃ s : T s are satisfied by the
same sets of behaviors, so they are equivalent.

To show that ICen2 implements ICen1, we define ICen2s in this way,
where A equals InpOrNot and the B i are Ack and Display . In the definition
of InpOrNots , we let:

exp
∆
= if aw ′ = 〈 〉 then 1 else 0

This adds a stuttering step to a behavior of ICen2s after an InpOrNot step
that rejects the input.

Programs ICen1 and ICen2s take the same number of steps to process
an input. A stuttering step of ICen2s corresponds to a DispOrNot step of
ICen1 that rejects the input. If we compare behaviors of these two programs,
we find that corresponding states have the same values of the variables inp,
disp, and aw except when ICen2s is about to take a stuttering step. In that
state, s = 1 in ICen2s , and the value of aw for an input w is 〈 〉 in ICen2s

and 〈w 〉 in ICen1. This means that the value of aw in a behavior of ICen1
always equals the value of the following state function in the corresponding
behavior of ICen2s :

awBar
∆
= if s = 0 then aw else 〈inp 〉(7.10)

Therefore, ICen2s implements ICen1 under the refinement mapping that
substitutes awBar for aw . In other words:

|= ICen2s ⇒ (ICen1 with aw ← awBar)(7.11)

The proof of (7.11) is similar to, but simpler than, the refinement proof
sketched in Section 6.4.2. Here, we give only the briefest outline of a proof
to present results that will be used below when discussing liveness.

Let’s abbreviate (F with aw ← awBar) by F for any formula F , so we
must prove |= ICen2s ⇒ ICen1. The proof of |= Inits ⇒ Init is trivial, since
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s = 0 implies v = v by definition of awBar , so Inits implies Init = Init .
The main part of the proof is proving:

|= ICen2s ⇒ 2[Next1]v(7.12)

This is proved by proving assertions C1–C4 below, which are the analogs of
assertions R1–R7 of the proof in Section 6.4.2. Again, assertions containing
actions of the form 〈A〉v are proved for use in reasoning about liveness when a
weaker assertion containing A suffices to prove (7.12). Two of the assertions
require an invariant Inv2s of ICen2s . That invariant needs to assert type
correctness of disp (for C3) and that s = 1 implies aw = 〈 〉 (for C2).

C1. |= (s = 0) ∧ InpOrNots ⇒ Input

C2. |= Inv2s ∧ (s = 1) ∧ InpOrNots ⇒ 〈DispOrNot 〉v
C3. |= Inv2s ∧ Displays ⇒ 〈DispOrNot 〉v
C4. |= Ack s ⇒ 〈Ack〉v

Proving these assertions is a good way to start learning to write proofs.
Often, when showing that one program implements another, after adding

a simple stuttering variable it’s necessary to add a history variable to be able
to define the refinement mapping. For example, suppose we split the input
actions of the censor programs into two actions, where the first chooses the
value of inp and the second sets the values of aw and disp and sets inp to
a special value Busy . The Ack action must also be modified by replacing
inp ∈ Art with inp = Busy . We could then not define awBar to make (7.11)
true because the input value would be forgotten when s equals 1. To define
a state function awBar to make (7.11) true, we would have to add a history
variable that remembers what value was input.

We can avoid having to add a history variable by letting the stuttering
variable carry additional information. This is done by generalizing the way
stuttering steps are counted. In the censor example, instead of setting s
to 1 when adding a stuttering step and to 0 otherwise, we can set it to 〈inp 〉
when adding the step and to 〈 〉 when not adding the step. The number of
stuttering steps to be taken at any point in the execution is then the length
Len(s) of the sequence s. We would define awBar to equal:

if s = 〈 〉 then aw else s

In general, we can let s assume values in any set with a well-founded relation.
We just require that every added stuttering step decreases the value of s.

One use of this generality is for adding stuttering steps after multiple
actions. To do this, we let the value of s be a pair 〈m, i 〉, where m is the



CHAPTER 7. AUXILIARY VARIABLES 181

number of remaining stuttering steps and i identifies the action. We define
the well-founded ordering � on this set of pairs by letting 〈m, i 〉 � 〈n, j 〉
iff m > n. We can use this same trick to let the value of s be a tuple
with additional components. Information in those other components can
be used in defining the refinement mapping so it makes the stuttering steps
implement the appropriate steps of the higher-level program. For simplicity,
we state our theorem just for this particular use of a well-founded order.
However, the conjunct s(2) = i in the definition of As

i is added to ensure
that only As

i performs stuttering steps added after Ai , although that matters
only if s contains additional components that depend on i .

Theorem 7.4 (Post-Action Stuttering Variable)
Let T equal Init ∧ 2[Next ]v , where Next equals (∃ i ∈ I : Ai) ∨ B for a
constant set I , and v is a tuple of all the variables of T . If T s equals
Inits ∧ 2[Nexts ]vs where

• s is not a variable of T and vs
∆
= v ◦ 〈s 〉.

• Inits
∆
= Init ∧ (s = 〈0, i0 〉) for some i0 in I .

• Nexts
∆
= (∃ i ∈ I : As

i ) ∨ B s

• Asi
∆
= ∨ (s(1) = 0) ∧ (s(2) = i) ∧ Ai ∧ (s ′ = 〈expi , i 〉)
∨ (s(1) > 0) ∧ (v ′ = v) ∧ (s ′ = 〈s(1)− 1, s(2)〉)

where |= T ⇒ 2[expi ∈ N]v and expi is a step expression not contain-
ing s.

• Bs ∆
= (s(0) = 0) ∧ B ∧ (s ′ = s)

then ∃∃∃∃∃∃ s : T s equals T .

The theorem does not assume that the actions Ai and B are mutually dis-
joint. A step could be both an Ai and an Aj step for i 6= j , or both an Ai

and a B step. That should rarely be the case when applying the theorem,
since it allows a nondeterministic choice of how many stuttering steps (if
any) are added in some states. The action B will usually be the disjunc-
tion of actions B j . In that case, B s equals the disjunction of the actions
(s(0) = 0) ∧ B j ∧ (s ′ = s).
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7.3.3 Adding Stuttering Steps Before an Action

Suppose that instead of adding stuttering steps after InpOrNot steps of
ICen2, we want to add them before Ack steps. That’s a silly thing to do,
but it’s a silly example anyway. One thing that makes it silly is that when
the Ack action is enabled, nothing in the state tells us whether a stuttering
step is necessary. The value of aw is 〈 〉 regardless of whether or not a
Display step has occurred. So we’ll have to add the stuttering step whether
or not it’s needed. But that’s not a problem, since an unnecessary stuttering
step can simply implement a stuttering step of ICen1.

For a simple stuttering variable that counts down to 0, we add stuttering
steps before an action A the way we added them after A, except instead of
As executing A in the first step when s equals 0, it executes A in the last
step, when s equals 1 (unless it adds 0 stuttering steps). However, to ensure
that an As step can be taken after those stuttering steps, the stuttering
steps can begin only when A is enabled. (Once A is enabled, stuttering
steps leave it enabled.) To add exp stuttering steps before an A step, we
define:

As ∆
= ∧ ∨ E(A) ∧ (s = 0) ∧ (s ′ = exp)

∨ (s > 0) ∧ (s ′ = s − 1)

∧ if s ′ = 0 then A else v ′ = v

Since A is enabled when s ′ = 0 is true, any enabling condition (conjunct
with no primed variable) can be removed from A in the last line of the
definition.

We could define Ack s this way in ICen2s with exp = 1 to add a stut-
tering step before every Ack step. However, there’s nothing in the state to
indicate whether that stuttering step should implement a Display step or
a stuttering step of ICen1. To define the refinement mapping that shows
ICen2s implements ICen1, we would have to add a history variable that
records whether or not the InputOrNots step decided to display the input.
Alternatively, we could add the history variable before adding the stutter-
ing variable. We could then define Ack s so it adds a stuttering step iff the
InpOrNot step chose not to display the input.

To obtain the general result for adding stuttering steps before actions
Ai , we modify Theorem 7.4 by changing the definition of As

i to:

As
i

∆
= ∧ ∨ E(Ai) ∧ (s(1) = 0) ∧ (s ′ = 〈expi , i 〉)

∨ (s > 0) ∧ (s(2) = i) ∧ (s ′ = 〈s(1)− 1, s(2)〉)
∧ if s ′(1) = 0 then Ai else (v ′ = v)
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where expi is a state expression. (Although allowed, there is usually no point
having primed variables in expi , because they equal the unprimed variables
unless expi equals 0.)

We can also add stuttering steps both before and after Ai steps. We add
a third component to s to indicate whether the next stuttering steps to be
added for Ai are ones that precede or follow the Ai step. Writing a precise
definition is left as an exercise for motivated readers.

7.3.4 Fairness and Stuttering Variables

As with other auxiliary variables, we add a stuttering variable to a safety
property T of the form Init ∧ 2[Next ]v . If a program is described by the
property T ∧ L for a liveness property L, then the program with the added
stuttering variable s is T s ∧ L .

To see how stuttering variables work with liveness conditions, we add
fairness requirements L1 and L2 to our two censor programs to define:

IC 1
∆
= ICen1 ∧ L1 IC 2

∆
= ICen2 ∧ L2

We’ve shown that ICen2s implements ICen1 under a refinement mapping.
We show here that IC 2s implements IC 1 under that same refinement map-
ping. That is, we show:

|= IC 2s ⇒ (IC 1 with aw ← awBar)(7.13)

The fairness requirements are:

L1
∆
= WFv (DispOrNot) ∧ WFv (Ack)

L2
∆
= WFv (Display) ∧ WFv (Ack)

(Theorem 4.8 implies that L1 and L2 are equivalent to weak fairness of
DispOrNot ∨Ack and Display ∨ Ack respectively, but it’s more convenient
to write them this way.) It’s clear that L1 and L2 are the appropriate
fairness requirements for IC 1 and IC 2, ensuring that an Ack step occurs
after each input step. In particular, an input step of IC 2 is a DispOrNot
step, after which eventually Ack is enabled—either immediately if the input
is rejected or after a Display step that WFv (Display) implies must occur.
When Ack is enabled, WFv (Ack) implies that an Ack step must occur.

For IC 2s to implement IC 1 under a refinement mapping, it should ensure
that an input step is eventually followed by an Ack s step. In IC 2s , an input
is entered by an (s = 0) ∧ InpOrNots step. We must show that such a step
is eventually followed by an Ack s step. This appears problematic because if
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the step rejects the input, then it sets s to 1, in which case the only enabled
action of Next2s is (s = 1) ∧ InpOrNots ; and L2 asserts no fairness condition
for that action. To show that the (s = 0) ∧ InpOrNots step must be followed
by an Ack s step, we first show as follows that ∃∃∃∃∃∃ s : IC 2s is equivalent to IC 2:

∃∃∃∃∃∃ s : IC 2s ≡ ∃∃∃∃∃∃ s : ICen2 ∧ L2 By definition of IC 2s .

≡ (∃∃∃∃∃∃ s : ICen2s) ∧ L2 Because s does not occur in L2.

≡ ICen2 ∧ L2 By Theorem 7.4.

≡ IC 2 By definition of IC 2s .

Any behavior that satisfies IC 2s satisfies ∃∃∃∃∃∃ s : IC 2s , so it satisfies IC 2. An
(s = 0) ∧ InpOrNots step is an InpOrNot step, which by IC 2 must eventu-
ally be followed by an Ack step, which by definition of ICen2s must be an
Ack s step. Thus, IC 2s implies that any input step is eventually followed by
an Ack s step.

In the case of the input being rejected, the necessary (s = 1)∧InpOrNots

step must occur to satisfy the fairness requirement WFv (Ack) on the action
Ack in IC 2. If you think of the abstract program IC 2s as instructions
to a computer for generating behaviors, then this makes no sense. How
can a fairness condition on Ack tell the computer to take an InpOrNots

step? But by now, you should understand that an abstract program is
a predicate on behaviors, not instructions for generating them. Formula
ICen2s ∧WFv (Ack) implies that if a state with s = 1 has been reached,
then there must be another InpOrNots step and then an Ack s step in the
behavior.

This may seem weird. The source of the apparent weirdness is that
ICS 2 contains a fairness condition on the action Ack , which is not a subac-
tion of the next-state action Next2s . Fairness conditions on actions not a
subaction of the next-state action can lead to weirdness, including program
descriptions that are not machine closed. However, in this case, we still get
a machine-closed program description. In fact, this is true in general. If
〈T ,L〉 is machine closed and T s is obtained from T by adding a stuttering
variable, then 〈T s ,L〉 is also machine closed. The proof is the same as the
one for history variables sketched in Section 7.2.2, except in defining the
behavior τ , we may have to add stuttering steps to σ as well as changing
the values of the variable s. Stuttering insensitivity of L implies that ρ ◦ τ
still satisfies L.

We now explain the proof of (7.13). As before, define F to equal
(F with aw ← awBar) for any formula F , so (7.13) asserts |= IC 2s ⇒ IC 1.
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The proof of |= ICen2s ⇒ ICen1 is discussed in Section 7.3.2, so we consider
only the proof of |= IC 2s ⇒ L1 , which requires proving:

(a) |= IC 2s ⇒ WFv (DispOrNot)

(b) |= IC 2s ⇒ WFv (Ack)

(7.14)

We now sketch a proof of (7.14a). As usual when proving temporal proper-
ties, instead of assuming IC 2s , which is true only for a behavior starting in
a state satisfying Init2s , we assume this 2 formula implied by IC 2s

IIC 2s
∆
= 2Inv2 ∧ 2[Next2s ]vs ∧ L2

where Inv2 is an invariant of ICen22 that asserts some obvious invariants
such as type correctness. Here is the proof sketch.

1. Suffices: Assume: IIC 2s ∧ 2 E〈DispOrNot〉v ∧ 2[¬DispOrNot ]v
Prove: 3〈DispOrNot〉v

Proof: By (4.15), the definition of ;, (3.21), and (3.22), since IIC 2s is
a 2 formula.

2. 2((aw 6= 〈 〉) ∨ (s 6= 0))

Proof: The definition of DispOrNot implies that E〈DispOrNot〉v equals
aw 6= 〈 〉, so the step 1 assumption 2 E〈DispOrNot〉v implies 2aw 6= 〈 〉;
and the definition of awBar implies aw 6= 〈 〉 equals (aw 6= 〈 〉) ∨ (s 6= 0).

3. 32(aw 6= 〈 〉) ∨ 2(s 6= 0)

3.1. 2 ( (aw 6= 〈 〉) ⇒ 2(aw 6= 〈 〉) )

Proof: The assumption IIC 2s implies that aw 6= 〈 〉 can be made
false only by a Displays step, which by C3 is a 〈DispOrNot〉v step.
The assumption 2[¬DispOrNot ]v implies that such a step can’t occur.
Therefore, if aw 6= 〈 〉 ever becomes true, then it must remain true
forever.

3.2. Q.E.D.

Proof: By steps 2 and 3.1 and the temporal logic tautology:

|= 2(F ∨G) ∧ 2(F ⇒ 2F ) ⇒ (32F ∨2G)

4. Case: 32(aw 6= 〈 〉)
Proof: Since aw 6= 〈 〉 equals E〈Display〉v , the case assumption and
WFv (Display) imply that, when 2(aw 6= 〈 〉) becomes true, a 〈Display 〉v
step eventually occurs, and IIS s implies that this step must be a Displays
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step. By C3, this Displays step is a 〈DispOrNot〉v step, which implies the
goal introduced by step 1.

5. Case: 2(s 6= 0)

Proof: The case assumption and the assumption 2Inv2 imply 2(s = 1).
As shown above in the explanation of why a behavior of IC 2s can’t halt
in a state with s = 1, the property WFv (Ack) implies that, in such a
state, an (s = 1)∧ InpOrNots step must eventually occur. By C2, that is
the 〈DispOrNot〉v step that proves the step 1 goal.

6. Q.E.D.

Proof: Step 3 implies that the step 4 and 5 cases are exhaustive.

The proof of (7.14b) is similar but simpler, since it doesn’t have the
complication of deducing from fairness of one action (Ack s) that a step of
another action (DispOrNots) of the same program must occur.

Theorem 7.2 shows how, after adding a history variable to a program,
we can rewrite the program’s fairness properties as fairness conditions of
subactions of the modified program’s next-state action. I don’t know if
there is a similar result for stuttering variables. Theorem 7.2 is relevant
to methods other than TLA for describing abstract programs. Those other
methods that I’m aware of do not assume stuttering insensitivity, so a similar
result for stuttering variables seems to be of no interest.

7.3.5 Infinite-Stuttering Variables

Suppose a terminating program is described by a formula ∃∃∃∃∃∃ y : IS , where
IS implies that the value of y keeps changing forever. (IS implies that at
some point, the values of all its other variables stop changing.) Suppose
also that program ∃∃∃∃∃∃ y : IS is refined by a terminating program T with no
internal variables, so all its variables eventually stop changing. The methods
of adding stuttering steps to a program described so far add a finite number
of stuttering steps to non-stuttering steps of the program. They can’t define
a state function that keeps changing forever, so they can’t be used to define
a refinement mapping to show that T implements ∃∃∃∃∃∃ y : IS .

It’s easy to construct an example of such programs IS and T , but I can’t
imagine one occurring in practice. We consider them only for completeness—
and in particular, to prove the completeness theorem in Section 7.5 stating
that if |= T ⇒ ∃∃∃∃∃∃y : IS is true for some tuple y of variables, then we can
add auxiliary variables to T to obtain a program T a that implements IS
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under a refinement mapping. For that theorem to be true, we need to define
an infinite-stuttering variable whose value keeps changing forever to handle
this situation that never occurs in practice.

There are lots of ways to define an infinite-stuttering variable. Here is
the definition used in the proof of Theorem 7.6. Let T equal Init∧2[Next ]v ,
where v is the tuple of all variables that appear in T , and let s not be one
of those variables. We then define T s to equal:

Init ∧ 2[(Next ∧ (v ′ 6= v)) ∨ ((s ′ 6= s) ∧ (v ′ = v)]v◦〈s 〉 ∧ 23〈s ′ 6= s 〉s

7.4 Prophecy Variables

Math XI

General Recursive Definitions We have recursively defined a function
f with domain N by defining f (0) and defining f (n) in terms of f (n − 1)
for n > 0. That is, we can define f by:

f
∆
= n ∈ N 7→ if n = 0 then exp0 else exp1

where f cannot occur in exp0 and can occur in exp1 only in the
expression f (n − 1).

We can generalize this by allowing the value of exp1 to depend on f (i) for
any i ∈ {j ∈ N : j < n}. Moreover, the condition that exp0 not depend on
f can be expressed as the condition that it can depend only on f (i) with
i ∈ {j ∈ N : j < 0}, since that allows exp0 to depend on f (i) only if i is
in the empty set. We can therefore express this more general form of a
recursive definition as:

RC1. f
∆
= n ∈ N 7→ exp

where f can occur in exp only in expressions f (i) with i in
{j ∈ N : n > j}.

RC1 ensures a meaningful definition of f because it implies that the value
of f (n) can be computed from the definition in a finite number of steps, for
any n ∈ N. The reason the computation terminates is that the relation > is
well-founded on the set N of natural numbers. We can generalize RC1 from
N to any set S with a well-founded relation � to obtain this most general
form of a recursive function definition:

RC2. f
∆
= n ∈ S 7→ exp

where f occurs in exp only in expressions f (i) with i in
{j ∈ S : n � j}, and � is a well-founded relation on S .
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As an example, we can define the sum SSum(σ) of the items of a finite
sequence σ of real numbers to equal 0 if σ is the empty sequence 〈 〉 and oth-
erwise to equal the first element of σ plus the sum of its remaining elements.
The definition is:

SSum
∆
=

σ ∈ Seq(R) 7→ if σ = 〈 〉 then 0
else Head(σ) + SSum(Tail(σ))

This definition is justified by the well-founded ordering � on Seq(R) defined

by σ � τ ∆
= Len(σ) > Len(τ) .

Two Set Operators If you’ve ever learned about sets, you should know
that S ∪ T is the set of values that are in the set S or the set T (or both),
and S ∩ T is the set of values that are in both S and T . We can define ∩
with the subsetting constructor, since S ∩T equals {v ∈ S : (v ∈ T )}.1 It is
an axiom of ZF that S ∪ T is a set if S and T are sets.

7.4.1 Simple Prophecy Variables

We observed in Section 7.3.1 that the descriptions Cen1 and Cen2 of the
censor system were equivalent. We showed that Cen2 implies Cen1, which
required adding a stuttering variable to ICen2. We now complete the demon-
stration of equivalence by showing that Cen1 implies Cen2. This requires
defining a state function awBar such that ICen1 implies:

(ICen2 with aw ← awBar)

However, this is impossible for the following reason. Because the refinement
mapping substitutes the variables inp and disp of ICen1 for the correspond-
ing variables of ICen2, an Input step of ICen1 must implement an InpOrNot
step of ICen2. Besides choosing the input, the InpOrNot action of ICen2
also decides whether or not that input is to be displayed, recording its de-
cision in the value of aw . However, that decision is made by ICen1 later,
when executing the DispOrNot action. Immediately after the Input action,
there’s no information in the state of ICen1 to determine what the value of
variable aw of ICen2 should be.

The solution to this problem is to have the Input action guess what
DispOrNot will do, indicating its guess by setting a prophecy variable p to

1The parentheses disambiguate this expression, telling us that v ∈ T is a formula while
v ∈ S is syntax.
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a value that predicts whether the input will be displayed or rejected by the
DispOrNot step.

To make the generalization from this example more obvious, let’s write
action DispOrNot of ICen1 as the disjunction of two actions: DorNYes that
displays the input and DorNNo that doesn’t. Remember that:

DispOrNot
∆
= ∧ . . .
∧ ∨ disp′ = 〈aw(1), 1− disp(2)〉
∨ disp′ = disp

...

We can define DorNi , for i = Yes and i = No, by modifying the definition
of DispOrNot to get:

DorNi
∆
= ∧ . . .
∧ ∨ (i = Yes) ∧ (disp′ = 〈aw(1), 1− disp(2)〉)
∨ (i = No) ∧ (disp′ = disp)

...

We then replace DispOrNot in ICen1 by ∃ i ∈ Π : DorNi , where Π equals
{Yes,No}. We can then add to ICen2 an auxiliary variable p called a
prophecy variable to obtain a formula ICen2p in which the Input action is
replaced by

Inputp
∆
= Input ∧ (p ′ ∈ Π)

and the DispOrNot action is replaced by:

DispOrNotp
∆
= DorN p

Thus the Inputp action predicts what the DispOrNot action will do, and
DispOrNotp is modified to ensure that the prediction comes true. To com-
plete the definition of ICen1p , we can let Initp equal Init and Ackp equal
Ack , since the value of p matters only after an Inputp step and before the
following DispOrNotp step.

In ICen2, the value of aw is 〈 〉 except after an InpOrNot step that chose
to display the input. This implies

|= ICen1p ⇒ (ICen2 with aw ← awBar)(7.15)

where awBar is defined by:

awBar
∆
= if aw 6= 〈 〉 ∧ (p = Yes) then aw else 〈 〉
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To show that (7.15) implies |= ICen1⇒ ICen2, we have to show that p is an
auxiliary variable—that is, we have to show that ∃∃∃∃∃∃ p : ICen1p is equivalent
to ICen1. To do that, we prove two things:

1. Every behavior satisfying ICen1p satisfies ICen1

Proof: It’s clear that Initp equals Init , Actp equals Act , and Inputp im-
plies Input . To complete the proof, we must show that every DispOrNotp

step is a DispOrNot step. It’s easy to see that

E(DispOrNotp) ⇒ (p ∈ {Yes,No})
is an invariant of ICen1p , and to check that DispOrNotp implies DispOrNot
for each of those two values of p.

2. For any behavior σ satisfying ICen1 there is a behavior τ satisfying
ICen1p such that σ 'pτ .

Proof: We let σ be a behavior satisfying ICen1 and construct the states
of τ from the states of σ by specifying the value of p in each of those
states, so obviously σ ' pτ . The behavior τ will satisfy ICen1p if the
values chosen for p satisfy these three conditions:

1. The value of p in the second state of a stuttering step of σ (one
leaving the variables of ICen1 unchanged) is the same as its value in
the first state of the step.

2. After an Inputp step, the value of p is either Yes or No.

3. In the first state of a DispOrNot step of σ, the value of p must make
that step a DispOrNotp step of τ .

We define the values of p in all states of τ as follows. We let p have any
value in the initial state. In any other state of τ , we let the value of p be
the same as its value in the previous state except if the state is the second
state of an Input step of σ. In that case, we let the value of p equal Yes
if the next DispOrNot step of σ changes disp; otherwise we let it equal
No. (If there is no next DispOrNot step, so there remain only stuttering
steps, we can let p have either value.) It’s easy to check that this way of
defining p makes it satisfy the three conditions. End Proof

Let’s now generalize from this example. We want an action B to predict
the result of the next execution of an action A. We do this by writing A as
∃ i ∈ Π : Ai for a constant set Π of possible predictions and having B predict
for which value of i the next A step will be an Ai step. Action B makes the
prediction by setting the variable p to equal its prediction, so we define Bp
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to equal B ∧ (p ′ ∈ Π). The prediction is made to come true by defining Ap

to equal Ap .
One way our example was special is that the prediction made by an

Inputp step is used by DispOrNotp in the first non-stuttering step after it
is made. This allowed ICen1p to leave the new value of p unspecified by
other actions. Usually, there can be steps of other actions between when the
prediction is made and when it is fulfilled. Those other actions should leave
the value of p unchanged. For any subaction B of the next-state action other
than A, we let Bp equal either B ∧ (p′ = p) if it doesn’t make a prediction
or B ∧ (p′ ∈ Π) if it makes one. It doesn’t matter if multiple predictions are
made for the same A step; only the most recent one counts.

For simplicity, we let p always equal an element of Π. We therefore let
Initp equal Init ∧ (p ∈ Π). This can represent an initial prediction, or it can
be overridden by a subsequent prediction. In either case, it means that we
have the simple type invariant 2(p ∈ Π).

It doesn’t matter if a prediction is never used—either because it is over-
ridden by another prediction or an A step never occurs. What does matter is
that a prediction must be used at most once. Our ability to choose the right
prediction in the proof that ∃∃∃∃∃∃ p : ICen1p is equivalent to ICen1 depended
on this. To make sure that this is true, we require that Ap makes a predic-
tion, so we define Ap to equal Ap ∧ (p′ ∈ Π). That prediction can always
be overridden by a subsequent prediction made by a different action. The
argument above that the variable p in our example was a prophecy variable
then generalizes to prove:

Theorem 7.5 (Simple Prophecy Variable) Let T
∆
= Init ∧ 2[Next ]v

where v is the tuple of variables in T , and let

Next
∆
= (∃ i ∈ Π : Ai) ∨ (∃ j ∈ J : B j )

where Π is a constant set. If p is not a variable of T ,

T p ∆
= Initp ∧ 2[Nextp ]vp ,

vp
∆
= v ◦ 〈p 〉 ,

Initp
∆
= Init ∧ (p ∈ Π) ,

Nextp
∆
= (Ap ∧ (p′ ∈ Π)) ∨ (∃ j ∈ J : B j ∧ C j ) ,

and each C j equals p′ = p or p′ ∈ Π, then |= (∃∃∃∃∃∃ p : T p) ≡ T .

The theorem makes no disjointness assumption about the actions Ai and
B j , but in most applications of the theorem they will be mutually disjoint.
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It is inelegant and possibly confusing to have a program make predic-
tions that are never used—for example, by having the DispOrNotp action of
ICens1p make a prediction that is always replaced by the prediction made
by the Inputp action. If the prediction will never be used, we can replace
p ′ ∈ Π by p′ = None (or p ∈ Π by p = None for an initial prediction),
where None is a value not in Π. The assertion that the prediction is never
used means that the following state predicate is an invariant of T p :

(p = None) ⇒ ¬ E(∃ i ∈ Π : Ai)

We could also modify Nextp to allow a special value of p indicate that no
prediction is being made, but there is no reason to do that.

7.4.2 Predicting the Impossible and Liveness

What if a prophecy variable makes a prediction that can’t be fulfilled? A
prophecy variable predicts, for an action A equal to ∃ i ∈ Π : Ai , the value
of i for which the next A step is an Ai step. The prediction that the next A
step will be an Ap step can’t be fulfilled if action Ap can’t be enabled until
an Aj step occurs for some j 6= p.

Let’s look at the worst case: a prediction that predicts that the next A
step will be an Ai step, where Ai equals false. We can write any next-state
action Next as

∃ i ∈ {0, 1} : ((i = 1) ∧Next) ∨ ((i = 0) ∧ false)

(If i = 0, then a [Next ]v step leaves the variables of v unchanged.) The
observation that ∃ i ∈ {0, 1} : F i equals F 0 ∨ F 1 and a bit of propositional
logic show that

|= ∃ i ∈ {0, 1} : (p = i) ∧ (((i = 1) ∧Next) ∨ ((i = 0) ∧ false))

equals (p = 1) ∧ Next . Theorem 7.5 therefore implies that if T equals
Init ∧2[Next ]v , then T equals ∃∃∃∃∃∃ p : T p where

T p ∆
= ∧ Init ∧ (p ∈ {0, 1})
∧ 2 [ (p = 1) ∧ Next ∧ (p ′ ∈ {0, 1}) ]vp

In other words, if p ever becomes equal to 0, then the next-state relation of
T p is never again enabled, so the behavior halts with an infinite sequence
of stuttering steps—ones that leave p and the variables of T unchanged.

But that’s perfectly OK. T is a safety property; it allows behaviors
that terminate at any point. The prophecy variable p is simply predicting
whether the behavior will terminate before the next Next step.
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If we are describing an abstract program in which 〈Next 〉v is always
enabled and its execution is never supposed to stop, then we must conjoin
to T some fairness property, such as WFv (Next). If 〈Next 〉v is enabled
in every reachable state of T , then it is enabled in every reachable state
of T p , since the reachable states of T p are reachable states of T because
T equals ∃∃∃∃∃∃ p : T p . In that case, conjoining WFv (Next) to T p adds the
requirement that in every behavior, an infinite number of non-stuttering
Next steps must occur. In our worst-case example, p = 0 implies Nextp =
false, so T p ∧WFv (Next) is satisfied only by behaviors in which infinitely
many 〈Next 〉v steps occur, and hence in which p never equals 0.

Conjoining WFv (Next) to T p rules out finite behaviors allowed by T p—
ones in which p equals 0. Hence, the pair 〈T p ,WFv (Next)〉 is not machine
closed, so WFv (Next) is not a fairness property for T p . This doesn’t con-
tradict Theorem 4.7, because Next , which is a trivial subaction of Next , is
not a subaction of Nextp . In general, if predicting that the next A step is
an Ap step is a nontrivial prediction, then every possible A step can’t be a
Nextp step, so |= A⇒ Nextp can’t be true—which by definition means A is
not a subaction of Nextp .

As dramatically illustrated by this example, adding a prophecy variable
that can make impossible predictions to a description of an abstract program
with a fairness property produces a 〈safety, liveness〉 pair that is not machine
closed. Although this is not a typical example, in practice prophecy variables
often do make impossible predictions. This is usually because it’s easier not
to eliminate them. That’s the case for the example in Section 7.6.

Programs that are not machine closed are weird, and unintentional weird-
ness usually indicates an error. An abstract program that describes how a
concrete program works should be machine closed, because coding languages
have no way of expressing liveness properties that are not fairness proper-
ties. Abstract programs that are not machine closed should almost always
be avoided because they’re hard to understand. However, there are excep-
tions [26, Section 3.2]. On the other hand, prophecy variables are added
to a program only for verifying that it implements another program. There
is no reason adding a prophecy variable should produce a machine-closed
program.

7.4.3 General Prophecy Variables

A simple prophecy variable makes a single prediction. General prophecy
variables can make multiple predictions. Those multiple predictions can be
successive predictions about a single action or separate predictions about
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different actions. These two possibilities are illustrated with variants of
the censor system. There can also be multiple predictions about multiple
actions, but we won’t try to be that general. The two examples illustrate
the concepts. A very general definition has been described elsewhere for
expert TLA+ users [39].

7.4.3.1 A Sequence of Prophecies

Let’s now modify the censor programs to allow the artist to submit a new
picture before the censor has either displayed or rejected the previous sub-
mission. At any time, there may be a queue of submissions being processed
by the censor. In the modified version of ICen1, called ICenSeq1, the censor
has not yet decided whether to display or reject any of the submissions in
that queue. In ICenSeq2, the modified version of ICen2, the censor decides
immediately whether to accept or reject a submission and maintains only a
queue of submissions to be displayed.

Formula CenSeq1 is defined in Figure 7.6, where everything is in gray
except for parts that differ from the corresponding parts of the definition
of Cen1 in Figure 7.4 other than by adding “Seq” to names. Because of
the way we defined Cen1, with aw equal to a sequence of 0 or 1 pictures,
the changes are minimal. (Recall the definitions of Tail and Append from
Section 2.8.3.)

Similarly, Figure 7.7 shows the definition of CenSeq2, using formulas
defined in Figure 7.6. Shown in black are the parts that differ from the
corresponding parts in the definition of Cen2 in Figure 7.5 by more than a
name change.

In both ICenSeq1 and ICenSeq2, the value of the variable aw is the
queue being maintained by the censor. As with ICen1 and ICen2, when aw
is hidden by ∃∃∃∃∃∃ , the two formulas are equivalent. As in the previous example,
ICenSeq2 decides whether to display or reject an input before ICenSeq1 does.
To define a refinement mapping to show ICenSeq1 implements ICenSeq2, we
need to add a prophecy variable p to ICenSeq1 that is set by the Input action
and predicts the decisions that will be made by the DispOrNotSeq action.
However, this time there are multiple predictions to be remembered—one
for every picture in aw .

You have probably figured out that this will be done by letting the
value of p be a sequence of Yes or No values, each element of p predicting
whether the corresponding input in the sequence aw will be displayed or
rejected by the DispOrNot action. Here’s how we define ICenSeq1p , the
formula obtained by adding the prophecy sequence variable p to ICenSeq1.
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CenSeq1
∆
= ∃∃∃∃∃∃ aw : ICenSeq1

ICenSeq1
∆
= Init ∧ 2[NextSeq1]v

v
∆
= 〈inp, disp, aw 〉

InitSeq
∆
= ∧ inp = NotArt
∧ aw = 〈 〉
∧ disp ∈ Art × {0, 1}

NextSeq1
∆
= InputSeq ∨ DispOrNotSeq ∨ AckSeq

InputSeq
∆
= ∧ inp = NotArt
∧ inp′ ∈ Art
∧ aw ′ = Append(aw , inp ′)
∧ disp′ = disp

DispOrNotSeq
∆
= ∧ aw 6= 〈 〉
∧ ∨ disp′ = 〈aw [1], 1− disp(2)〉
∨ disp′ = disp
∧ aw ′ = Tail(aw)
∧ inp′ = inp

AckSeq
∆
= ∧ inp ∈ Art
∧ inp′ = NotArt
∧ (aw ′ = aw) ∧ (disp′ = disp)

Figure 7.6: The program CenSeq1.

CenSeq2
∆
= ∃∃∃∃∃∃ aw : ICenSeq2

ICenSeq2
∆
= InitSeq ∧ 2[NextSeq2]v

NextSeq2
∆
= InpOrNotSeq ∨ DisplaySeq ∨ AckSeq

InpOrNotSeq
∆
= ∧ inp = NotArt
∧ inp′ ∈ Art
∧ ∨ aw ′ = Append(aw , inp′)
∨ aw ′ = aw

∧ disp ′ = disp

DisplaySeq
∆
= ∧ aw 6= 〈 〉
∧ disp′ = 〈aw [1], 1− disp(2)〉
∧ aw ′ = Tail(aw)
∧ inp′ = inp

Figure 7.7: The program CenSeq2.
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Let Π be the set {Yes,No} of predictions. The value of p should always
be a sequence of elements of Π having the same length as the value of the
variable aw of ICenSeq1. The initial predicate of ICenSeq1p is:

InitSeqp ∆
= InitSeq ∧ (p = 〈 〉)

In addition to appending the input to aw , the action InputSeqp must append
to p the prediction of whether or not that input will be displayed:

InputSeqp ∆
= InputSeq ∧ (∃ i ∈ Π : p′ = Append(p, i))

As in ICen1p , to make DispOrNotSeqp display the input iff p predicts that
it will, we define DorNSeq i so that

DispOrNotSeq
∆
= ∃ i ∈ Π : DorNSeq i

where DorNSeqYes displays the input and DorNSeqNo rejects it. The defi-
nition of DorNSeq i is obtained by modifying DispOrNotSeq the same way
we modified DispOrNot to obtain DorN i for ICen1. We can then define:

DispOrNotSeqp ∆
= DorNSeqp(1) ∧ (p ′ = Tail(p))

Note that having DispOrNotSeqp set p ′ to Tail(p) ensures that every pre-
diction is used only once. Since AckSeqp neither makes nor satisfies a pre-
diction, we define:

AckSeqp ∆
= AckSeq ∧ (p′ = p)

Putting this all together we get:

ICenSeq1p
∆
= InitSeqp ∧ 2[NextSeq1p ]vp

where

NextSeq1p
∆
= InputSeqp ∨ DispOrNotSeqp ∨ AckSeqp

and vp equals 〈inp, disp, aw , p 〉.
We can now show that CenSeq1 implements CenSeq2 by showing

|= ICenSeq1p ⇒ (ICenSeq2 with aw ← awBar)(7.16)

where awBar is the subsequence of aw containing only the pictures that p
predicts will be displayed.

To define awBar , we first define OnlyYes(wsq , ysq) to be the subsequence
of the sequence wsq consisting of all elements for which the corresponding
elements of the sequence ysq equals Yes. We define OnlyYes to be a function
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of two arguments with domain the set of pairs 〈wsq , ysq 〉 where wsq is a
sequence of elements of Art , ysq is a sequence of Yes or No values, and
Len(wsq) = Len(ysq). (Remember that a function of two arguments was
defined in Section 2.8.3 to be a function of one argument whose domain is a
set of pairs.) The definition is a recursive one, justified by the well-founded
relation � where 〈wsq1, ysq1 〉 � 〈wsq2, ysq2 〉 iff the length of sequences wsq1

and ysq1 is greater than the length of wsq2 and ysq2. Since we haven’t
bothered to define a convenient syntax for writing recursive definitions of
functions of two arguments, the definition is written somewhat informally
as:

OnlyYes(wsq , ysq)
∆
=

if wsq = 〈 〉 then 〈 〉
else ( if Head(ysq) = Yes then 〈Head(wsq)〉

else 〈 〉 )
◦ OnlyYes(Tail(wsq),Tail(ysq))

Defining awBar to equal OnlyYes(aw , p) makes (7.16) true.
It’s straightforward to modify Theorem 7.5 to describe an arbitrary

prophecy variable p that makes a sequence of predictions. We replace the
definition of Nextp in the hypothesis of the theorem by:

Nextp
∆
= (Ap(1) ∧ D) ∨ (∃ j ∈ J : B j ∧ C j ) , where

D equals p′ = Tail(p) or ∃ i ∈ Π : p ′ = Append(Tail(p), i)

C j equals p′ = p or ∃ i ∈ Π : p′ = Append(p, i)

However, there’s one problem: The empty sequence 〈 〉 is the value of p
indicating that no prediction is being made. When p = 〈 〉, the value of the
subscript p(1) = i in this definition is undefined. That doesn’t matter in
our example because p and aw are sequences of the same length, so p = 〈 〉
implies aw = 〈 〉, which implies that DorNSeq i equals false for i ∈ Π.
Therefore, the value of the undefined subformula makes no difference. In
general, to make the modified theorem valid, we need to add to its hypothesis
the requirement that the following is an invariant of T p :

(p = 〈 〉) ⇒ ¬ E (∃ i ∈ Π : Ai)

7.4.3.2 A Set of Prophecies

To illustrate a prophecy variable that makes a set of concurrent predictions,
we now modify the censor programs CenSeq1 and CenSeq2 so that instead
of displaying pictures in the order in which they were submitted, the censor
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can display them in any order. This is represented by letting aw be a set
rather than a sequence of pictures. It is done in the two programs ICenSet1
and ICenSet2, where the first lets aw be the set of all unprocessed inputs
and the second lets aw contain just the ones that will be displayed. Letting
CenSet1 and CenSet2 be the programs obtained from these two programs
by hiding aw , we want to show that CenSet1 implements CenSet2. As you
probably realize, defining a refinement mapping to show that this is true
requires adding a prophecy variable p to ICenSet1 that predicts which of
the inputs in aw will be displayed.

Writing these two censor programs poses a problem. What if the artist
submits the same picture twice? If we want the picture to be displayed twice,
we would need to have two copies of it in aw , which means aw couldn’t
simply be a set. In the example of Section 7.6, you’ll see one way of keeping
multiple copies of a value in a set. But for simplicity, we’ll modify the censor
programs not to allow the artist to submit the same picture twice. This will
be done by adding an interface variable old whose value is the set of all
previously submitted pictures.

The definition of CenSet1 is in Figure 7.8, with the changes from the
definition of CenSeq1 (Figure 7.6) in black. You should be able to write the
definition of CenSeq2 yourself.

To define a refinement mapping under which ICenSet1 implements
ICenSet2, we need to add a prophecy variable p to ICenSet1 that predicts,
for each picture in aw , whether or not that picture will be displayed. The
obvious way to do that is to let the value of p be a function in aw → Π , the
set of functions from aw to Π. As before, we let Π equal the set {Yes,No}.

Since aw initially equals the empty set, the initial value of p should be
the function whose domain is the empty set. There is just a single such
function, and the easiest way to write it is as the empty sequence 〈 〉, which
is a (and hence the) function whose domain is the empty set. So, we define:

InitSetp
∆
= InitSet ∧ (p = 〈 〉)

The InputSetp action must add a prediction of whether or not the picture
inp′ that it adds to aw will be displayed. Thus, it must assert that p′ is
the function obtained from p by adding inp′ to its domain and letting the
value of p′(inp′) be either element in Π. To write that action, let’s define
FcnPlus(f ,w , d) to be the function obtained from a function f by adding an
element w to its domain and letting that function map w to d . The domain
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CenSet1
∆
= ∃∃∃∃∃∃ aw : ICenSet1

ICenSet1
∆
= Init ∧ 2[NextSet1]v

v
∆
= 〈inp, disp, aw , old 〉

InitSet
∆
= ∧ inp = NotArt
∧ aw = { }
∧ disp ∈ Art × {0, 1}
∧ old = { }

NextSet1
∆
= InputSet ∨ DispOrNotSet ∨ AckSet

InputSet
∆
= ∧ inp = NotArt
∧ inp′ ∈ Art \ old
∧ aw ′ = aw ∪ {inp′}
∧ (disp′ = disp) ∧ (old ′ = old ∪ {inp′})

DispOrNotSet
∆
= ∃w ∈ aw :

∧ ∨ disp′ = 〈w , 1− disp(2)〉
∨ disp′ = disp
∧ aw ′ = aw \ {w}
∧ (inp′ = inp) ∧ (old ′ = old)

AckSet
∆
= ∧ inp ∈ Art
∧ inp′ = NotArt
∧ (aw ′ = aw) ∧ (disp′ = disp) ∧ (old ′ = old)

Figure 7.8: The program CenSet1.

of f is written domain(f ), so the definition is:

FcnPlus(f ,w , d)
∆
=

x ∈ {w} ∪ domain(f ) 7→ if x = w then d else f (x )

We can then define

InputSetp
∆
= InputSet ∧ (∃ i ∈ Π : p′ = FcnPlus(p, inp′, i))

To define DispOrNotSetp , we define DorNSet i(w) as follows so DispOrNotSet
equals ∃w ∈ aw , i ∈ Π : DorNSet i(w) .

DorNSet i(w)
∆
= ∧ ∨ (i = Yes) ∧ (disp′ = 〈w , 1− disp(2)〉)

∨ (i = No) ∧ (disp′ = disp)
∧ aw ′ = aw \ {w}
∧ (inp′ = inp) ∧ (old ′ = old)
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The DispOrNotSetp action will have to erase the prediction by removing
from the domain of p the picture being displayed or rejected. So let’s de-
fine FcnMinus(f ,w) to equal the restriction of f to its domain minus the
element w :

FcnMinus(f ,w)
∆
= x ∈ (domain(f ) \ {w}) 7→ f (x )

We can now define:

DispOrNotSetp
∆
=

∃w ∈ aw : DorNSetp(w)(w) ∧ (p′ = FcnMinus(p,w))

Since AckSetp neither makes nor satisfies a prediction, its definition is sim-
ply:

AckSetp
∆
= AckSet ∧ (p ′ = p)

The rest of the definition of ICenSet1p should be clear.
We can then show that CenSet1 implements CenSet2 by showing

|= ICenSet1p ⇒ (ICenSet2 with aw ← awBar)

where awBar equals {w ∈ aw : p(w) = Yes}, the set of elements in aw
that p predicts will be displayed.

We won’t bother writing the generalization of Theorem 7.5 for a prophecy
variable p that makes a set of predictions.

7.4.3.3 Further Generalizations

We now extract from our examples a more general formulation of prophecy
variables. To construct a prophecy variable, we start with certain sets of ac-
tions we’ll call action sets. For CenSeq1 there is one action set consisting of
two actions: DispOrNotSeqYes , a DispOrNotSeq action that displays the pic-
ture, and DispOrNotSeqNo , a DispOrNotSeq action that doesn’t display it.
For CenSet1, for every w ∈ Art , there is an action set consisting of two ac-
tions: DispOrNotSetw ,Yes and DispOrNotSetw ,No , which are DispOrNotSet
actions that either display or don’t display the input w . Thus, there is a set
of action sets, one action set defined for each w in Art .

In general, for a program T , we have a set of action sets, each of which
can be written as {Ai : i ∈ Π}. (The set Π can be different for different
action sets.) That set of action sets is a constant; it doesn’t change during
a behavior of T .
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A prophecy is a prediction about one of the program’s action sets. That
is, it is an element of the set Π defining the action set {Ai : i ∈ Π}. It predicts
the value of i for which the next Ai step occurs. In any state, the value of
a prophecy variable describes a set of predictions, some of which are active.
For CenSeq1, the prophecy variable p equals a sequence of predictions, all
for the same action set, only the first element of the sequence being active.
For CenSet1, the prophecy variable p equals a set of prophecies, one for each
action set defined by an element of aw , all of its prophecies being active.

In general, the program T p is defined by adding the variable p in such
a way that every behavior satisfying T p satisfies T . Moreover, it ensures
that no active prediction of p is ever violated. When an action predicted
by an active prediction of p occurs, we say that the prediction is fulfilled.
The initial value of p can contain prophecies. Prophecies can be added to
or removed from p and/or made active or inactive by any action of T p , so
long as the following conditions are satisfied:

• No two active prophecies can be predictions for the same action set.

• For any action of T p that adds a prophecy to p, it must be possible
for the action to add a prophecy for any element of the set Π for that
action set.

• An action of T p that fulfills a prediction must remove that prediction
from p. (It may also add one or more new predictions.)

The prophecy variables of CenSeq1 and CenSet1 made only predictions that
were likely to be fulfilled. We could instead have used prophecy variables
that a mathematician might consider simpler that make a lot more predic-
tions. For CenSeq1, instead of having each InputSeq step add a prediction
to p, we could have let the initial value of p be an infinite sequence of predic-
tions. The first element of the sequence would be the active one, and each
DispOrNotSeq action would remove that element from p. For CenSet1, we
could have let the initial value of p be any element of Art → {Yes,No} ,
predicting for each picture w whether or not it will be displayed if it is in-
put. Since the same picture can’t be input twice, the value of p(inp) could
be set by a DispOrNotSet action to a value indicating that its prediction is
inactive.

We could have used an even more extravagant prophecy variable for
CenSet1—one that predicts not only whether each picture will be displayed
or rejected, but in which order they will be input. The initial value of
p would be an infinite sequence of predictions 〈w , d 〉, for w ∈ Art and
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d ∈ {Yes,No}, predicting not just if the next DispOrNotSet step will display
or reject the input, but that it must occur with inp equal to w . Almost all
of those predictions will be impossible to fulfill because inp will not equal
w . But as we’ve seen, impossible predictions don’t matter because they
just require the behavior to halt, which is either allowed or is ruled out by
a liveness hypothesis. This may seem silly, but a prophecy variable that
makes predictions that are almost all impossible is used in the example of
Section 7.6 because it seems to provide the simplest way to define the needed
refinement mapping.

7.5 The Existence of Refinement Mappings

We now state a completeness result for the auxiliary variables that we’ve
described. Completeness means that if |= T ⇒ ∃∃∃∃∃∃y : IS is true, where y is
a list of variables, then we can successively add a list a of these auxiliary
variables to T to obtain a formula T a that implies IS under a refinement
mapping that substitutes state expressions of T a for the variables y.

Like most such completeness results, it assumes that there is a mathe-
matical proof of the result based on the semantics of the formulas. That
is, we assume not only the truth of |= T ⇒ ∃∃∃∃∃∃y : IS , but that there exists
a mathematical proof of its truth. Such a proof consists of an operator Φ
such that for every behavior σ satisfying T , there is a behavior Φ(σ) sat-
isfying IS that shows σ satisfies ∃∃∃∃∃∃y : IS . This means approximately that
we can obtain Φ(σ) from σ by adding and/or removing stuttering steps and
changing the values of the variables of y. The precise statement of this
condition is Φ(σ) ∼y σ, where the definition of ∼y is the same as that of
∼y in Section 7.1.3 with =y replaced by =y, and s =y t defined to mean
that states s and t are equal except perhaps for the values they assign to
the variables of y. The assumption that there exists a mathematical proof
of |= T ⇒ ∃∃∃∃∃∃y : IS is embodied in the use of Φ to construct the refinement
mapping. Here is the precise statement of the theorem. It uses the notation
that if y is the list y1, . . . , yn of variables and exp is the list exp1, . . . , expn of
expressions, then y← exp is an abbreviation for y1 ← exp1, . . . , yn ← expn .

Theorem 7.6 Let x, y, and z be lists of variables, all distinct from one
another; let the variables of T be x and z and the variables of IS be x and
y; and let T equal Init∧2[Next ]〈x,z〉∧L. Let the operator Φ map behaviors
satisfying T to behaviors satisfying IS such that Φ(σ) ∼y σ. By adding
history, stuttering, and prophecy variables to T , we can define a formula
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T a such that ∃∃∃∃∃∃a : T a is equivalent to T and a list exp of expressions defined
in terms of Φ and the variables of T a such that

|= T a ⇒ (IS with y← exp)

The theorem makes no assumption about L other than that it contains
no variables besides those of x and z. It doesn’t even have to be a liveness
property.

Here is the idea behind the theorem’s proof. We first add an infinite-
stuttering variable t to avoid having to worry about terminating behaviors.
We then add a history variable h that remembers the entire sequence of
values of all the tuples 〈x, z, t 〉 in all the states reached thus far, including
the current one. We then add a prophecy sequence variable p that predicts
the infinite sequence of all future values of 〈x, z, t 〉. This means that in all
states of the behavior, the value of h ◦ p is the entire sequence of values
of 〈x, z, t 〉 in the complete (infinite) behavior. Moreover, the length of h
indicates the position of the current state in that behavior. The values of h
and p and the mapping Φ provide all the information needed to determine
the values to substitute for y to obtain a refinement mapping under which
IS is simulated. The proof in the Appendix sketches the details.

The theorem shows that these auxiliary variables are, in principle, all
we need to define a refinement mapping. It and its proof do not tell us how
refinement mappings are defined in practice.

7.6 The FIFO Queue

This section presents a more realistic example of the use of auxiliary vari-
ables to show that one abstract program implements another. That makes
it rather long, but it’s included for two reasons. The first is that it describes
linearizability, which is an important concept for designing concurrent pro-
grams. The second is that stuttering and prophecy variables are not as
intuitive as history variables, and a more realistic example may provide
some insight into how they can be used in practice.

7.6.1 Fifo – A Linearizable Specification

Popular coding languages provide a small number of built-in data types
such as finite-precision integers. Other data types must be implemented as
objects. An object has a state and methods with which the program can
read and modify parts of the state. We will ignore how objects are created
and destroyed.
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A simple example of such an object is a first in, first out queue, called
a fifo. We can think of the state of a fifo as an ordinal sequence queue
of elements from some set Data. A fifo provides two methods, usually
described as follows.

enqueue Takes an element of Data as an argument, and appends it to the
end of queue. It returns no value.2

dequeue If queue is nonempty, it removes the first element of queue and
returns it as the result. If queue is the empty sequence, it returns some
special value.

An object is accessed only by executing its methods. For the purpose of
correctness, the programmer needs to know nothing about how these two
methods are implemented.

This kind of description is adequate for a method in a traditional pro-
gram. It is inadequate for concurrent programs because it says nothing
about what happens if two processes concurrently access the object. The
call of a method and the return are usually described as single steps, but
execution of the operation may consist of steps that occur between those
two steps.

Often, it is considered an error if two processes concurrently access the
same object. The object must either be accessed by only one process, or
else accesses by different processes must be inside the critical section of a
mutual exclusion algorithm. We’re interested in objects that are meant to be
accessed concurrently by multiple processes—for example, a critical section
object for implementing mutual exclusion with enter and exit methods.

Maurice Herlihy and Jeannette Wing defined an object to be linearizable
iff if acts as if the execution of a method consists of three steps: the call,
the return, and between them a single step that performs the actual reading
and/or modifying of the object’s state [19]. The state of a linearizable object
is described by internal variables. Only the call and return steps change
interface variables. Linearizability has become a standard requirement for
shared objects in concurrent systems.

We describe a linearizable fifo as an abstract program. We require that
execution of a dequeue operation when queue is empty waits for an element
to be enqueued rather than returning a special value. This makes the fifo
more interesting because it involves process synchronization—making one
process wait for another process to do something. Since the purpose of the

2Sometimes the queue can hold only some maximum number of elements, but for
simplicity we assume that there is no such limit.
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example is to illustrate the use of auxiliary variables, which are added only
to the safety property of a program, we consider only the safety property of
a fifo.

We assume there is a set EnQers of processes that perform enqueue
operations. Execution of an enqueue operation by process e consists of
three steps: a BeginEnq(e) step that describes the call of the method, a
DoEnq(e) step that modifies the variable queue, and an EndEnq(e) step that
describes the return. The enqueuers communicate with the object through
the interface variable enq , whose value is a function with domain EnQers.
The value of enq(e) equals Done when enqueuer e is not performing an
enqueue operation, and it equals the data value it is appending to queue
when e is performing the operation, where Done is some constant not in
Data. There is also an internal variable enqInner , where enqInner(e) is set
to Busy by the BeginEnq(e) action and is set to Done by the DoEnq(e)
action.

Similarly, there is a set DeQers of dequeuer processes, each d ∈ DeQers
performing BeginDeq(d), DoDeq(d), and EndDeq(d) steps. Dequeuers com-
municate with the object through the interface variable deq , where deq(d) is
set to Busy by the BeginDeq(d) action and to the value that was dequeued
by the EndDeq(d) action. There is an internal variable deqInner , where
deqInner(d) is set to Busy by the BeginDeq(d) action and set by DoDeq(d)
to the value dequeued by the dequeue operation. The complete definition of
the abstract program is formula Fifo in Figure 7.9. It uses the unchanged
operator, where unchanged exp equals exp′ = exp. Thus, if v is a tuple
〈v1, . . . , vn 〉 of variables, then unchanged v asserts that v ′i = v i for all i
in 1 . .n.

7.6.2 POFifo – A More General Specification

7.6.2.1 The Background

Many people, myself included, used to believe that any implementation of
a fifo had to be a more concrete version of program IFifo, with the value
of the variable queue encoded in the program’s state. This implied that
any implementation of a fifo should implement IFifo under a refinement
mapping, without having to add auxiliary variables.

We were wrong. Suppose two processes concurrently execute enqueue
operations. When the two operations’ EndEnq steps have occurred, program
IFifo has appended both values to queue in some order, determining the
order in which they will be dequeued. However, in a behavior of program
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Fifo
∆
= ∃∃∃∃∃∃ queue, enqInner , deqInner : IFifo

IFifo
∆
= Init ∧2[Next ]v

v
∆
= 〈enq , deq , queue, enqInner , deqInner 〉

Init
∆
= ∧ enq = (e ∈ EnQers 7→ Done)
∧ deq ∈ (DeQers → Data)
∧ queue = 〈 〉
∧ enqInner = (e ∈ EnQers 7→ Done)
∧ deqInner = deq

Next
∆
= ∨ ∃ e ∈ EnQers : BeginEnq(e) ∨DoEnq(e) ∨ EndEnq(e)
∨ ∃ d ∈ DeQers : BeginDeq(d) ∨DoDeq(d) ∨ EndDeq(d)

BeginEnq(e)
∆
= ∧ enq(e) = Done
∧ ∃D ∈ Data : enq ′ = (enq except e 7→ D)
∧ enqInner ′ = (enqInner except e 7→ Busy)
∧ unchanged 〈deq , queue, deqInner 〉

DoEnq(e)
∆
= ∧ enqInner(e) = Busy
∧ queue ′ = Append(queue, enq(e))
∧ enqInner ′ = (enqInner except e 7→ Done)
∧ unchanged 〈deq , enq , deqInner 〉

EndEnq(e)
∆
= ∧ enq(e) 6= Done
∧ enqInner(e) = Done
∧ enq ′ = (enq except e 7→ Done)
∧ unchanged 〈deq , queue, enqInner , deqInner 〉

BeginDeq(d)
∆
= ∧ deq(d) 6= Busy
∧ deq ′ = (deq except d 7→ Busy)
∧ deqInner ′ = (deqInner except d 7→ NoData)
∧ unchanged 〈enq , queue, enqInner 〉

DoDeq(d)
∆
= ∧ deq(d) = Busy
∧ deqInner(d) = NoData
∧ queue 6= 〈 〉
∧ deqInner ′ = (deqInner except d 7→ Head(queue))
∧ queue ′ = Tail(queue)
∧ unchanged 〈enq , deq , enqInner 〉

EndDeq(d)
∆
= ∧ deq(d) = Busy
∧ deqInner(d) 6= NoData
∧ deq ′ = (deq except d 7→ deqInner(d))
∧ unchanged 〈enq , queue, enqInner , deqInner 〉

Figure 7.9: The program Fifo.
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Fifo, where queue is hidden, there is no way to know in which order the two
values appear in queue until that order is revealed by dequeue operations. In
their paper defining linearizability, Herlihy and Wing gave an algorithm that
implements a fifo in which, from a state immediately after both enqueue
operations have completed, it is possible for the two values to be dequeued in
either order by two successive non-concurrent dequeue operations. There is
no queue encoded in the algorithm. While their algorithm implements Fifo,
there is no refinement mapping under which it implements IFifo without the
addition of auxiliary variables. In particular, showing that their algorithm
implements Fifo requires adding a prophecy variable that predicts the order
in which data items enqueued by concurrent enqueue operations will be
dequeued.

What is encoded in the state of their algorithm is not a linearly ordered
queue of enqueued data values, but rather a partial order on the set of
enqueued values that indicates the possible orders in which the values can
be returned by dequeue operations. A partial order on a set S is a relation ≺
on S that is transitive and has no cycles (which implies a 6≺ a for any a ∈ S ).
For the partial ordering ≺ on the set of enqueued values, the relation u ≺ w
means that value u must be dequeued before value w . Program IFifo is the
special case in which that partial order is a total order, meaning that either
u ≺ w or w ≺ u for any two distinct enqueued values u and w .

Presented here is a program POFifo that is equivalent to Fifo, but which
is obtained by hiding internal variables in a program IPOFifo that main-
tains a partially ordered set of enqueued values rather than a queue. The
Herlihy-Wing algorithm can be shown to implement IPOFifo under a refine-
ment mapping defined in terms of its variables, without adding a prophecy
variable.

7.6.2.2 Program POFifo

Execution of an operation is described by a sequence of steps. In a lineariz-
able description, there are three steps: a step of the Begin action, a step
of the Do action, and a step of the End action. One operation execution
is defined to precede another if its End step precedes the other execution’s
Begin step. If neither of two operation executions precedes the other, then
the executions are said to be concurrent.

Since Begin and End steps change interface variables, they appear in a
behavior of Fifo. However, a Do step changes only internal variables, so
it is not visible in a behavior of Fifo. If the executions of two enqueues
are concurrent, then a behavior of Fifo does not show in which order their
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Do steps occurred in IFifo. Only if one enqueue execution precedes the
other do we know from a behavior of Fifo the order in which the enqueued
values appear in queue. Therefore, a behavior satisfies Fifo iff it satisfies the
following two safety properties. They are stated informally, where a value
is taken to mean a particular enqueueing of a data value.

F1. Each dequeued value has been enqueued, and an enqueued value is
dequeued at most once.

F2. If an enqueue of a value v precedes an enqueue of a value w , then the
dequeue of value w cannot precede the dequeue of value v .

The values enqueued by two concurrent enqueue executions may be de-
queued in either order.

Program IPOFifo must maintain a set of enqueued items and some or-
dering relation among them. The first thing to observe is that the same
data item might be enqueued twice before any item is dequeued. Since this
is not a silly example, that possibility should be handled. An easy way to
do that is to maintain a set of pairs 〈d , i 〉 where d is the enqueued data
value and i is an element of a set Ids of identifiers that serve to distinguish
between different “copies” of an enqueued value. Let’s call such a 〈data
value, identifier pair〉 a datum. (We will use datums as the plural of datum
because data suggests elements of Data rather than of Data × Id . We will
continue to call an element of Data a data value.)

IPOFifo will use an internal variable elts whose value is the set of cur-
rently enqueued datums. It will also have an internal variable whose value
is an ordering relation ≺ on the set elts where, u ≺ w means that datum u
must be dequeued before datum w is. For IPOFifo to describe a linearizable
object, execution of an enqueue operation must consist of a BeginPOEnq
step, followed by a DoPOEnq step that puts the datum in elts, followed by
an EndPOEnq step. Condition F2 is satisfied if the DoPOEnq step that
puts a datum w in elts adds a relation u ≺ w for every datum u put in elts
by an enqueue operation that has completed. Of course, F1 is satisfied if
every DoPODeq step obtains its data item from a datum that it removes
from elts.

Given any behavior σ satisfying IPOFifo, we can obtain a behavior τ
satisfying IPOFifo by moving every DoPOEnq step earlier in the behavior
so it occurs immediately after its operation’s BeginPOEnq step, and moving
every DoPODeq step later in the behavior so it occurs immediately before its
operation’s EndPODeq step. Moreover, since the Do . . . steps change only
internal variables, the values of the interface variables are the same in each
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state of τ as in σ. Therefore, without eliminating any possible behaviors of
POFifo (which are obtained by hiding the internal variables of IPOFifo),
we can require that a BeginPOEnq step be immediately followed by the
operation’s DoPOEnq step, and that an EndPODeq step be immediately
preceded by the operation’s DoPODeq step. This means that there’s no
need for the Do . . . actions; the BeginPOEnq and DoPOEnq actions can be
combined into a single action, as can the DoPODeq and EndPODeq actions.
We will therefore simplify IPOFifo be eliminating the Do . . . actions and
having only Begin . . . and End . . . actions.

We can now write the program IPOFifo. It will have the same constants
as IFifo plus the set Ids of identifiers; and it will have the same interface
variables enq and deq . It will have the internal variable elts whose value is
the set of currently enqueued datums.

IPOFifo will need an internal variable to describe the partial order ≺ on
the set elts. Mathematicians describe a relation ≺ on a set S as a subset
of S × S , where u ≺ v is an abbreviation for 〈u, v 〉 ∈≺. We’ll do the same
thing, except it would be confusing to use the symbol ≺ as a variable. We
will therefore let before be the variable whose value is a subset of elts × elts
such that u ≺ v means 〈u, v 〉 ∈ before.

Finally, when enqueueing a datum w , the BeginPOEnq step must add
to ≺ the relation u ≺ w for a datum u in elts iff the enqueue operation that
added u has completed. That information is not contained in the interface
variable enq because enq(e) contains only the data value that an uncom-
pleted enqueue operation is enqueueing, not which datum the operation put
in elts. Therefore, we add to IPOFifo an internal variable adding such that
adding(e) equals the datum in elts that enqueuer e put in elts, and equals a
value NonElt that is not a datum if e is not currently performing an enqueue
operation.

We use adding to define the following state expression, whose value is
the set of datums enqueued by operations whose executions have not yet
completed:

beingAdded
∆
= {adding(e) : e ∈ EnQers} \ {NonElt}

The set beingAdded need not be a subset of elts because it can contain
datums that were removed from elts by dequeue operations before the op-
erations that enqueued them have completed.

The program POFifo is defined in Figure 7.10. Here are explanations of
the four disjuncts of the next-state action PONext .

BeginPOEnq(e) Enabled when enq(e) = Done, it:
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POFifo
∆
= ∃∃∃∃∃∃ elts, before, adding : IPOFifo

IPOFifo
∆
= POInit ∧2[PONext ]POv

POv
∆
= 〈enq , deq , elts, before, adding 〉

POInit
∆
= ∧ enq = (e ∈ EnQers 7→ Done)
∧ deq ∈ (DeQers → Data)
∧ elts = {}
∧ before = {}
∧ adding = (e ∈ EnQers 7→ NonElt)

PONext
∆
= ∨ ∃ e ∈ EnQers : BeginPOEnq(e) ∨ EndPOEnq(e)
∨ ∃ d ∈ DeQers : BeginPODeq(d) ∨ EndPODeq(d)

BeginPOEnq(e)
∆
=

∧ enq(e) = Done
∧ ∃D ∈ Data : ∃ id ∈ {i ∈ Ids : 〈D , i 〉 /∈ (elts ∪ beingAdded)} :
∧ enq ′ = (enq except e 7→ D)
∧ elts ′ = elts ∪ {〈D , id 〉}
∧ before ′ = before ∪ {〈el , 〈D , id 〉〉 : el ∈ (elts \ beingAdded)}
∧ adding ′ = (adding except e 7→ 〈D , id 〉)

∧ deq ′ = deq

EndPOEnq(e)
∆
= ∧ enq(e) 6= Done
∧ enq ′ = (enq except e 7→ Done)
∧ adding ′ = (adding except e 7→ NonElt)
∧ unchanged 〈deq , elts, before 〉

BeginPODeq(d)
∆
= ∧ deq(d) 6= Busy
∧ deq ′ = (deq except d 7→ Busy)
∧ unchanged 〈enq , elts, before, adding 〉

EndPODeq(d)
∆
= ∧ deq(d) = Busy
∧ ∃ el ∈ elts :
∧ ∀ el2 ∈ elts : ¬(el2 ≺ el)
∧ elts ′ = elts \ {el}
∧ deq ′ = (deq except d 7→ el(1))
∧ before ′ = before ∩ (elts ′ × elts ′)

∧ unchanged 〈enq , adding 〉

Figure 7.10: The program POFifo.
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• Sets enq(e) to the data value D that e is enqueuing.

• Adds a datum 〈D , id 〉 to elts for some id ∈ Ids for which 〈D , id 〉
is not already in elts or beingAdded .

• Modifies before to add the relations el ≺ 〈D , id 〉 for every el in
elts that is not in beingAdded .

• Sets adding(e) to 〈D , id 〉, thereby adding 〈D , id 〉 to beingAdded .

EndPOEnq(e) Enabled when enq(e) is a data value, it sets enq(e) to Done
and sets adding(e) to NonElt , thereby removing from beingAdded the
datum that e had enqueued.

BeginPODeq(d) Enabled when deq(d) is a data value, it sets deq(d) to
Busy .

EndPODeq(d) Enabled when deq(d) equals Busy and elts is not empty,
which implies that elts contains at least one minimal datum (a datum
not preceded in the ≺ relation by any other datum in elts), since the
datum in elts that was added first to elts must be a minimal datum.
The action chooses an arbitrary minimal datum el of elts, removes it
from elts, sets deq(d) to its data value component, and modifies before
to remove all relations el ≺ el2 for elements el2 of elts.

7.6.3 Showing IPOFifo Implements Fifo

Formulas POFifo and Fifo are equivalent. However, more important and
more interesting than showing that Fifo refines POFifo is showing that
POFifo refines Fifo. It’s more important because Fifo is the generally ac-
cepted description of a fifo. By showing that POFifo implements Fifo, we
can show that an algorithm that doesn’t maintain a totally ordered queue
implements Fifo by showing that it implements POFifo. It’s more interest-
ing because showing that POFifo implements Fifo requires all three kinds of
auxiliary variables. So, we won’t discuss the problem of showing that Fifo
refines POFifo.

To show that POFifo refines Fifo, we have to define a refinement map-
ping under which IPOFifo implements IFifo. This requires adding to
IPOFifo first a prophecy variable, then a history variable, then a stutter-
ing variable. They are added in the three following subsections. Adding the
prophecy variable is straightforward and the necessary details are presented.
How to add the other two variables and define the refinement mapping are
then sketched. Rigorously defining those two programs and the refinement
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mapping would be a marvelous learning experience. However, the chance of
doing it without making any error is small unless you use a tool to check
what you have done. I used a model checker for TLA+ to check that the
program obtained by adding the auxiliary variables to POFifo implements
Fifo under the refinement mapping described below.

7.6.3.1 The Prophecy Variable

The most significant problem in showing that POFifo implements Fifo is
that IFifo decides the order in which concurrently enqueued values will be
dequeued before IPOFifo does. This tells us that to define a refinement
mapping under which IFifo is implemented by POFifo, we need to add a
prophecy variable p to IPOFifo.

The simplest way I know of making the necessary predictions is with
a prophecy sequence variable p that predicts the sequence of datums that
will be dequeued next. The first item in the sequence predicts the datum
that the next EndPODeq step removes from elts, and that step of course
removes the prediction from p. The natural step to append a prediction
to the sequence p is the BeginPOEnq step that adds a datum to elts. The
length of p therefore always equals the number of datums in elts. The
predictions are completely arbitrary datums, so in almost all behaviors they
will be impossible to fulfill, at some point not allowing any more datums to
be dequeued. But as we’ve seen, unfulfillable predictions are no problem.
Since no predictions are made about enqueue operations, they can keep
being performed even if the datums they enqueue can never be dequeued.

The set Π of possible predictions equals the set Data× Ids of all possible
datums. The BeginPOEnq(e) action should append a prediction to p, and
the EndPOEnq(e) and BeginPODeq(d) actions should leave p unchanged.
We can therefore define three of the four subactions of the next-state action
PONextp of IPOFifop by:

BeginPOEnqp(e)
∆
= ∧ BeginPOEnq(e)
∧ ∃ el ∈ Data × Ids : p ′ = Append(p, el)

EndPOEnqp(e)
∆
= EndPOEnq(e) ∧ (p′ = p)

BeginPODeqp(d)
∆
= BeginPODeq(d) ∧ (p ′ = p)

The prediction made by the first item p(1) of the sequence p is the datum
that the next EndPODeq(d) step will remove from elts. The datum p(1)
is removed by this step iff elts ′ = elts \ {p(1)} is true of the step. Since the
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step must remove the prediction, we can define:

EndPODeqp(d)
∆
=

EndPODeq(d) ∧ (elts ′ = elts \ {p(1)}) ∧ (p′ = Tail(p))

These four action definitions, and the observation that Initp should equal
Init ∧ (p = 〈 〉) give us all the pieces of the definition of IPOFifop . I won’t
bother to put them together.

7.6.3.2 The History Variable qBar

We now must decide how to define queueBar , the state expression that is
substituted for queue in the refinement mapping. It’s easiest to think of
defining queueBar as the sequence not of the data values to be substituted
for the variable queue of IFifo, but of the sequence of datums being dequeued
from elts by POFifo. We can then define the refinement mapping so it
substitutes for the variable queue of IFifo the sequence of data values in the
datums of queueBar .

Since there are no Do . . . steps in IPOFifo, we will have to add stutter-
ing steps to append datums to queueBar . To do that, we will first add to
IPOFifop a history variable qBar to produce a program we’ll call IPOFifopq .
The value of qBar will be the sequence of datums that will appear in
queueBar . However, datums will be appended to qBar by Begin . . . and
End . . . steps, so stuttering steps will then have to be added to IPOFifopq

that append the datums in qBar one at a time to queueBar , since IFifo
appends data values to queue one at a time. How those stuttering steps are
added is explained in Section 7.6.3.3.

We will see that a single BeginPOEnqpq step may append multiple da-
tums to qBar , so letting IPOFifo have Do . . . steps wouldn’t have eliminated
the need to add stuttering steps. The following definition of the history
variable qBar is subtle. To help you understand it, I suggest you check how
the definition works on the first few steps of several different behaviors of
IPOFifop .

Suppose that program IPOFifop is in a state in which it’s possible for a
dequeue operation to remove a datum from elts. For qBar to describe the
datums that are in queueBar , the datum removed by that dequeue operation
must be in qBar . An EndPODeqp step can remove only the datum p(1) from
elts, and it can remove p(1) iff p(1) is a minimal element for the relation ≺ of
elts. Therefore, p(1) must be the first element of qBar iff p(1) is a minimal
element of elts. If p(1) can be dequeued , then p(2) can be dequeued after it
iff p(2) is a minimal element of elts \ {p(1)}. And so on.
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Define the state predicate pg to be the longest prefix of p all of whose
datums can be dequeued from elts if no further datums are enqueued in elts.
It follows from the definition of IPOFifop that pg equals the longest prefix
of p satisfying the following conditions:

Q1. Every datum in pg is in elts.

Q2. No datum appears twice in pg .

Q3. For each i ∈ 1 . .Len(pg) and each datum u ∈ elts, if u ≺ pg(i) then
u = pg(j ) for some j ∈ 1 . . (i − 1).

We have shown that pg must be a prefix of qBar . Our strategy for defining
IPOFifopq by adding the history variable qBar to IPOFifop is to keep qBar
equal to pg for as long as possible. To see how to do that, let’s see how pg
can change.

The sequence pg can become shorter only when an EndPODeqp step
occurs, in which case p is not the empty sequence and pg is a nonempty
prefix of p. The step removes the first element of p and pg , so p′ = Tail(p),
pg ′ = Tail(pg), and qBar ′ = Tail(qBar).

The sequence pg can be made longer by a BeginPOEnqp step as follows.
Suppose the step appends the prediction u to p and adds the datum w to
elts. The value of pg at the beginning of the step is a proper prefix of p◦〈u 〉.
If w equals the prediction in p ◦ 〈u 〉 immediately after pg , then w will be
appended to pg iff doing so would not violate Q3. (We’ll see in a moment
when it would violate Q3.) If w can be appended to pg and the prediction
following w in p is already in elts, then it might be possible to append that
datum to pg as well. And so on. Thus, it’s possible for the BeginPOEnqp

step to append several datums to pg . If our strategy has been successful
thus far and qBar = pg at the beginning of the step, then a BeginPOEnqpq

step implies qBar ′ = pg ′. This makes qBar a prefix of qBar ′, as it should
be because stuttering steps to be added after a BeginPOEnqp step should
change queueBar only by appending datums to it.

There is one situation in which it is impossible for any further datum to
be appended to pg . One or more datums can be appended to pg only by
a BeginPOEnqp that adds a datum w to elts that can be appended to pg .
However if there is a datum u in elts that is neither in the sequence pg nor in
the set beingAdded , then adding w to elts also adds the relation u ≺ w . This
relation means that w can’t be appended to pg because that would violate
condition Q3. Thus, if there is a datum u in elts that is neither in pg nor
beingAdded , then no datums can be added to pg . Moreover, the datum u



CHAPTER 7. AUXILIARY VARIABLES 215

can never be removed from elts because it is not in pg and can never be in pg
because no more datums can be added to pg . (The datum u can’t be added
to beingAdded because a BeginPOEnq step can’t add a datum to elts that
is already in elts.) Let’s call a state in which there is a datum in elts that
is not in beingAdded or pg a blocked state. In a blocked state, datums can
be removed from the head of pg by EndPODeqp steps, but no new datums
can be appended to pg . So, if and when enough EndPODeqp steps have
occurred to remove all the datums from pg , then no more EndPODeqp steps
can occur. That means that any further dequeue operations that are begun
with a BeginPODeqp step must block, never able to complete.

Let’s consider the first step that caused a blocked state—that is, causing
there to be an element u in elts that is neither in pg nor beingAdded . Since
u was added to elts by a BeginPOEnqp step that put u in beingAdded , it
must be the EndPOEnqp step of the enqueue operation that added u to elts
that caused the blocked state by removing u from beingAdded . Until that
blocked state was reached, qBar equaled pg . However, since u has not been
dequeued, it must be in queueBar after that EndPOEnqp step because that
step must implement the EndEnq step of IFifo. Thus that EndPOEnqp step
must append u to qBar . Therefore, the first blocked state is the first state
in which qBar 6= pg . In that state, qBar equals pg ◦ 〈u 〉.

From that first blocked state on, no new datums can be added to pg , so
the datum u can never be dequeued. Therefore, whenever an EndPOEnqp

step occurs for an operation that enqueued a datum w , if w is in elts (so it
hasn’t been dequeued) and is not in pg , then that EndPOEnqp step must
append w to qBar .

To recapitulate, here is how we add the history variable qBar to IPOFifop

to obtain the program IPOFifopq . These rules imply that, at any point in the
behavior, qBar will equal pg ◦ eb where pg is the state function of IPOFifop

defined above and eb is a sequence of datums in elts that are not in pg .
Initially, pg and eb equal 〈 〉.

• An EndPODeqp step can occur only if pg 6= 〈 〉. Such a step satisfies
pg ′ = Tail(pg) and qBar ′ = Tail(qBar).

• An EndPOEnqp step that removes from beingAdded a datum w that
is in elts but not in pg appends w to eb and hence to qBar .

• A BeginPOEnqp step that occurs when eb = 〈 〉 (so qBar = pg) sets
qBar ′ equal to pg ′.

These rules imply that a datum can never be removed from eb, so once eb
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is nonempty no new datums can be added to pg and only datums currently
in pg can ever be dequeued.

Observe that the sequence pg and the set of datums in eb can be defined
in terms of the variables of IPOFifop . A history variable is needed only
to remember the order in which datums have been appended to eb. This
suggests that it’s a little simpler to make eb the history variable and define
qbar to be the state expression pg ◦eb. However, I could not have discovered
this without first understanding how qBar should be defined.

Writing a complete definition of IPOFifopq is straightforward, once we
have solved the problem of writing a precise mathematical definition of the
state function qBar in terms of the variables of IPOFifop . (It took me a few
tries to get the definition right, using a model checker to find my mistakes.)
That definition is omitted.

7.6.3.3 Stuttering and the Refinement Mapping

Having defined qBar for IPOFifopq , adding a stuttering variable s and defin-
ing the refinement mapping under which the resulting program IPOFifopqs

implements IFifo are comparatively straightforward. First, s has to add
stuttering steps that allow us to define queueBar . Recall that qBar is de-
fined so it is changed by interface actions (the only ones that IPOFifopq

has) the way internal Do . . . actions of IFifo change the value of the inter-
nal variable queue of IFifo. Since queueBar should implement queue under
the refinement mapping (except that queueBar contains datums not just the
data values), it needs to be changed by stuttering steps added to IPOFifopq .
We define the program IPOFifopqs by adding a stuttering variable s that
adds steps in the following three cases. We define queueBar to be the state
expression that equals qBar except as noted below.

1. s adds a single stuttering step before each EndPODeqpq step. The
value of queueBar equals Tail(qBar) immediately after that stuttering
step.

2. s adds a stuttering step before each EndPOEnqpq step that appends
an element w to eb (and hence to qBar). Immediately after that
stuttering step, queueBar equals qBar ◦ 〈w 〉.

3. Following each BeginPOEnqpq step such that Len(pg ′) > Len(pg)
(which implies eb = 〈 〉), s adds Len(pg ′) − Len(pg) stuttering steps.
While there are k more of those stuttering steps left to be executed,
queueBar equals the sequence obtained from qBar by removing its last
k elements.



CHAPTER 7. AUXILIARY VARIABLES 217

Encoding in the value of the stuttering variable s for which of the three
cases the variable is being added, and in case 2 for which enqueuer e the
step is an EndPOEnqpq(e) step, allows the value of queueBar to be defined
in terms of the values of s, qBar , and (for case 2) adding .

We still have to define the state functions enqInnerBar and deqInnerBar
that are substituted for enqInner and deqInner in the refinement mapping
under which IPOFifopqs implements IFifo. The value of enqInnerBar(e) for
an enqueuer e should equal Done except when adding(e) equals the datum
that e is enqueueing, and that datum is not yet in queueBar . This means
that enqInnerBar can be defined in terms of adding , queueBar , and s.

The value of deqInnerBar(d) for a dequeuer d should equal the value of
deq(d) except between when d has removed the first element of queueBar
(by executing the stuttering step added in case 1) and before the subse-
quent EndPODeqpqs(d) step has occurred. In that case, deq(d) should
equal qBar(1). It’s therefore easy to define deqInnerBar as a state func-
tion of IPOFifopqs if the value of the stuttering variable s added in case 1
contains the value of d for which the following EndPODeqpqs(d) step is to
be performed.

This completes the sketch of how auxiliary variables are added to IPOFifo
to define a refinement mapping under which it implies IFifo, showing that
POFifo refines Fifo. The intellectually challenging part was discovering how
to define qBar . It took me quite a bit of thinking to find the definition. This
was not surprising. The example of the fifo had been studied for at least
15 years before Herlihy and Wing discovered that it could be implemented
without maintaining a totally ordered queue. Given the definition of qBar ,
constructing the refinement mapping required the ability to write abstract
programs mathematically—an ability that comes with practice.

7.7 Prophecy Constants

We have seen examples of showing |= T ⇒ S , where S equals ∃∃∃∃∃∃ . . . : IS , by
adding an auxiliary variable a to T and showing T a implies IS under a
refinement mapping. In these examples, IS and S were safety properties.
Liveness was shown by showing that T a conjoined with the lower-level pro-
gram’s liveness property implies the higher-level program’s liveness property.

Let’s return to an example we considered in Section 7.1.3. Define IS and
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T to be the two formulas defined in (7.7) and (7.8):

IS
∆
= ∧ (x = 0) ∧ (y ∈ N)

∧ 2 [(y > 0) ∧ (x ′ = x + 1) ∧ (y ′ = y − 1)]〈x ,y 〉

T
∆
= (x = 0) ∧ 2[x ′ = x + 1]x ∧ 32[x ′ = x ]x

and let S equal ∃∃∃∃∃∃ y : IS . We observed that formulas S and T are equiva-
lent, so |= T ⇒ S is true. To define a refinement mapping under which T
implies IS , we have to add one or more auxiliary variables to T to obtain
an expression to substitute for y .

The liveness property 32[x ′ = x ]x implies that a behavior of T eventu-
ally stops incrementing x and terminates. To define the refinement mapping,
we need a variable that can predict the value of x when the behavior termi-
nates. So, we need a prophecy variable.

Because we have to predict something that is implied by a liveness prop-
erty, it appears that the only kind of prophecy variable that will work is one
that predicts the entire future—namely an infinite prophecy variable that
predicts all the future values of x . This means adding auxiliary variables,
including a prophecy variable, the way it is done in the completeness proof
of Section 7.5. This is disturbingly complicated for such a simple example.

Fortunately, there is a simple way to construct the refinement mapping
under which T implies IS without using a prophecy variable. We first
observe that T implies that eventually x is forever equal to some natural
number—more precisely:

|= T ⇒ ∃n ∈ N : 32(x = n)(7.17)

This implies:

|= T ≡ ∃n ∈ N : 32(x = n) ∧ T

By the ∃ Elimination Rule of Math IX, to show (∃n ∈ N : . . .)⇒ S it suf-
fices to prove (n ∈ Nat) ∧ . . .⇒ S . Therefore, to prove T ⇒ ∃∃∃∃∃∃ y : IS , it
suffices to prove:

|= (n ∈ N) ∧ 32(x = n) ∧ T ⇒ ∃∃∃∃∃∃ y : IS(7.18)

We can do this with the refinement mapping y ← n − x , showing:

|= (n ∈ N) ∧ 32(x = n) ∧ T ⇒ (IS with y ← n − x )
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The generalization of this example is showing T ⇒ ∃∃∃∃∃∃ . . . : IS by finding
a formula L containing a constant c that does not occur in IS such that
|= T ⇒ ∃ c : L , and then showing:

|= (c ∈ C ) ∧ L ∧ T ⇒ ∃∃∃∃∃∃ . . . : IS

A bound constant c used in this way is called a prophecy constant. It can
be shown that prophecy constants are, in principle, as powerful as prophecy
variables. In particular, Theorem 7.6 of Section 7.5 is true with the prophecy
variable replaced by a prophecy constant. This is proved by modifying the
proof of Theorem 7.6 as described in Appendix Section B.11, after the proof
of that theorem.

Although in theory equivalent, prophecy variables and prophecy con-
stants are quite different in practice. It appears that a prophecy variable
is best for predicting what a safety property implies may happen, while a
prophecy constant is best for predicting what a liveness property L implies
must eventually happen.

Prophecy constants were introduced by Wim Hesselink, who called them
“eternity variables” [20]. He did not represent programs mathematically, so
he had to invent a rule for adding them to programs.



Chapter 8

Loose Ends

This chapter covers two topics that, to my knowledge, have not yet seen any
industrial application. However, they might in the future become useful.
The first topic is reduction, which is about verifying that a program satisfies
a property by verifying that a coarser-grained version of the program satisfies
it. Even if you never use it, understanding the principles behind reduction
can help you choose the appropriate grain of atomicity for abstract programs.
For that purpose, skimming through sections 8.1.1–8.1.3 should suffice.

The second topic is about representing a program as the composition of
component programs. We have been representing the components that make
up a program, such as the individual processes in a multiprocess program, as
disjuncts of the next-state action. Section 8.2 explains how the components
that form a program can be described as programs. How this is done depends
on why it is done. Two reasons for doing it and the methods they lead to
are presented.

8.1 Reduction

8.1.1 Introduction

8.1.1.1 What Reduction Is

When writing an abstract program to describe some aspect of a concrete
one, we must decide what constitutes a single step of a behavior. Stated
another way, we must describe what the grain of atomicity of the next-state
action should be. The only advice provided thus far is that we should use
the coarsest grain of atomicity (the fewest steps) that is a sufficiently ac-
curate representation of that aspect of the concrete program. “Sufficiently

220
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accurate” means that either we believe it is easy to make the concrete pro-
gram implement that grain of atomicity, or we are deferring the problem of
how those atomic actions are implemented.

Some work has addressed the problem of formalizing what makes an ab-
stract program “sufficiently accurate”, starting with a 1975 paper by Richard
Lipton [41]. This work used the approach called reduction, which replaces
a program S with an “equivalent” coarser-grained program SR called the
reduced version of S . Certain properties of S are verified by showing that
SR satisfies them. The program SR is obtained from S by replacing certain
nonatomic operations with atomic actions, each atomic action producing
the same effect as executing all the steps of the nonatomic operation it re-
places one after another, with no intervening steps of other operations. The
reduced program SR is therefore simpler and easier to reason about than
program S .

It was never clear in exactly what sense SR was equivalent to S , and the
results were restricted to particular classes of programs and of the proper-
ties that could be verified. TLA enabled a new way of viewing reduction.
In that view, the variables of S are replaced in SR by “virtual” variables,
and S implements SR under a refinement mapping. The refinement map-
ping is not made explicit, but the relation between the values of the actual
and the virtual variables is described by an invariant. This mathematical
view encompasses much of the previous work on reduction for concurrent
programs.

Our basic approach to writing a correct concrete program is showing
that it refines an abstract program. There are two aspects to refining one
program with another: data refinement and step refinement. Modern coding
languages have made data refinement easier by providing higher-level, more
abstract data structures. It is now almost as easy to write a program that
manipulates integers as one that manipulates bit strings representing a finite
set of integers. There has been much less progress in making step refinement
easier. As explained in Section 7.6.1, a linearizable object allows a coarse
grain of atomicity in descriptions of the code that executes operations on
the object. However, the only general method of implementing a linearizable
object still seems to be the one invented by Dijkstra in the 1960s: putting
the code that reads and/or modifies the state of the object in a critical
section.

I believe that better ways of describing the grain of atomicity will be
needed if rigorous verification that concrete concurrent programs implement
abstract ones is to become common practice. Reduction may provide the
key to doing this. Section 8.1 provides a mathematical foundation for under-
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standing reduction. The theorems presented here are not the most general
ones possible; some generalizations can be found elsewhere [8]. Also omit-
ted are rigorous proofs. I know of no industrial use of reduction or of tools
to support it; and I have no experience using the results described here in
practice. The problem it addresses is real, but I don’t know if reduction is
the solution.

8.1.1.2 The TLA Approach

Here is how reduction can be described in TLA. Let x be the variables x 1,
. . . , xn of S . Reduction is usually described by letting x also be the variables
of SR. However, I find that reduction is easier to understand by letting the
variables of SR be different from those of S . We will let those variables be
the list X of variables X 1, . . . ,X n . The goal is then to verify that S satisfies
a property P by verifying that SR satisfies the property P with x← X .

To deduce |= S ⇒ P , where S and P contain the variables x, from
|= SR ⇒ (P with x ← X), we need a relation between the variables x
and the variables X. That relation is expressed by a state predicate I R

containing the variables x and X. We then deduce that S satisfies P from
the following three conditions. The formula T will be explained later; ignore
it for the moment.

R1. |= S ∧ T ⇒ ∃∃∃∃∃∃X : SR ∧ 2I R

R2. |= SR ⇒ (P with x← X)

R3. |= (P with x← X) ∧ 2I R ⇒ P

Condition R1 is implied by theorems whose hypotheses are the conditions
necessary for reduction to be possible. Condition R2 asserts that P with
its variables x replaced by X is satisfied by the reduced program SR, which
should be easier to verify than that P is satisfied by the finer-grained pro-
gram S . Condition R3 completes the chain of reasoning to show that S (and
T , which we’re ignoring) satisfies P .

Throughout this section on reduction, we abbreviate F with x← X as
F , for any formula F . Thus R2 and R3 can be written as

|= SR ⇒ P and |= P ∧ 2I R ⇒ P

We first consider the case in which S is the usual TLA safety property
Init ∧ 2[Next ]〈x〉 for an abstract program. We then consider the program
described by S ∧F , where F is the conjunction of fairness properties for S .
Conditions R1–R3 will then have S replaced by S ∧F , the reduced program
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(S ∧F )R being defined to equal SR ∧FR where FR is obtained by replacing
each fairness condition for an action A of S with fairness of a corresponding
action AR of SR.

The formula T in the hypothesis of R1 is a liveness assumption that
will be defined below. It turns out that even when S is a safety property,
so SR is also safety property, R1 requires a liveness assumption about S .
For a program with a fairness property F , we expect S ∧ F to imply T . If
the program describes only safety, then it can satisfy only safety properties,
so it would be strange if we required S to satisfy a liveness property to use
reduction. We will see that, to show S satisfies a safety property P , showing
that S satisfies a possibility condition allows us to assume that T is satisfied.

To prove the theorem that asserts R1, we construct an abstract program
S⊗SR, with variables x and X, that describes the programs S and SR

running simultaneously in parallel. (The symbol S⊗SR is just an identifier
that names a formula, not an expression with formulas S and SR and an
operator ⊗. This unusual identifier is meant to remind us what the formula
means.) We then show:

R1a. |= S ⇒ ∃∃∃∃∃∃X : S⊗SR

R1b. |= S⊗SR ∧ T ⇒ SR ∧ 2I R

R1b implies |= (∃∃∃∃∃∃X : S⊗SR ∧ T )⇒ (∃∃∃∃∃∃X : SR ∧2I R); and the variables X
don’t appear in T , so ∃∃∃∃∃∃X : S⊗SR ∧ T equals (∃∃∃∃∃∃X : S⊗SR) ∧ T . Therefore,
R1a and R1b imply R1.

One property asserted by I R is that, if the values of x describe a state in
which none of the nonatomic operations of S being reduced is currently being
executed, then x = X. The values of x and X are synchronized like this,
despite the reduced program taking fewer steps than the original program,
by having S⊗SR take X-stuttering steps—steps that leave the values of
the variables X unchanged. R1b is satisfied because these X-stuttering
steps implement stuttering steps of SR. R3 was satisfied in Lipton’s original
paper because he considered terminating programs and properties P that
depend only on the initial and final states of the program. In those states,
none of the nonatomic operations of S being reduced are being executed, so
x = X. In what may have been the second paper published on reduction,
Doeppner [10] satisfied R3 by proving only that an invariant is true when
none of the reduced operations are being executed.
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8.1.2 An Example

To explain reduction, we start by examining this commonly assumed rule:
When reasoning about a multiprocess program in which interprocess com-
munication is performed by atomic operations to shared data objects, the
program can be represented with any grain of atomicity in which each atomic
action accesses at most one shared data object.1 The following is a state-
ment of the rule in our science and the argument generally used to justify
it.

Suppose S is a multiprocess program with a process that executes a
nonatomic operation, which we call RCL, described by the statements shown
in Figure 8.1. We assume this is “straight line” code, so an execution of RCL
consists of k +1+m steps. For now, we let S be the safety property described
by the code; liveness is discussed later. We assume statements Ri and Lj
can access only data local to the process, while statement C can also access
shared data. The rule asserts that we can replace S with its reduced version
SR obtained by removing all the labels between (but not including) r1 and
o, so those k +1+m statements are executed as a single step, and replacing
the variables x with the variables X. It is usually claimed that we can do
this because other processes can’t observe when the statements Ri and Lj
are executed, so we can pretend that they are executed in the same step as
statement C.

We can reduce other operations of the same form to atomic actions as
well, reducing the operations one at a time. So, it suffices to see how it’s
done for just this single operation RCL, which may be executed multiple
times.

8.1.2.1 The Reduced Behaviors

Let Ri , C , and Lj be the TLA actions described by statements Ri , C, and
Lj . An execution of RCL consists of a sequence of Ri steps, for i ∈ 1 . . k ,
followed by a C step, followed by a sequence of Lj steps, for j ∈ 1 . .m. In
an execution of the operation during a behavior of the program, interleaved
between those steps may be steps performed by other processes. (There can
also be stuttering steps that leave the values of variables x unchanged, but
they are irrelevant and we can ignore them.) A reduced execution of the
operation execution is one in which all the steps of RCL occur one after the
other, with no interleaved steps executed by other processes.

1The rule was stated in print independently by Owicki and Gries [44] and by me [29],
but I think it was well known at the time.
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rk:
...

r1: R1 ;
...

rk: Rk ;

c: C ;

l1: L1 ;
...

lm Lm ;

o: . . .
...

Figure 8.1: The nonatomic operation RCL.

We transform a behavior to a reduced behavior, in which only reduced
executions of RCL occur, by a procedure illustrated with the following por-
tion of a behavior containing an execution of RCL, where RCL has one Ri

statement (k = 1) and two Lj statements (m = 2). We show the name of
the action that each step satisfies, where E 1, E 2, and E 3 are actions of other
processes.

· · · s41
R1−→ s 42

E1−→ s 43
C−→ s 44

E2−→ s 45
E3−→ s 46

L1−→ s 47
L2−→ s48 · · ·(8.1)

Define R to be the state predicate that is true of a state iff that state occurs
during an execution of RCL before the C action. In the part of a behavior
shown in (8.1), R is true only in states s42 and s43. Define L to be the state
predicate asserting that the process is currently executing operation RCL
after the C action, so in (8.1) it is true in states s44–s47. In general, if p is the
process executing RCL of Figure 8.1, then R equals pc(p) ∈ {r2, . . . , rk , c}
and L equals pc(p) ∈ {l1, . . . , lm}. The behavior is currently executing
RCL iff the state predicate R ∨ L is true. Thus, the operation is not being
executed iff ¬(R∨ L) is true.

Because Ri and Lj actions access only process-local state, they commute
with actions from other processes, where two actions commute iff executing
them in either order has the same effect. Recall that A · B is defined in
Section 3.4.1.4 to be the action that is satisfied by a step s → t iff there
is a state u such that s → u is an A step and u → t is a B step. Actions
A and B commute iff A · B equals B · A. If A and B commute, then for

any states s, t , and u such that s
A−→ u

B−→ t , there exists a state v such

that s
B−→ v

A−→ t . By commuting Ri and Lj actions with actions of other
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processes, moving Ri actions to the right and Lj actions to the left, we
obtain a behavior in which every execution of RCL is reduced, with no steps
of other processes interleaved. For example, commuting actions in this way
converts the original behavior into the reduced behavior in which the portion
of the original behavior shown in (8.1) is converted to:

· · · s41
E1−→ u42

R1−→ s43
C−→ s44

L1−→ u45
L2−→ u46

E2−→ u47
E3−→ s48 · · ·(8.2)

A state s i is changed to a possibly different state u i if commutativity was

used to commute actions A and B in · · · A−→ s i
B−→ · · ·. For example, state

s46 had to be (possibly) changed twice to arrive at u46 because both the E 2

and E 3 actions had to be “moved across” state number 46 of the behavior
to get from (8.1) to (8.2). If σ is the original behavior (8.1), we define Φ(σ)
to be its reduced version (8.2), obtained by transforming all executions of
RCL in this way.

Note that the states s41 and s48 are the same in σ and Φ(σ) because
RCL is not being executed in those states. States s43 and s44, which form
the C step, are also the same in the original and reduced behaviors because
the C action is not commuted with any action. The reduced behavior (8.2)
is also a behavior of program S because it has the same initial state as (8.1),
which satisfies Init , and every step satisfies a subaction of the next-state
action Next .

8.1.2.2 The Program S⊗SR

We define S⊗SR in terms of a mapping φ from states in the original behavior
σ to states in the reduced behavior Φ(σ)—in our example, from states of
(8.1) to states of (8.2). First, we define φ(s) for all states except the ones in
a C step, which in (8.1) are all states except for s43 and s44. We call those
two states “C states” and the other states “non-C states”.

We transform a behavior containing executions of RCL to a reduced be-
havior by a sequence of action interchanges based on commutativity. There
are two kinds of interchange, both involving an E h action of a different pro-
cess: one that moves an Ri step to the right of an E h step, and one that
moves an Lj step to the left of an E h step. To go from behavior (8.1) to
behavior (8.2) requires five interchanges. Figure 8.2 shows the sequence of
behaviors created by performing these interchanges, where each behavior is
obtained from the preceding one by interchanging the left-most Ri or Lj

action that can be moved closer to the C action. The top behavior is the
original behavior (8.1) and the bottom one is the reduced behavior (8.2).
Observe that every state in one behavior equals the corresponding state
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· · · s41
R1−→ s 42

E1−→ s 43
C−→ s 44

E2−→ s 45
E3−→ s 46

L1−→ s 47
L2−→ s48 · · ·

�
��	· · · s41
E1−→ u42

R1−→ s 43
C−→ s 44

E2−→ s 45
E3−→ s 46

L1−→ s 47
L2−→ s48 · · ·

@
@@R· · · s41

E1−→ u42
R1−→ s 43

C−→ s 44
E2−→ s 45

L1−→ r46
E3−→ s 47

L2−→ s48 · · ·
@
@@R

@
@@R

· · · s41
E1−→ u42

R1−→ s 43
C−→ s 44

L1−→ u45
E2−→ r46

E3−→ s 47
L2−→ s48 · · ·

· · · s41
E1−→ u42

R1−→ s 43
C−→ s 44

L1−→ u45
E2−→ r46

L2−→ u47
E3−→ s48 · · ·

@
@@R

· · · s41
E1−→ u42

R1−→ s 43
C−→ s 44

L1−→ u45
L2−→ u46

E2−→ u47
E3−→ s48 · · ·

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

Figure 8.2: Constructing (8.2) from (8.1).

in the next behavior except for the one state across which the actions are
interchanged.

The arrows in the picture are drawn according to the following rules.
There is a (thin) downward pointing arrow from each non-C state that is
unchanged by the interchange that yields the next behavior. From the one
state in each behavior that is changed by the interchange, there is a (thick)
diagonal arrow. If that state satisfies R (is before the C action), then the
arrow points one state to the left of the changed state. If the state satisfies
L, then the arrow points one state to the right.

These arrows define a unique path from every non-C state s i of the
original behavior to a state in the reduced behavior. Define φ(s i) to be that
state in the reduced behavior. For the example in Figure 8.2, φ(s45) = u47

because the sequence of states in the path from s45 in the top behavior to
the bottom behavior is:

s45 → s45 → s45 → r46 → r46 → u47(8.3)

Figure 8.3 contains an arrow pointing from each non-C state s i in the orig-
inal behavior to the state φ(s i) in the reduced behavior. Observe that for
every non-C state s i , the state φ(s i) is a state in which operation RCL is
not being executed—that is, a state satisfying ¬(R∨ L).

We define φ(s) for the C states so that if the C step is s i
C−→ s i+1, then

φ(s i) is the first state to the left of s i for which ¬(R∨L) is true, and φ(s i+1)
is the first state to the right of s i+1 for which ¬(R ∨ L) is true. In other
words, φ(s i) and φ(s i+1) are the states of the reduced behavior in which the
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· · · s41
R1−→ s 42

E1−→ s 43
C−→ s 44

E2−→ s 45
E3−→ s 46

L1−→ s 47
L2−→ s48 · · ·

? ?
�

��	 j jR
· · · s41

E1−→ u42
R1−→ s 43

C−→ s 44
L1−→ u45

L2−→ u46
E2−→ u47

E3−→ s48 · · ·

Figure 8.3: The mapping si → φ(si) for non-C states.

· · · s41
R1−→ s 42

E1−→ s 43
C−→ s 44

E2−→ s 45
E3−→ s 46

L1−→ s 47
L2−→ s48 · · ·

? ?
�
��	 j jRj	· · · s41
E1−→ u42

R1−→ s 43
C−→ s 44

L1−→ u45
L2−→ u46

E2−→ u47
E3−→ s48 · · ·

Figure 8.4: The complete mapping si → φ(si).

execution of RCL begins and ends, respectively. The complete mapping φ
for our example is shown in Figure 8.4, where the mapping for non-C states
is in gray.

Formula S⊗SR is defined so that it is satisfied by a behavior σ iff σ
satisfies S (which describes the values of variables x) and the values of the
variables X in any state sk of σ equal the values of the variables x in the state
φ(sk ) of the reduced behavior Φ(σ). Since this assigns values of variables X
to every state of every behavior σ so that the behavior satisfies S⊗SR, we
see that |= S ⇒ ∃∃∃∃∃∃X : S⊗SR is true, so R1a is satisfied.

From Figure 8.4, we see that for any k :

φ1. If sk → sk+1 is an E h step (so E h is an action of another process)
then φ(sk )→ φ(sk+1) is also an E h step.

φ2. If sk → sk+1 is an Ri or Lj step, then φ(sk ) = φ(sk+1).

φ3. If sk → sk+1 is a C step, then φ(sk ) and φ(sk+1) are the first and
last states of an execution of operation RCL in the reduced behavior
Φ(σ), which is an execution with no interleaved steps of other process
actions.

Recall that G equals G with x ← X for any formula G . A step of
SR is either an Eh step, a D step, where D is an action that performs
an execution of operation RCL as a single step, or a stuttering step that
leaves the variables X unchanged. From φ1–φ3, we see that if behavior
(8.1) satisfies S⊗SR (as well as S ), then each step of that behavior is either
an Eh step (by φ1), a D step (by φ3) or leaves the variables X unchanged
(by φ2). Hence each step of S⊗SR satisfies the next-state action of SR.
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The initial-state predicate of SR is Init (remember that Init is the initial-
state predicate of S ). Since operation RCL is not being executed in the
initial state s0 of (8.1), φ(s0) equals s0, which implies that s0 satisfies Init .
Thus, if (8.1) satisfies S⊗SR, then it satisfies SR. Therefore, S⊗SR ⇒ SR

is satisfied—or so it seems.
The reasoning works in this example because the behavior (8.1) contains

a complete execution of operation RCL. However, S is a safety property,
which means that the process can stop executing actions at any point during
the execution of the operation. The general definition of the reduced version
of a behavior, which includes a possibly incomplete execution of RCL, is that
actions performing steps of an RCL execution are made to occur together
by commuting Ri actions to the right, Lj actions to the left, and leaving a
C action unmoved. (If there is no C step, then the last Ri action can be
left unmoved.) If s is the last state of a C step, φ(s) is defined to be the
state after the last step of the RCL operation being executed. That state
will satisfy ¬(R ∨ L) iff the behavior contains a complete execution of the
operation.

The one part of what we’ve done that’s not correct in the presence of
a partial execution is φ3. Statement φ3 is vacuously true if the partial
execution doesn’t contain a C step. In that case there are only Ri steps
which correspond to stuttering steps of SR, so the behavior of S⊗SR is a
behavior of SR in which that RCL action doesn’t occur. The problem in φ3
arises in our example if the execution contains a C step but doesn’t contain
both the L1 and L2 steps.

The solution is to rule out such behaviors. That’s what the hypothesis
T in R1 and R1b does. Formula T must assert that any execution of RCL
that includes the C step must complete. The operation has performed the C
step but has not completed iff L is true. So we want to allow only behaviors
in which it is not the case that L eventually becomes true and remains true
forever. Such behaviors are ones satisfying ¬32L, which is equivalent to
23¬L. So, we can restate R1b as this assumption:

|= S⊗SR ∧ (23¬L) ⇒ SR ∧ 2I R

The argument showing S⊗SR implies SR for the behavior (8.1) applies to
all behaviors of the program of Figure 8.1 satisfying 23¬L. That is, we
have shown:

|= S⊗SR ∧ (23¬L) ⇒ SR

is satisfied by this program S . To complete the proof of R1b, we must define
I R and show that it is an invariant of S⊗SR. Since we have seen that S
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satisfies R1a, this will show that it satisfies R1 with T equal to 23¬L. The
assumption 23¬L is discussed in Section 8.1.4.

8.1.2.3 The Invariant I R

The invariant I R of S⊗SR that relates the values of the variables x to those
of the variables X follows from three additional properties of the mapping
φ. We can see why those properties hold from Figures 8.2–8.4.

The most obvious of these properties follows from the observation that
if ¬(R ∨ L) is true in a state s, then only downward pointing arrows are
drawn from it in the figures. This shows:

φ4. For any state s in which ¬(R∨ L) is true, φ(s) = s.

For the next property, look at the path (8.3) from the state s45 to the state
φ(s45), which equals u47. Follow that path in Figure 8.2. Observe that each
step in the path either leaves the state unchanged (is a stuttering step) or
else is an L1 or L2 step. (To see this, look at the horizontal arrows just
above the diagonal arrows.) We can see from the figure that this is true
of the path from state s to state φ(s) for the states s46 and s47 as well.
The rule for drawing the arrows implies that this is true in general, for all
executions of the program of Figure 8.1. The path from every non-C state
s for which L is true to φ(s) consists of a sequence of steps each of which is
either a stuttering step or an Lj step for some j . From Figure 8.4, it’s clear
that this is also true for the C state for which L is true.

Let’s define L to equal L1 ∨ . . . ∨ Lm , so any Lj step is an L step. We have
seen that we can get from a state s in which L is true to the state φ(s) by
a sequence of stuttering steps and/or L steps. Recall that in Section 5.1.2,
for any action A we defined A+ to equal A ∨ (A · A) ∨ (A · A · A) ∨ . . . .
Therefore, a step s → t satisfies ([L]〈x〉)

+, which we abbreviate [L]+〈x〉, iff
we can get from state s to state t by a sequence of L steps or steps that
leave the variables x unchanged. Let’s write the subscript 〈x〉 as simply x,
so [A]x and 〈A〉x mean [A]〈x〉 and 〈A〉〈x〉 for any action A.

We have thus seen:

φ5. For any state s in which L is true, s → φ(s) is an [L]+x step.

Following the path from s to φ(s) backwards for states s in which R is true
similarly leads to the following statement, where R equals R1 ∨ . . . ∨ Rk .2

2The action R bears no relation to the superscript R in SR. It is traditional to name
the action R for Right-mover because of the way the reduced behavior is constructed; and
there seems to be no better superscript than R to signify reduced.
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φ6. For any state s in which R is true, φ(s)→ s is an [R]+x step.

Finally, Figure 8.4 shows that for any state s of the original behavior, φ(s)
is always a state in the reduced behavior in which the RCL operation is not
being executed, so ¬(R ∨ L) is true for φ(s). Because the rule for drawing
the arrows in Figure 8.2 creates a leftward pointing arrow whenever an R
step is moved to the right and a rightward pointing arrow whenever an L
step is moved to the left, this is true in general. Therefore, we have:

φ7. For any state s, the state predicate ¬(R∨ L) is true in state φ(s).

Statements φ4–φ7 give us relations between s and φ(s) for all states s of a
behavior of our example program. We now have to turn them into relations
between the values of the variables x and the variables X in any state s in
a behavior of S⊗SR.

It’s easy to do this for φ4. The values of the variables X in state s are
the values of x in φ(s). Since φ(s) = s if s satisfies ¬(R ∨ L), this means
that x = X is true for any reachable state of S⊗SR satisfying ¬(R∨L). In
other words:

¬(R∨ L)⇒ (X = x) is an invariant of S⊗SR(8.4)

To express the relations between x and X implied by φ5 and φ6, we need
a bit of notation. For any action A containing only the variables x, a step
s → t satisfies A iff formula A is true when we substitute for the variables x
their values in state s and for x′ their values in state t . Therefore, φ(s)→ s
is an [R]+x step iff [R]+x is true when we substitute the values of x in φ(s) for
the variables x and the values of x in s for the primed variables x′. But the
values of x in φ(s) are by definition the values of X in state s. So φ(s)→ s
is an [R]+x step iff s satisfies the formula we get by substituting X for x and
x for x′ in [R]+x . Using the construct awith defined in Section 6.4.4.1, we
write the formula produced by these substitutions as:

[R]+x awith x← X, x′ ← x

so formula φ6 implies:

R ⇒ ([R]+x awith x← X, x′ ← x) is an invariant of S⊗SR(8.5)

Remember that in this formula, the definition of [R]+x must be fully expanded
before the awith substitution is performed.

We can obtain a similar relation between x and X from φ5. The state-
ment that s → φ(s) is an [L]+x step is equivalent to the statement that state
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s is satisfied by the formula obtained from [L]+x by substituting for variables
x their values in state s and substituting for x′ the values of x in state
φ(s), the latter being the values of X in state s. Therefore, φ5 implies the
following, where x← x has been eliminated from the awith formula, since
it just states that x is substituted for itself:

L ⇒ ([L]+x awith x′ ← X) is an invariant of S⊗SR(8.6)

Finally, since the values of X in state s equal the values of x in state φ(s),
from φ7 we obtain:

¬(R∨ L) with x← X is an invariant of S⊗SR(8.7)

The invariant I R of S⊗SR relating the values of x and X is the con-
junction of the invariants (8.4)–(8.7):

I R ∆
= ∧ ¬(R∨ L) ⇒ (X = x)

∧ R ⇒ ([R]+x awith x← X,x′ ← x)

∧ L ⇒ ([L]+x awith x′ ← X)

∧ ¬(R∨ L) with x← X

8.1.3 Reduction In General

So far, we have been considering reduction of an operation RCL of one
process of a multiprocess program having the form shown in Figure 8.1. We
now extend this to a more general situation. First, some observations about
reducing RCL.

The invariant I R is described in terms of the actions R and L, which are
the disjunction of the actions Ri and Lj , respectively. The fact that R and
L were defined in this particular way was irrelevant. All we required was
that an execution of the operation RCL consists of a sequence of R steps
followed by a C step followed by a sequence of L steps. We didn’t need
actions E h of other processes to commute with each of the actions Ri and
Lj . In drawing the diagrams illustrated by Figures 8.2 and 8.4, we didn’t
have to identify the subactions of R and L that are involved. We could have
replaced each Ri by R and each Li by L. We only needed to assume that
each action of another process commutes with R and L, not with each Ri

and Lj individually. (For example, an E h ·L1 step could be an L2 ·E h step.)
Similarly, we didn’t have to require that R and L commute with particular
actions of other processes. We just required R and L to commute with the
disjunction of the next-state relations of all the other processes—an action
we will call E .
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Furthermore, we didn’t need to require that R and L commute with E .
To move R steps to the right, we just required that for any pair of steps

s
R−→ u

E−→ t there is a pair of steps s
E−→ v

R−→ t for some state v . This
condition can be stated as the requirement R ·E ⇒ E ·R. When this formula
holds, we say that R right-commutes with E , and that E left-commutes with
R. Similarly, to move L steps to the left, we don’t need E ·L to equal L ·E ;
we need only require E · L⇒ L · E , which asserts that L left-commutes with
E (and E right-commutes with L).

Finally, suppose that A is another action of the same process containing
the RCL operation, so A does not allow steps that implement the RCL
operation. Since the next step of the process after an R step can only be
an R step or a C step, an A step cannot follow an R step. This implies
that R · A must equal false, which means that R · A ⇒ A · R is trivially
true. Similarly, the only step of the process that can immediately precede
an L step is an L step or a C step. Therefore, A · L must equal false,
so A · L ⇒ L · A must be true. Therefore, other actions of the process
containing RCL satisfy the same commutativity requirements as actions of
other processes. This implies that we can completely forget about processes.
We just assume that the program’s next-state action equals E ∨R ∨C ∨ L,
where R right-commutes with E and L left-commutes with E . If we represent
the program as a collection of processes, there is no need for R, C , and L
steps to all be steps of the same process.

What we need to require is that execution of an RCL operation consists
of a sequence of R steps followed by a C step followed by a sequence of L
steps. To express this requirement, we generalize R and L from assertions
about a process’s control state to arbitrary state predicates satisfying certain
conditions. We take as primitives the state predicates R and L and the
actions E and M such that the program’s next state relation equals E ∨M ,
where M describes the operation to be reduced. The actions R, C , and L
will be defined in terms of R, L, and M . We therefore assume the original
program S is defined by:

S
∆
= Init ∧2[E ∨M ]x

As in our example, we assume that R is true when execution of the opera-
tion described by M is in its first phase, where execution has begun but the
C action has not yet been executed; and L is true when execution is in its
second phase, where the C action has been executed but the operation exe-
cution has not yet terminated. This is implied by the following assumptions
on executions of an operation described by the action M :
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M1. In the initial state, M is not in the middle of an execution, expressed
by Init ⇒ ¬(R∨ L).

M2. An E step can’t change the current phase of an execution of M , ex-
pressed by E ⇒ (R′ ≡ R) ∧ (L′ ≡ L).

M3. An M step can’t go from the second phase to the first phase, expressed
by ¬(L ∧M ∧R′).

M4. The two phases are disjoint, expressed by ¬(R∧ L).

We can define the actions R, L, and C in terms of M , R, and L by:

R
∆
= M ∧R′ L

∆
= L ∧M C

∆
= (¬L) ∧M ∧ (¬R′)

A complete execution of the operation described by M consists of a sequence
of M steps beginning and ending in a state in which the M operation is not
being executed—in other words, in a state satisfying ¬(R ∨ L). Therefore,
the action M R that executes the complete operation as a single step for the
variables X is:

M R ∆
= (¬(R∨ L) ∧M + ∧ ¬(R∨ L)′) with x← X

We can therefore define SR as follows, where InitR and ER are Init and E
with the variables x replaced by the variables X:

SR ∆
= InitR ∧2[ER ∨M R]X

If R always equals false, then R equals false so there is no R action.
Similarly, there is no L action if L always equals false. If there is neither
an R nor an L action, then M equals C and SR equals (S with x ← X),
so reduction accomplishes nothing.

Ignoring liveness, reduction is described in TLA by a theorem asserting
that R1 (with T equal to 23¬L) is implied by the definitions of S , R, L,
M , and SR above, assumptions M1–M4, and the commutativity relations
assumed of R, L, and E .

M1–M4 and the commutativity relations are action formulas. (Remem-
ber that a state predicate is an action whose value depends only on the first
state of a step.) Those action formulas don’t have to be true of all possible
steps, just on steps in behaviors satisfying S . (The action formulas are usu-
ally meaningless for states not satisfying some type-correctness predicate.)
If x is the list of all variables that can appear in S and A, then the assertion
that an action formula A is true for all steps of behaviors satisfying S can
be written as |= S ⇒ 2[A]x. Here is reduction, without liveness, expressed
as a theorem.

page break
inserted
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Theorem 8.1 Assume Init , L, and R are state predicates, M and E are
actions, x is a list of all variables appearing in these formulas, and X is a
list of the same number of variables different from the variables x. Define

S
∆
= Init ∧2[E ∨M ]x R

∆
= M ∧R′ L

∆
= L ∧M

InitR
∆
= Init with x← X ER ∆

= E with x← X

M R ∆
= (¬(R∨ L) ∧M + ∧ ¬(R∨ L)′) with x← X

SR ∆
= InitR ∧2[ER ∨M R]X

I R ∆
= ∧ ¬(R∨ L) ⇒ (X = x)
∧ R ⇒ ([R]+x awith x← X, x′ ← x)
∧ L ⇒ ([L]+x awith x′ ← X)
∧ ¬(R∨ L) with x← X

and assume:

(1) |= Init ⇒ ¬(R∨ L)

(2) |= S ⇒ 2 [ ∧ E ⇒ (R′ ≡ R) ∧ (L′ ≡ L)
∧ ¬(L ∧M ∧R′)
∧ ¬(R∧ L)
∧ R · E ⇒ E · R
∧ E · L⇒ L · E ]x

Then |= S ∧23¬L ⇒ ∃∃∃∃∃∃X : SR ∧2I R.

Assumption (1) and the first three conjuncts in the action of assumption
(2) are the conditions M1–M4, which assert that an execution of the opera-
tion described by the action M consists of a sequence of L steps followed by
a C step followed by a sequence of R steps. The final two conjuncts in the
action of assumption (2) are the assumptions that R right-commutes with
E and L left-commutes with E .

In practice, R, L, and E will be defined to be the disjunction of sub-
actions. This allows us to decompose the proofs of those commutativity
conditions by using the following theorem that is proved in the Appendix.

Theorem 8.2 If A ≡ ∃ i ∈ I : Ai and B ≡ ∃ j ∈ J : B j for actions Ai and
B j , then:

|= (∀ i ∈ I , j ∈ J : Ai · B j ⇒ B j ·Ai) ⇒ (A · B ⇒ B ·A)

By this theorem, to show that R right-commutes with E , it suffices to show
that each subaction in the definition of R right-commutes with each sub-
action in the definition of E . Similarly, L left-commutes with E if each
subaction of L left-commutes with each subaction of E .
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8.1.4 The Hypothesis 23¬L

Formula 23¬L is a liveness property. When we add liveness conditions to
S and hope to use reduction to prove that it satisfies a liveness property
P , we would expect S to imply 23¬L. But we wouldn’t expect to have
to add a liveness property to S in order to verify that it satisfies a safety
property. In fact, to verify a safety property, we don’t have to prove that
¬L is always eventually true. The following theorem implies that, to verify
S satisfies a safety property, we can simply assume that 23¬L is true if
it is always possible for ¬L to eventually become true. To understand the
theorem, recall that Section 5.1.2 defines what it means for it to be always
possible for a state predicate Q to eventually become true—namely, that
the program Init ∧ 2[Next ]x implies 2 E([Next ]+x ∧ Q ′). (See (5.1).) This
theorem is proved in the Appendix:

Theorem 8.3 If S equals Init ∧2[Next ]x, P is a safety property, and Q is a
state predicate such that |= S ⇒ 2 E([Next ]+x ∧Q ′), then |= S ∧23Q ⇒ P
implies |= S ⇒ P .

The theorem allows us to replace the formula T in R1b (which we later
defined to equal 23¬L) with 2 E([Next ]+x ∧ ¬L′). Section 5.1.2 explains
that we can verify this possibility condition by finding a fairness condition
F for S and verifying |= S ∧ F ⇒ 23¬L. This is the only case I know of in
which a possibility condition is used to verify a correctness property.

8.1.5 Adding Liveness

Theorem 8.1 allows us to deduce safety properties of the program S from
safety properties of the coarser-grain program SR. We also want to deduce
liveness properties of S from liveness properties of SR. We deduce liveness
properties of a program from fairness properties of program actions. To
deduce liveness properties of S by proving liveness properties of SR, we
extend Theorem 8.1 so its conclusion is

|= S ∧ F ∧ 23¬L ⇒ ∃∃∃∃∃∃X : SR ∧ 2I R ∧ FR(8.8)

where F is the conjunction of fairness properties of subactions of the next-
state action E ∨M of S and FR is the conjunction of fairness properties of
subactions of the next-state action ER ∨M R of SR.

To understand how this is done, it helps to think in terms of the program
S⊗SR, a behavior of which is a behavior both of S (described by the values
of variables x) and of SR (described by the values of variables X) whose
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existence is asserted by (8.8). We expect S to satisfy (8.8) because S⊗SR

satisfies:

|= S⊗SR ∧ F ∧ 23¬L ⇒ SR ∧ 2I R ∧ FR(8.9)

Formula FR should assert fairness of subactions AR of ER ∨M R. For sim-
plicity, we consider only actions AR that are subactions of either ER or
M R, which I expect will usually be the case. When it is not the case, the
requirements for deducing fairness of AR include requirements for deducing
fairness of both AR ∧ ER and AR ∧M R [8].

8.1.5.1 Fairness of Subactions of ER

We defined SR so that ER equals E . (Recall that we defined G to equal
G with x← X for any formula G .) Property φ1 of Section 8.1.2.2 for our
example generalizes to show that, in any behavior of S⊗SR, an E step is
also an E step.

Because each ER step corresponds to a single E step in a behavior of
S⊗SR, we expect fairness of a subaction AR of ER to be implied by fairness
of a single subaction A of E . In other words, we expect this to be true:

|= S⊗SR ∧ XFx(A) ⇒ XFX(AR)(8.10)

where XF is either WF or SF. By (4.14) and (4.23) we have

XFx(A) ≡ (2323 E〈A〉x ⇒ 23〈A〉x)

XFX(AR) ≡ (2323 E〈AR 〉X ⇒ 23〈AR 〉X)

where 2323 means 32 if XF is WF and 23 if XF is SF. These formulas and
a little temporal logic imply that to prove (8.10) it suffices to prove these
two theorems:

|= S⊗SR ⇒ (23〈A〉x ⇒ 23〈AR 〉X)(8.11)

|= S⊗SR ⇒ 2( E〈AR 〉X ⇒ E〈A〉x)(8.12)

We make (8.11) true by requiring every 〈A〉x step in a behavior of S⊗SR

to be an 〈AR 〉X step. Every E step in a behavior of S⊗SR is an ER step
because ER equals E . This suggests that we want AR to equal A. (Note
that 〈A〉x equals 〈A〉X because x equals X.)

Every E step in a behavior of S⊗SR is an ER step because of property
φ1, and that property holds because of the commutativity assumptions of
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action E with respect to actions R and L. Therefore, we must require that
〈A〉x satisfies the same commutativity relation as E , namely:

|= S ⇒ 2[ (R · 〈A〉x ⇒ 〈A〉x · R) ∧ (〈A〉x · L⇒ L · 〈A〉x) ]x(8.13)

With this assumption, defining AR to equal A will make (8.11) true.
The commutativity relations satisfied by E were used to define the map-

ping φ, which in turn was used to define SR. For example, in Figures 8.2–
8.4, the state u42, which equals φ(s43), was chosen when right-commuting
R1 with E 1 so that s41 → u42 is an E 1 step and u42 → s43 is an R1 step.
Suppose that A is a subaction of E 1 and s41 → s42 is an 〈A〉x step. Noth-
ing in the construction in those figures, which describes the choice of φ used
to define SR in Theorem 8.1, ensures that the E 1 step s41 → u42 is also
an 〈A〉x step. However, the assumption (8.13) ensures that we could have
chosen u42 to make s41 → u43 an 〈A〉x step.

In general, we can use (8.13) to ensure that every E step in the original
behavior that is an 〈A〉x step remains an 〈A〉x step whenever that step is
commuted with an R or L step, so it remains an 〈A〉x step in the reduced
behavior. We can therefore define SR so that (8.12) is true, so this is not
a problem when we want to ensure that (8.10) holds for a single action A.
However, we may want (8.10) to hold for multiple subactions A of E , and a
single E step can be an 〈A〉x step for more than one of those subactions A.
We will return to this problem in Section 8.1.5.3. Now, we consider making
(8.12) true.

We can deduce (8.12) from these two theorems:

(a) |= S⊗SR ⇒ 2( E〈AR 〉X ⇒ E〈A〉x )

(b) |= S⊗SR ⇒ 2( E〈A〉x ⇒ E〈A〉x)

(8.14)

Since 〈AR 〉X equals 〈A〉x and formulas E〈A〉x and E〈A〉x contain only the
variables X, (8.14a) is equivalent to:

|= SR ⇒ 2( E〈A〉x ⇒ E〈A〉x )(8.15)

If E were not a weird operator (see Section 6.4.4.3), E〈A〉x would be equiv-
alent to E〈A〉x ; and we expect that equivalence to be true for most actions
〈A〉x. However, because it is not always true, we have to add (8.15) as an
assumption.

To see what is required to make (8.14b) true, we consider what assump-
tion is required to ensure that P ⇒ P is true for an arbitrary state predicate
P with free variables x. The free variables of P are X, and the relation be-
tween the values of x and X is described by the invariant I R of S⊗SR.
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There are three cases, depending on whether R is true, L is true, or neither
is true:

R true: The conjunct

R ⇒ ([R]+x awith x← X, x′ ← x)

of I R asserts that, in this case, we can arrive at the values of x in the
current state by starting in a state in which the values of x equal the
current values of X and executing a sequence of R steps. This means
that P ⇒ P is true if, starting in a state satisfying P and executing
a sequence of R steps, we reach a state in which P is true. This
is true iff, starting in a state satisfying P and repeatedly executing
single R steps, we keep reaching states satisfying P . In other words, if
P ∧ R ⇒ P ′ is true in any state satisfying R of a behavior of S⊗SR,
then P ⇒ P is true.

L true: A similar argument based on the conjunct

L ⇒ ([L]+x awith x′ ← X)

of I R shows that if L ∧ P ′ ⇒ P is true in any state satisfying L in a
behavior of S⊗SR, then P ⇒ P is true.

Neither R nor L true: The conjunct ¬(R∨L) ⇒ (X = x) of I R shows
that P ≡ P is true for any state satisfying ¬(R ∨ L) in a behavior of
S⊗SR.

Let’s review what we have shown. We can deduce (8.10) from (8.11) and
(8.12). If (8.13) is true, then we can choose SR of Theorem 8.1 to make
(8.11) true for a single subaction A of E . We can deduce (8.12) from (8.14a)
and (8.14b). We can deduce (8.14a) from (8.15). And finally, we can deduce
(8.14b) from the conditions obtained above for proving P ⇒ P , substituting
E〈A〉x for P . Putting all this together, we have shown that the program
SR of Theorem 8.1 can be chosen to make (8.10) true, for a single subaction
A of E , if the following two conditions are satisfied:

|= S ⇒ 2 [∧ (R · 〈A〉x ⇒ 〈A〉x · R) ∧ (〈A〉x · L⇒ L · 〈A〉x)

∧ E〈A〉x ∧ R ⇒ ( E〈A〉x)′

∧ L ∧ ( E〈A〉x)′ ⇒ E〈A〉x ]x

|= SR ⇒ 2 ( E〈A〉x ⇒ E〈A〉x)

(8.16)
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8.1.5.2 Fairness of Subactions of M R

Deducing fairness properties of subactions of M R from fairness properties of
actions of S is more complicated than for subactions of ER because an M R

step is the result of executing multiple actions of S as a single step. The
simplest and probably most common case is when we want the reduced pro-
gram to satisfy fairness of the M R action itself. So, we begin by examining
this case.

Action M R is the action obtained by executing the entire operation con-
sisting of a sequence of R steps, followed by a C step, followed by a complete
sequence of L steps, with the variables X substituted for the variables x.
For our example program of Figure 8.1, where the values of variables X in
state s were defined to be the values of x in state φ(s), condition φ3 implies
that M R equals C . This means that in any behavior of S⊗SR, a C step is
an M R step. It suggests that we should be able to deduce fairness of the
M R action of SR from fairness of the C action of S .

Now suppose A is a subaction of C and AR is the action obtained by
executing the entire operation consisting of a sequence of R steps, followed
by an A step, followed by a complete sequence of L steps, with the variables
X substituted for the variables x. The same argument shows that AR equals
A, and that in any behavior of S⊗SR, an A step is an AR step. Moreover,
any AR step is also an M R step, so AR is a subaction of M R. So, it is
reasonable to consider deriving fairness of a subaction AR of M R when AR

is obtained in this way from a subaction A of C . Since our goal is not to
obtain the most general results, we consider only this case.

First, we must define AR precisely for a subaction A of C . An AR step is
obtained by combining a sequence of R steps followed by an A step followed
by a sequence of L steps into a single step, and then substituting X for x.
The definitions of R, C , and L in terms of R and L and assumptions M1–M4
imply that AR equals Aρ where Aρ is defined by

Aρ ∆
= ¬(R∨ L) ∧ ([R]+x ·A · [L]+x ) ∧ ¬(R∨ L)′(8.17)

We want condition (8.10) to be true for this choice of A and AR. As before,
we do this by making (8.11) and (8.12) true, starting with (8.11). In a
behavior satisfying S⊗SR, every A step is an AR step. However, (8.11)
requires every 〈A〉x step to be an 〈AR 〉X step. This is not true for A an
arbitrary subaction of C . It’s not even necessarily true for A = C , for the
following reason.

Recall that Figure 8.4 shows two behaviors that satisfy S , the bottom
one being the reduced version of the top one. The action labels describe the
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changes of the values of the variables x. The top behavior satisfies S⊗SR,
where the values of variables X in a state s i of that behavior are the values
of x in the corresponding state φ(s i) of the bottom sequence. The step
s43 → s44 of the top behavior is a C step iff u42 → u46 is a C step. If one of
the variables x has different values in states s43 and s44, there is no reason
why its value should differ in states u42 and u46. Step s43 → s44 would be
a 〈C 〉x step but not a 〈C 〉X step if the values of all the variables x are the
same in states u42 and u46. To be able to deduce (8.11) when A is C and
AR is M R, we need the assumption that if s43 → s44 is a 〈C 〉x step, then
x′ 6= x is true of step u42 → u46.

Since every A step in a behavior of S⊗SR is an AR step, we can deduce
that every 〈A〉x step is an 〈AR 〉X step from this assumption:

|= S ⇒ 2[ (〈A〉x)ρ ⇒ (x′ 6= x) ]x

There is seldom any reason for a program’s next-state action to allow stut-
tering steps, and modifying it to disallow stuttering steps does not change
the program. An A step of the program will usually be an 〈A〉x step; and
if it isn’t, A can be replaced by 〈A〉x . So for simplicity, we strengthen this
assumption to:

|= S ⇒ 2[Aρ ⇒ (x′ 6= x)]x(8.18)

We have shown that (8.18) implies that in a behavior of S⊗SR, every 〈A〉x
step is an 〈AR 〉X step. In other words, we have shown that it implies:

|= S⊗SR ⇒ 2[ 〈A〉x ⇒ 〈AR 〉X ]x,X(8.19)

This assertion implies (8.11).
The assumption (8.18) makes (8.11) true, so we now have to make (8.12)

true. But we can’t expect (8.12) to hold in general for the following reason.
Since AR equals Aρ, we expect E〈AR 〉X to imply E〈Aρ 〉x. By (8.17),
E〈Aρ 〉x equals E〈¬(R∨ L) ∧ [R]+x ·A · . . .〉x, which implies E(¬(R∨L)∧
(R ∨A)) (since E(U ·V ) implies E(U ) for any actions U and V ). We can
therefore expect E〈AR 〉X to imply E〈A〉x, as required by (8.12), only when
there is no R action.

A sequence of R steps may have to occur between when Aρ becomes
enabled and when A becomes enabled, so fairness assumptions for R as well
as a fairness assumption for A may be required to imply fairness of Aρ. In-
stead of assuming a fairness condition on L actions to ensure that operation
M completes after a C step occurs, we simply assumed that the operation
completes by adding the assumption 23¬L. Similarly, instead of assuming
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a fairness condition on R actions to ensure that the necessary enabling con-
dition of C occurs, we simply assume that the enabling condition eventually
occurs.

As an example, suppose we want to deduce weak fairness of AR from
strong fairness of A. (Because fairness of AR requires fairness of more than
just A, there’s no reason not to have different kinds of fairness for the two
actions.) By (8.19) and the definition (4.12) of WF, to prove WFX(AR) it
suffices to prove 32 E〈AR 〉X ; 〈A〉x. Just as we split the proof of (8.12)
into the two conditions of (8.14), we split the proof of 32 E〈AR 〉X ; 〈A〉x
into proving:

(a) 2( E〈AR 〉X ⇒ E〈Aρ 〉x )

(b) 32 E〈Aρ 〉x ; 〈A〉x
(8.20)

This may seem wrong because we have E〈Aρ 〉x in (8.20a) and E〈Aρ 〉x
in (8.20b) when the two formulas should be equal. However, the following
reasoning shows that they are equal. The definition of Aρ and conditions E3
and E4 of Section 6.4.4.2 imply that E〈Aρ 〉x equals ¬(R∨ L) ∧ E〈Aρ 〉x.
The invariant I R implies that ¬(R ∨ L) ⇒ (x = X) and ¬(R∨ L) are
true, so S⊗SR implies that E〈Aρ 〉x always equals E〈Aρ 〉x. We make SR

implying (8.20a) one of our requirements for deducing that WFX(AR) is
satisfied. We now consider (8.20b).

By (3.33b) of Section 3.4.2.8 and the tautology |= ¬〈A〉x ≡ [¬A]x, to
prove (8.20b) it suffices to prove:

32 E〈Aρ 〉x ∧2[¬A]x ; 〈A〉x(8.21)

By the definition (4.22) of SF and transitivity of ;, to deduce (8.21) from
SFx(A), it suffices to prove that S implies:

32 E〈Aρ 〉x ∧2[¬A]x ; 23 E〈A〉x(8.22)

We have seen that to deduce WFX(AR) from SFx(A), it suffices to show
(8.18) and:

(a) |= SR ⇒ 2( E〈AR 〉X ⇒ E〈Aρ 〉x)

(b) |= S ⇒ (32 E〈Aρ 〉x ∧2[¬A]x ; 23 E〈A〉x)

(8.23)

For the other three possible pairs of fairness conditions on AR and A, the
same argument shows that we can deduce SFX(AR) instead of WFX(AR)
by replacing 32 with 23 in (8.23b); and we can assume WFx(A) instead
of SFx(A) by replacing 23 with 32 in (8.23b).
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8.1.5.3 The Reduction Theorem with Fairness

We have described the assumption needed to infer that the reduced program
satisfies a fairness condition on a single action AR if the original program
satisfies a fairness condition on a single action A. We now combine this into
a theorem for inferring that the reduced program satisfies the conjunction
of countably many fairness conditions AR

i . This is simple, except for one
problem mentioned above for the case in which AR is a subaction of ER.

Recall that to satisfy (8.11), we constrained the construction of the func-
tion φ illustrated in Figures 8.2–8.4 so that if an E step is an A step in the
original behavior, then the corresponding E step in the reduced behavior
is also an A step. With multiple actions Ai , if the E step in the original
behavior is both an Ai and an Aj step for j 6= i , it might be impossible to
make the E step in the transformed behavior both an Ai and an Aj step.

However, to satisfy (8.11), it’s not necessary for every E step that’s an
A step in the original behavior to remain an A step in the reduced behavior.
It’s only necessary to ensure that if there are infinitely many A steps in the
original behavior, then infinitely many of them are A steps in the reduced
behavior. With countably many such actions Ai , it’s possible to construct
the reduced behavior so that for every i for which there are infinitely many
Ai steps in the original behavior, there are infinitely many Ai steps in the
reduced behavior. This is done using Theorem 4.1 of Math V the same way
it is used in the proof of Theorem 4.7 in the Appendix..

We can now put together the assumptions we derived above for deducing
fairness of an action AR from fairness of an action A for individual actions
A into a theorem for deducing fairness of a countable number of actions
AR

i from fairness of actions Ai . The requirements for Ai a subaction of E
(and AR

i a subaction of ER) come from (8.16). The requirements for Ai a
subaction of C (and AR

i a subaction of M R) come from (8.18) and (8.23) plus
the modification of (8.23) for additional fairness conditions of A and AR.

Theorem 8.4 With the definitions and assumptions (1) and (2) of Theo-

rem 8.1, let C
∆
= (¬L) ∧M ∧ (¬R′) and let

|= F ⇒ ∀ i ∈ I : YFi
x(Ai) FR ∆

= ∀ i ∈ I : ZFi
X(AR

i )

where I is a countable set and YFi and ZFi are WF or SF for each i ∈ I ;
and assume either:

• Ai is a subaction of E , AR
i

∆
= Ai , YFi equals ZFi ,
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|= S ⇒ 2 [∧ (R · 〈Ai 〉x ⇒ 〈Ai 〉x · R) ∧ (〈Ai 〉x · L⇒ L · 〈Ai 〉x)

∧ E〈Ai 〉x ∧ R ⇒ ( E〈Ai 〉x)′

∧ L ∧ ( E〈Ai 〉x)′ ⇒ E〈Ai 〉x ]x , and

|= SR ⇒ 2 ( E〈Ai 〉x ⇒ E〈Ai 〉x)

or

• Ai is a subaction of C ,

Aρ
i

∆
= ¬(R∨ L) ∧ ([R]+x ·Ai · [L]+x ) ∧ ¬(R∨ L)′,

AR
i

∆
= Aρ

i ,

|= S ⇒ 2[Aρ
i ⇒ (x′ 6= x)]x ,

|= SR ⇒ 2( E〈AR
i 〉X ⇒ E〈Aρ

i 〉x) , and

|= S ∧ F ⇒ (2323 Z E〈Aρ
i 〉x ∧2[¬Ai ]x ;2323Y E〈Ai 〉x)

where for Q either Y or Z, 2323Q is 32 if QF is WF, and
it is 23 if QF is SF.3

Then |= S ∧ F ∧23¬L ⇒ ∃∃∃∃∃∃X : SR ∧2I R ∧ FR.

8.1.6 An Example: Making Critical Sections Atomic

A standard concurrent coding practice is to “protect” accesses to shared
data by putting them in critical sections. Recall that Section 4.2.2.1 defined
a critical section to be a piece of code in a process such that no two processes
can be executing their critical sections at the same time. We can consider
this coding practice to be an application of reduction in which the reduced
program executes the entire critical section, including its waiting and exiting
code, as a single action.

We assume that critical sections are implemented with the trivial mutual
exclusion algorithm LM described in Figure 4.6 of Section 4.2.6.1 that uses
Dijkstra’s P and V semaphore operations. (Correctness of a mutual exclu-
sion algorithm can be expressed as the requirement that it implements LM
under a suitable refinement mapping.) We assume the program is described
with pseudocode, using a semaphore variable sem and a variable pc to de-
scribe the control state. The variable sem initially equals 0 and is accessed
by a process p only by Pp and V p actions that execute the P(sem) and
V (sem) operations. These actions are written in TLA as follows, where the

3For example, if YFi
x(Ai) is SFi

x(Ai) and ZFi
X(AR

i ) is WFi
X(AR

i ), this condition is:

|= S ∧ F ⇒ (32 E〈Aρi 〉x ∧ 2[¬Ai ]x ; 23 E〈Ai〉x)



CHAPTER 8. LOOSE ENDS 245

unchanged formulas assert that all program variables other than sem and
pc are left unchanged:

Pp
∆
= ∧ pc(p) = . . .
∧ (sem = 1) ∧ (sem ′ = 0)
∧ pc′ = (pc except p 7→ . . .)
∧ unchanged . . .

V p
∆
= ∧ pc(p) = . . .
∧ sem ′ = 1
∧ pc′ = (pc except p 7→ . . .)
∧ unchanged . . .

The value of sem is therefore always either 0 or 1. An execution of a crit-
ical section by process p consists of a Pp step, followed by steps satisfying
actions CSp,1, . . . , CSp,kp that represent executions of statements in the
critical section, followed by a V p step. The assumption that shared data is
accessed only within a critical section means that if an action E q describes
a statement of process q outside a critical section (meaning not a Pq , CS q,j ,
or V q action), then each action CSp,i commutes with E q if p 6= q .

We can reduce a program using critical sections in this way by making
execution of each critical section a single step. This is done by a sequence of
applications of our reduction theorems, each one reducing one critical section
of a single process. When doing multiple reductions, it would get confusing
if we introduced new variables for each reduction. We therefore consider the
reduced version SR of a program S to be the program SR described in our
theorems, except with x substituted for X. In our theorems, the M R that
executes the operation described by action M as a single step is defined to
equal M ρ with x← X . When we use the variables x instead of X for the
reduced program, M R becomes M ρ.

To apply the theorems to a critical section of a process p, we let M p

equal Pp ∨ CSp,1 ∨ . . . ∨ CSp,kp ∨ V p , so M p is replaced in the reduced
program by M ρ

p . We could let any of those actions be the action C , but it
is most convenient to let C be the Pp action, so there is no action R and
action L is CSp,1 ∨ . . . ∨ CSp,kp ∨ V p . By Theorem 8.2, it suffices to show
that V p and each CSp,i left-commutes with every action of every process
q 6= p. (Action L trivially left-commutes with any action of process p not
a subaction of M p .) The possible actions of process q are Pq , V q , CS q,j

for some j , an action E q not in a critical section, and M ρ
q if the operation

described by M q has already been reduced. Here is why V p and CSp,i

commute with each of those actions of process q 6= p:
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Pq : V p left-commutes with Pq because the mutual exclusion algorithm im-
plies that V p is not enabled when a process q 6= p is in its critical
section, so Pq ·V p equals false; CSp,i commutes with Pq because it
does not access sem or pc(q) (meaning that it does not depend on or
modify sem or pc(q)).

Vq : V p commutes with V q because any two V (sem) operations commute;
CSp,i commutes with V p because it does not access sem or pc(q).

CSq,j : CS q,j ·V p and CS q,j · CSp,i both equal false because a CS q,j step
leaves process q inside its critical section, which by the mutual exclu-
sion algorithm implies process q is outside its critical section so neither
CSp,i nor V p is enabled.

Eq : V p commutes with E q because E q does not access sem or pc(p); and
CSp,i commutes with E q because of the assumption that actions de-
scribing a statement inside a critical section commute with all actions
describing statements not in another process’s critical section.

M ρ
q : Both M ρ

q ·V p and M ρ
q · CSp,i equal false because an M ρ

q step leaves
sem = 1, while the mutual exclusion algorithm implies that V p and
CSp,i are enabled only when sem = 0.

This shows that S implies E · L ⇒ L · E , so since there is no R action, we
can apply Theorem 8.1. There is still the formula 23¬L to deal with. If
the program has fairness assumptions, then we expect 23¬L to be implied
by fairness assumptions of the L actions. If not, then by Theorem 8.3 we
can verify safety properties by showing that, after executing process p’s
Pp statement, it is always possible for execution of the critical section to
complete. It’s hard to imagine an application of mutual exclusion that would
allow a behavior in which it is impossible for some process ever to exit its
critical section.

We now consider deducing fairness properties of the reduced program.
First, let action A describe a statement outside any critical section. If the
statement is in process p, then Aρ equals A so fairness of Aρ is equivalent to
fairness of A. If A is an action of a process other than p, the argument above
shows that L commutes with 〈A〉x. If 〈A〉x is a subaction of the next-state
action of S , then an L ∧ ( E〈A〉x)′ step ends in a state in which an 〈A〉x
step can occur, which by commutativity of L and 〈A〉x implies it begins in
a state in which an 〈A〉x step can occur, so S implies 2(L ∧ ( E〈A〉x)′ ⇒
E〈A〉x). We expect 2 ( E〈Ai 〉x ⇒ E〈Ai 〉x) to be true, since substitution
has been found to distribute over E for most actions. (However, there is
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little experience with the substitution x ← X that occurs in reduction.) If
this formula is true, then by Theorem 8.4 we can deduce fairness of Aρ from
fairness of A.

We expect the most common fairness property for a subaction of M ρ
p to

be fairness of M ρ
p itself. In this case C is Pp , and we expect to deduce a

fairness condition of M ρ
p from the same fairness condition of the Pp action.

There is no R action, so the definitions of Pp and M ρ
p imply M ρ

p ⇒ (x′ 6= x)
and E〈M ρ

p 〉x ⇒ E〈Pp 〉x. (In the unlikely case that process p does nothing
but repeatedly execute the critical section, so M ρ

p leaves pc(p) unchanged,
we need to add the assumption that M ρ

p changes some other variable.) The
only remaining requirement to deduce from Theorem 8.4 that fairness of Pp

implies fairness of M ρ
p is:

|= SR ⇒ 2( E〈M R 〉X ⇒ E〈M ρ 〉x)

Since 〈M R 〉x equals 〈M ρ 〉x, this is true if substitution distributes over E
for the action 〈M ρ 〉x.

We have described the mathematics underlying the use of mutual exclu-
sion to implement atomic operations. We have ignored the question of what
that achieves. We use mutual exclusion to view execution of the critical sec-
tion as a single step, but is that a correct view? The answer lies in condition
R3 of Section 8.1.1.2, which tells us when we can deduce that the original
program satisfies a property that the reduced program satisfies. The only
part of the invariant I R that seems useful in condition R3 is the conjunct
¬(R∨ L)⇒ (X = x), which asserts that the variables of the original pro-
gram and the reduced one have equal values when no process is executing
its critical section.

8.1.7 Another Example: Pipelining

Here is a sketch of a simple example of reduction that is interesting in part
because each operation being reduced contains actions performed by two
different processes. The example is a very abstract view of one stage in a
pipelined computation—a view that tells us nothing about what is being
computed.

The program S performs a sequence of computations. Each computation
presumably obtains some input, does some computation, and then produces
some output—but that is irrelevant. What concerns us is that the com-
putations are pipelined as follows so they can be performed concurrently
by two processes. Process 1 performs the first part of the computation to
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obtain a partial result that it appends to the end of a fifo queue. Process 2
removes the partial result from the head of the queue and completes the
computation. Process 1 can therefore get ahead of process 2, performing
its part of the i th computation while process 2 is still performing its part
of the j th computation, for i > j . The reduced program SR replaces these
two processes with a single process that performs each computation as a
single atomic action. The property we want to prove by reduction presum-
ably involves how the computed values are used after they are computed,
when they have the same values in the original and reduced programs, so
condition R3 is satisfied.

We describe steps of process 1 by an action Cmp1 ∨ Send , where that
process’s part of a computation consists of a finite sequence of Cmp1 steps
followed by a single Send step that appends the partial result to the tail
of the queue. Steps of process 2 are described by an action Rcv ∨ Cmp2,
where that process’s part of the computation consists of a single Rcv step
that removes the partial result from the head of the queue followed by a
finite sequence of Cmp2 steps. The contents of the queue are described by
the variable qBar , which is accessed only by the Send and Rcv actions. We
assume that the two processes communicate only through the fifo qBar ,
an assumption expressed by these conditions: Cmp1 commutes with the
process 2 actions Rcv and Cmp2, and Cmp2 commutes with the process 1
actions Cmp1 and Send . Since qBar is the only shared variable accessed
by Rcv and Send , it doesn’t matter in which order these two actions are
executed in a state where the queue is nonempty. Thus, we have:

|= (qBar 6= 〈 〉) ⇒ (Send · Rcv ≡ Rcv · Send)(8.24)

The program may contain other processes that can interact in some way
with processes 1 and 2. For example, process 1 may obtain its input from a
third process and process 2 may send its output to a fourth process.

The program’s next-state action is M ∨O , where M describes processes
1 and 2 and O describes any other processes. We rewrite M in the form
∃n ∈ N+ : M n , where N+ is the set of positive integers and M n is an ac-
tion whose steps describe a complete execution of the nth computation. To
do this, we assume state functions snum and rnum whose values are the
numbers of Send and Rcv actions, respectively, that have been executed.
Initially, snum = rnum = 0. The Send action increments snum by 1 and
the Rcv action increments rnum by 1. We can then define:

M n
∆
= ∨ (snum = n − 1) ∧ (Cmp1 ∨ Send)
∨ ((rnum = n − 1) ∧ Rcv) ∨ ((rnum = n) ∧ Cmp2)

(8.25)



CHAPTER 8. LOOSE ENDS 249

We recursively define the nth reduction of the program to be the one obtained
by reducing the operations M 1, . . . , M n in that order. To define the nth

reduction, define:

Cmp1n
∆
= (snum = n − 1) ∧ Cmp1

Sendn
∆
= (snum = n − 1) ∧ Send

Rcvn
∆
= (rnum = n − 1) ∧ Rcv

Cmp2n
∆
= (rnum = n) ∧ Cmp2

so M n equals Cmp1n ∨ Sendn ∨ Rcvn ∨ Cmp2n . The actions R, C , and L
for the nth reduction are:

Rn
∆
= Cmp1n C n

∆
= Sendn Ln

∆
= Rcvn ∨ Cmp2n

Again, with multiple reductions we let the reduced program have the same
variables as the original program, so the nth reduction replaces the action
M n with M ρ

n .
The remaining action E for this reduction is the disjunction of these

actions: the action O describing the other processes, the already reduced
actions M ρ

k for k < n, and the subactions of M k for k > n. To apply
Theorem 8.1, we must show that Rn right-commutes with these actions and
Ln left-commutes with them.

That Rn right-commutes and Ln left-commutes with O must be as-
sumed. The commutativity relations hold for M ρ

k with k < n because an
Rn step is enabled only after an M ρ

k step, which implies Rn · M ρ
k equals

false (so Rn right commutes with M ρ
k ), and which also implies that Ln

cannot be enabled immediately after an M ρ
k step, so M ρ

k · Ln also equals
false.

What remains to be shown is that Cmp1n (the action Rn) right com-
mutes with M k , and that Rcvn and Cmp2n (whose disjunction equals Ln)
left commutes with M k , for k > n. For that, we have to show that each
of the four actions whose disjunction equals M k satisfy those commutativ-
ity conditions. We will use the commutativity relations we assumed above:
that Cmp1 commutes with Cmp2 and Rcv , and that Cmp2 commutes with
Send . The assumption that Cmp2 commutes with Send implies that Cmp2i
commutes with Send j for all i and j . This follows from the definitions of
Cmp2i and Send j , because Cmp2 does not depend on or modify snum and
Send j does not depend on or modify rnum. Similarly, Cmp1i commutes
with Rcv j and Cmp2j for all i and j . These assumptions are called the
commutativity assumptions in the following proof sketches of the required
commutativity relations. Recall that we are assuming k > n.
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Cmp1n right-commutes with Cmp1k and Sendk
Cmp1n ·Cmp1k and Cmp1n ·Sendk equal false because snum = n−1
after a Cmp1n step; Cmp1k and Sendk are enabled iff snum = k − 1;
and k > n.

Cmp1n right-commutes with Rcvk and Cmp2k
By the commutativity assumptions.

Rcvn left-commutes with Cmp1k
By the commutativity assumptions.

Rcvn left-commutes with Sendk
A Sendk step is enabled only if snum = k − 1; the step leaves rnum
unchanged; and Rcvn is enabled only if rnum = n − 1. Therefore,
Sendk · Rcvn enabled implies snum = k − 1 and rnum = n − 1, so
k > n implies snum > rnum which implies qBar 6= 〈 〉. By (8.24), this
implies Sendk · Rcvn ≡ Rcvn · Sendk .

Rcvn left-commutes with Rcvk and Cmp2k
Rcvk ·Rcvn and Cmp2k ·Rcvn equal false because a Rcvk or Cmp2k
step ends in a state with rnum = k which by k > n implies rnum 6=
n − 1, so Rcvn is not enabled in that state.

Cmp2n left-commutes with Cmp1k and Sendk
By the commutativity assumptions.

Cmp2n left-commutes with Rcvk and Cmp2k
A Rcvk or Cmp2k step ends with rnum = k , and Cmp2n is enabled
only if rnum = n, which is false because k > n. Therefore a Cmp2n
step cannot follow a Rcvk or Cmp2k step, so Rcvk ·Cmp2n and Cmp2k ·
Cmp2n equal false.

This handles the commutativity assumptions of Theorem 8.1. We still have
the hypothesis 23¬L in the theorem’s conclusion to deal with. By Theo-
rem 8.3, to use reduction for verifying safety properties, we don’t need that
hypothesis. We only have to show that any finite behavior satisfying the
safety property S can be extended to a behavior that completes each M n

operation in which the C n action has occurred. This means showing that
Process 2 cannot deadlock. This should be easy to show unless process 2
may have to wait for another process to do something—for example, until
another process is ready to receive process 2’s output.

For reasoning about liveness, we would expect the hypothesis 23¬L to
be satisfied by adding fairness conditions to process 2 actions, and perhaps to
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other processes, to ensure that the operation will complete once process 1’s
Send action occurs. The obvious fairness condition we want the reduced
program to satisfy is fairness of M ρ. If an M ρ

n action is enabled, then no
M ρ

i action with i 6= n can be enabled until an M ρ
n step occurs. This implies

that (weak or strong) fairness of M ρ is equivalent to fairness of M ρ
n for all

n. For each n, ensuring fairness of M ρ
n is the second case in Theorem 8.4,

with Ai equal to C n , which equals Sendn . The assumption |= S ∧ F ⇒ . . .
in that case of the theorem will have to be implied by fairness conditions on
subactions of Cmp1.

8.2 Decomposing and Composing Programs

We think of a program as consisting of multiple components. Most often
those components are processes. However, a process of an abstract program
need not correspond to a process (or thread) in a coding language. As
we saw in Section 1.5, Euclid’s algorithm can be viewed as a multiprocess
program. In general, any disjunct of a program’s next-state action can be
thought of as a process, and we may be able to write the next-state action
in more than one way as the disjunction of subactions. We now use the
term component instead of process for what is described by a disjunct of the
program’s next-state action.

In this section, we describe a program as the conjunction of separate
programs, each describing one of the program’s components. There are two
reasons for doing this. The first is that we have the program and want to
decompose the problem of verifying its correctness into the simpler tasks
of verifying correctness of each of its components. We call this procedure
decomposing programs and consider it in Section 8.2.1. The second reason
is because the program is implemented using existing components whose
correctness has been verified. We want to deduce correctness of the program
from correctness of the components, without knowing how the components
are implemented. This procedure is called composition and is considered in
Section 8.2.2.

There is little reason to decompose a program if we are proving its cor-
rectness. Decomposition structures the proof in three parts: (1) showing
that the program is equivalent to the conjunction of programs describing the
components, (2) showing that each of those programs satisfies a property,
and (3) showing that the conjunction of those properties implies correctness
of the original program. Such a proof can be rewritten as an ordinary cor-
rectness proof of the original algorithm by a simple rearrangement of the
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steps of those three parts. But math provides many ways to structure a
proof, and deciding in advance to structure it by decomposition might rule
out better proofs.

The one good reason to decompose the verification of a program in this
way is that it may make it easier to use a tool to verify correctness. For
example, a model checker might be able to verify correctness of individual
components but not correctness of the complete program. Decomposition
would allow using model checking to perform part of the verification, and
then using the results presented here to prove that correctness of the com-
ponents implies correctness of the entire program. This approach has been
applied to a nontrivial example [25], but I don’t know of any case in which
it has been used in industry.

Composition is useful if an engineer wants to verify correctness of a pro-
gram that describes a system built using an existing component whose be-
havior is specified by an abstract program. Up until now, we have described
a program by a formula that is satisfied by behaviors in which the program
to be implemented, which I will here call the actual program, and its envi-
ronment are both acting correctly. There was no need for the mathematical
description to separate the actual program and its environment, since it
makes no difference if an execution is incorrect because the programmer
didn’t understand what the code would do or what the environment would
do. However, if a program is implemented using a component purchased
elsewhere, it is important to know if an incorrect behavior is due to an in-
correct implementation of the actual program or of the component, which
is part of the environment.

For composition, we therefore describe a program with two formulas,
formula M describing the correct behavior of the actual program and a
formula E describing correct behavior of its environment. These formulas
are combined into a single formula, written E +−. M , that can be thought of
as being true of a behavior iff M is true as long as E is (so M is always true
if E is always true). Formula E +−. M is what is called a rely/guarantee
description of the program [23].

Currently, implementing actual programs with precisely specified exist-
ing components seems likely to arise in practice only for components that
are traditional programs that perform a computation and stop; and where
execution of the component can be considered to be a single step of the
complete program. In that case, there is no need for TLA. As explained in
Appendix Section A.5, the safety property of the component can be speci-
fied by a Hoare triple; and termination is the only required liveness property.
Composition in TLA is needed only if the existing component interacts with
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its environment in a more complex way that must be described with a more
general abstract program. Such reusable, precisely specified components do
not seem to exist now. Perhaps someday they will.

The results presented here come from a single paper [2]. The reader is
referred to that paper for the proofs. To make reading it easier, much of
the notation used here—including the identifiers in formulas—is taken from
that paper.

8.2.1 Decomposing Programs

8.2.1.1 Writing a Program as a Conjunction

As an example, we take Euclid’s algorithm, described in Section 1.5. Instead
of x and y , let’s name the variables a and b. Also, instead of having the
algorithm compute the GCD of two particular numbers, we’ll let it nonde-
terministically choose the initial values of a and b and compute their GCD.

To write the algorithm in TLA, let’s first define formulas that describe
the initial values of each of the variables, how they are changed in the next-
state action, and fairness of the actions that change them, where N+ is the
set of positive integers. Here are those formulas for the variable a:

Inita
∆
= a ∈ N+

Nexta
∆
= (a > b) ∧ (a ′ = a − b) ∧ (b′ = b)

La
∆
= WF〈a 〉(Nexta)

The formulas Initb , Nextb , and Lb are obtained from these formulas by
interchanging a and b. Note that La is equivalent to WF〈a,b 〉(Nexta) because
Nexta implies b′ = b, and similarly, Lb is equivalent to WF〈a,b 〉(Nextb).

We can describe Euclid’s algorithm with the following TLA formula M :

M
∆
= InitM ∧ 2[NextM ]〈a,b 〉

InitM
∆
= Inita ∧ Initb

NextM
∆
= Nexta ∨ Nextb

LM
∆
= La ∧ Lb

Formula M is equivalent to the conjunction of M a and M b , defined by:

M a
∆
= Inita ∧ 2[Nexta ]a ∧ La

M b
∆
= Initb ∧ 2[Nextb ]b ∧ Lb

The equivalence of M and M a ∧M b follows by simple logic from:

|= 2[Nexta ]a ∧ 2[Nextb ]b ≡ 2[Nexta ∨Nextb ]〈a,b 〉



CHAPTER 8. LOOSE ENDS 254

This result follows from the equivalence of 2(F ∧G) and 2F ∧2G , for any
formulas F and G , and from

[Nexta ]a ∧ [Nextb ]b ≡ [Nexta ∨Nextb ]〈a,b 〉

which follows from the definition of [. . .]..., the equivalence of (a ′ = a)∧(b′ =
b) and 〈a, b 〉′ = 〈a, b 〉, and:

|= Nexta ⇒ (b′ = b) |= Nextb ⇒ (a ′ = a)(8.26)

That M is equivalent to M a ∧M b depends only on (8.26), not on any other
properties of Nexta and Nextb , and not on the definitions of Inita , Initb ,
La , or Lb . Moreover, it remains true if each variable a and b is replaced
by a tuple of variables, as long as those two tuples have no variable in
common and (8.26) is satisfied. In other words, if a program consists of
two components, each modifying different variables than the other, then
the program can be decomposed as the conjunction of two programs, each
describing one of the components.

The following theorem generalizes this example from two to n compo-
nents. It replaces M a and M b by processes M i for i ∈ 1 . .n, replaces a and
b by the lists m i of variables modified by each component i , and replaces
(8.26) by the requirement that for each i , the next-state action Next i of M i

implies 〈m j 〉′ = 〈m j 〉 for j 6= i .4

Theorem 8.5 If m1, . . . ,mn are each lists of variables, with all the vari-
ables in all the lists distinct, N

∆
= 1 . .n, and

m
∆
= m1, . . . ,mn

M i
∆
= Init i ∧ 2[Next i ]〈mi 〉 ∧ Li

M
∆
= ∀ i ∈ N : M i

|= M ⇒ 2 [ ∀ i , j ∈ N : Next i ∧ (i 6= j )⇒ (〈m j 〉′ = 〈m j 〉) ]m

then

|= M ≡ (∀ i ∈ N : Init i) ∧ 2[∃ i ∈ N : Next i ]〈m 〉 ∧ (∀ i ∈ N : Li)

We can further generalize this theorem to allow hiding of variables local
to components. Suppose that for each component i , we might want to hide

4We are abandoning our convention of naming a list of variables with a boldface letter
and adopting the notation of [2], where each mi is a list of variables that we could write
mi,1, . . . ,mi,ni but won’t.
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a sublist y i of the variable list m i , where the variables y i do not appear in
any M j with j 6= i . We can then define M by

M
∆
= ∀ i ∈ N : (∃∃∃∃∃∃ y i : M i)

where if y i is the empty tuple, then ∃∃∃∃∃∃ y i : M i equals M i . We must modify
the hypothesis |= M ⇒ 2[. . .]m by replacing m j with the variables of m j

not in y j , and make this the conclusion:

|= M ≡ ∃∃∃∃∃∃ y1, . . . , yn :

(∀ i ∈ N : Init i) ∧ 2[∃ i ∈ N : N̂ext i ]〈m 〉 ∧ (∀ i ∈ N : Li)

where N̂ext i
∆
= Next i ∧ ∀ j ∈ N \ {i} : y ′j = y j .

Another generalization is to require only that different components mod-
ify different parts of the state, not necessarily different variables. For ex-
ample, suppose the components are processes and process i modifies pc(i),
where the value of the variable pc is always a function whose domain is the
set N . In the hypothesis |= M ⇒ 2[. . .]m , we can replace the expression
〈m j 〉′ = 〈m j 〉 by a state predicate νj , where the predicates νi must satisfy
only the additional hypothesis:

|= M ⇒ 2[(∀ i ∈ N : νi)⇒ (m ′ = m)]〈m 〉

For the example in which process i modifies pc(i), we can define νi so it
implies (∃S : pc ∈ (N → S )) ∧ (pc′(i) = pc(i)).

For simplicity, we consider only decomposing programs as described by
Theorem 8.5. The rest of what we say about program decomposition can
be generalized to these more general ways to decompose programs.

8.2.1.2 Decomposing Proofs

We now consider decomposing the verification that a program is correct into
the verification that its components are correct. Let’s start with a program
with two variables c and d and two components, each component modifying
one of the variables. Let’s suppose we have decomposed the program into
the conjunction M l

c ∧M l
d , and we have decomposed its correctness property

into M c ∧ M d , where M c and M d are correctness conditions for the two
components. We have to verify:

|= M l
c ∧M l

d ⇒ M c ∧M d(8.27)

and we’d like to do this by verifying that M l
c satisfies M c and that M l

d

satisfies M d . We can obviously do that if we can verify

|= M l
c ⇒ M c and |= M l

d ⇒ M d
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However, those conditions are unlikely to be true. The component program
M l

c is unlikely to satisfy M c when used as a component of an arbitrary
program. Its correctness will depend upon some property of its environment
M l

d . Similarly, correctness of M l
d will depend upon some property of M l

c .
We can obviously reduce verification of (8.27) to verifying

|= M l
c ∧M l

d ⇒ M c and |= M l
c ∧M l

d ⇒ M d

but that doesn’t reduce the amount of work involved. However, suppose that
correctness of M l

c doesn’t depend on its environment being the component
M l

d , but just requires its environment to satisfy the correctness condition
M d of that component, and similarly correctness of M l

d just requires that
the other component satisfies M c . We would then like to reduce verification
of (8.27) to verifying:

|= M d ∧M l
c ⇒ M c and |= M c ∧M l

d ⇒ M d(8.28)

This would reduce the amount of work because M c and M d are probably
significantly simpler than M l

c and M l
d . Can we do that?

Let’s consider the following trivial example, where each component ini-
tializes its variable to 0 and keeps setting its variable’s value to the value of
the other component’s variable.

M l
c

∆
= (c = 0) ∧ 2[(c′ = d) ∧ (d ′ = d)]c

∧ WFc((c′ = d) ∧ (d ′ = d))

M l
d

∆
= (d = 0) ∧ 2[(d ′ = c) ∧ (c′ = c)]d

∧ WFd ((d ′ = c) ∧ (c′ = c))

(8.29)

We take as the correctness condition of each component that its variable
always equals 0:

M c
∆
= 2(c = 0) and M d

∆
= 2(d = 0)

Condition (8.28) is satisfied because each component’s variable keeps setting
its variable to 0 (that is, it can take nothing but stuttering steps) if the other
component’s variable always equals 0. As we would hope, the correctness
condition (8.27) is also satisfied because the program consisting of those two
components keeps both c and d always equal to 0.

Now let’s replace M c and M d by the properties asserting that c and d
eventually equal 1:

M c
∆
= 3(c = 1) M d

∆
= 3(d = 1)
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while keeping M l
c and M l

d the same. Condition (8.28) is still satisfied be-
cause each component eventually sets its variable to 1 if the other component
sets its variable to 1. However, (8.27) is not satisfied. Changing the cor-
rectness conditions doesn’t change the behavior of the program, which is to
take nothing but stuttering steps.

We might ask why we can’t deduce (8.27) from (8.28) in this example.
However, the real question is why we can deduce it in the first example. De-
ducing (8.27) from (8.28) is deducing, from the assumption that correctness
of each component implies correctness of the other, that both components
are correct. This is circular reasoning, and letting M c = M d = false shows
that it allows us to deduce that any program implies false, from which we
can deduce that the program satisfies any property.

So, why does (8.28) imply (8.27) in the first case? Why can we deduce
that both components leave their variables equal to 0 from the assumption
that each component leaves its variable equal to 0 if the other process leaves
its variable equal to 0? The reason is that neither process can set its variable
to a value other than 0 until the other one does. Stated more generally,
we can deduce that both components in a two-component program satisfy
their correctness properties if neither component can violate its correctness
property until after the other does. So we want to replace (8.28) by:

|= ∀ k ∈ N :
(M d true through state k − 1)

∧ (M l
c true through state k) ⇒ (M c true through state k)

(8.30)

plus the same condition with c and d interchanged, where F true through
state −1 is taken to be true for any property F .

To express (8.30) precisely, we have to say what it means for a property
F to be true through state k . If F is a safety property, it means that F is
true of the finite behavior σ(0) → . . . → σ(k), which means it’s true of the
(infinite) behavior obtained by repeating the state σ(k) forever. It follows
from Theorems 4.4 and 4.5 that any property F equals C(F )∧L where L is
a liveness property such that 〈C(F ),L〉 is machine closed. By the definition
of machine closure (in Section 4.2.2.2), any finite behavior that satisfies
C(F ) can be completed to a behavior satisfying C(F ) ∧ L, which equals F .
Therefore, the only way a behavior can fail to satisfy F through state k is
for it not to satisfy C(F ) through state k , so F is true through state k means
that C(F ) is true through state k . We should therefore replace M d , M l

c ,
and M c by C(Md ), C(M l

c ), and C(Mc) in (8.30). For a safety property, true
through state k means true if all states i with i > k equal state k , so we
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can rewrite the resulting condition as:

|= ∀ k ∈ N :
(every state after state k equals state k) ⇒

( (C(M d ) true through state k − 1) ∧ C(M l
c) ⇒ C(M c) )

(8.31)

Next, let v be the tuple of all variables in these formulas. We can then
replace the assertion “every state . . . state k” in (8.31) with “v ′ = v from
state k on”. By predicate logic, if k does not appear in R or S , then

(∀ k : P ⇒ (Q ∧ R ⇒ S )) ≡ ((∃ k : P ∧Q) ∧ R ⇒ S )

We can therefore rewrite (8.31) as follows, abbreviating “true through state”
as “tts”:

(∃ k ∈ N : (v ′ = v from state k on) ∧ (C(M d ) tts k − 1))

∧ C(M l
c) ⇒ C(M c)

(8.32)

If we define F+v to equal

∃ k ∈ N : (v ′ = v from state k on) ∧ (C(F ) tts k − 1)

we can then write (8.32) and the condition obtained from it by interchanging
c and d as:

|= C(M d )+v ∧ C(M l
c) ⇒ C(M c)

|= C(M c)+v ∧ C(M l
d ) ⇒ C(M d )

(8.33)

From (8.33), we can infer:

|= C(M l
c) ∧ C(M l

d ) ⇒ C(M c) ∧ C(M d )(8.34)

The theorems to be stated require a slightly weaker definition of F+v , which
makes the conditions (8.33) stronger (so they still imply (8.34)). Let F old

+v

be the formula that we have been calling F+v . We now define F+v to equal
F old
+v ∨ F . With this definition, (8.33) implies its two conditions also hold

with the “+v” removed. If F is a safety property, then F v is a safety
property but F old

+v usually isn’t. In fact, if F is a safety property then F+v

equals C(F old
+v ). In practice, the change should seldom make a difference in

(8.34) because we don’t expect liveness properties to be useful for proving
safety properties, so we wouldn’t expect F ∧ G ⇒ H to be true for safety
properties G and H without C(F ) ∧G ⇒ H also being true.

The formula F+v has been defined semantically. However, to verify (8.33)
directly, we have to write C(F )+v as a formula for a given formula F . It’s



CHAPTER 8. LOOSE ENDS 259

easy to write C(F ) if F has the usual form Init ∧2[Next ]w ∧ L , where w is
the tuple of variables in the formulas and L is the conjunction of fairness
properties of subactions of Next . In that case, the definition of machine
closure (Section 4.2.2.2) and Theorem 4.7 (Section 4.2.7) imply C(F ) equals
Init ∧2[Next ]w . We can then write F+v as follows:

F+v
∆
= ∃∃∃∃∃∃ h : Înit ∧ [N̂ext ]w◦v◦〈h 〉

where Înit
∆
= (Init ∧ (h = 0)) ∨ (h = 1)

N̂ext
∆
= ∨ (h = 0) ∧ ∨ (h ′ = 0) ∧ [Next ]w

∨ h ′ = 1
∨ (h = 1) ∧ (h ′ = h) ∧ (v ′ = v)

While writing F+v is easy enough, we usually don’t have to for the same
reason that we didn’t have to use the +v subscripts in (8.27). Our example
has one feature that we didn’t use in our generalization—namely, that no
single program step can make both M c and M d false. Here’s how to use that
feature in general. For safety properties F and G , define F ⊥ G to be true of
a behavior σ iff for every k ∈ N, if F ∧G is true of σ(0)→ . . .→ σ(k) then
F ∨ G is true of σ(0) → . . . → σ(k + 1). Understanding why the following
theorem is true is a good test that you understand the definition of F+v .

Theorem 8.6 If F , G , and H are safety properties, v is a tuple of variables
containing all variables of F , and |= H ⇒ (F ⊥G), then |= F ∧ H ⇒ G
implies |= F+v ∧H ⇒ G .

For our example, in which M c and M d are safety properties, |= C(M l
c) ⇒

(M c ⊥ M d ) and |= C(M l
d ) ⇒ (M c ⊥ M d ) are true and allow us to re-

move +v from the conditions (8.33). These properties are true because the
example satisfies these two conditions:

• We can express correctness of the program as M c ∧M d , where only
a step of component c can violate M c and only a step of component
d can violate M d . This seems to be a requirement for decomposing
verification of the program into verification of its components to make
sense. For example, mutual exclusion can’t be expressed as the con-
junction of invariance properties that can each be violated by only one
process. I therefore expect that attempting to decompose verification
of a mutual exclusion algorithm in this way would complicate the task.

• No step is both a c step and a d step. This condition means that a step
in a behavior of the program consists of a step of a single component.
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It is the case if the components are processes in a program written in
the kind of pseudocode we have been using, which is modeled after
the most popular coding languages. I believe that all the engineers
I have worked with find this to be the most natural way to describe
concurrent programs.

We have obtained the assumptions we need to deduce (8.34). But we
want to verify (8.27), which is (8.34) with the C operators removed. Since F
implies C(F ) for any property F , we can remove the Cs from the left-hand
side of the implication (8.34). But we need additional assumptions to be
able to infer that M l

c ∧M l
d implies the liveness parts of M c and M d . Since

we know that M l
c ∧M l

d implies C(M c) ∧ C(M d ), we can use the following
assumptions to deduce (8.27).

|= C(M d ) ∧ M l
c ⇒ M c and |= C(M c) ∧ M l

d ⇒ M d(8.35)

Condition (8.33) allows us to assume that other components satisfy their
safety conditions when showing that a component satisfies its safety con-
dition. However, (8.35) allows us to use the liveness property of only that
component when showing that the component satisfies its liveness require-
ment. It would be circular reasoning to assume M d when verifying M c and
assume M c when verifying M d . However, we can do it for one of the com-
ponents. For example, if we show that C(M c)∧M l

d implies M d , we can then
assume M d when showing that M l

c implies M c . We can therefore replace
C(M d ) by M d in (8.35), since C(M d ) ∧M d equals M d . (But we then can’t
also replace C(M c) by M c .)

For any decomposition of a program into two components M l
c and M l

d

with correctness properties M c and M d , we have deduced (8.27) from (8.33)
and (8.35). The following theorem, which is Theorem 1 of [2], generalizes
this to a program with n components M l

i , each with correctness property
M i . The theorem is first stated, then explained.

Theorem 8.7 (Decomposition Theorem) If for all i ∈ 1 . .n:

1. |= ∀ j ∈ 1 . .n : C(M j ) ⇒ E i

2. (a) |= C(E i)+v ∧ C(M l
i) ⇒ C(M i)

(b) |= E i ∧ M l
i ∧ (∀ j ∈ 1 . . (i − 1) : M j ) ⇒ M i

then |= (∀ i ∈ 1 . .n : M l
i) ⇒ (∀ i ∈ 1 . .n : M i)
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The theorem’s conclusion is the obvious generalization of (8.27). There are
two hypotheses for each component i . Let’s first ignore hypothesis 1 and
take E i to be the conjunction of all the C(M j ) for j 6= i . Hypothesis 2(a) for
component M l

i then generalizes the first condition of (8.33) for component
M l

c , replacing the correctness condition C(M d ) of the other component with
the conjunction C(M j ) of all the other components. Hypothesis 2(b) makes
the similar generalization of (8.35), where allowing the use of all M j with
j < i in the proof of M i generalizes the observation we made about being
able to weaken one of the conditions of (8.35). Hypothesis 1 generalizes
what we did for two components in two ways:

• It allows E i to be the conjunction of all formulas C(M j ), including
j = i . This can obviously be done for hypothesis 2(b). It might seem
to turn hypothesis 2(a) into a tautology by conjoining the right-hand
side C(M i) of the implication to the left-hand side, resulting in circular
reasoning. However, the subscript +v turns it from circular reasoning
into induction on the number of steps in a finite behavior.

• Instead of using the conjunction of C(M j ) for all the components’ cor-
rectness properties M j in hypothesis 2, it allows E i to be any property
implied by that conjunction that is strong enough to satisfy hypothe-
sis 2. I expect E i will always be a safety property, but it’s conceivable
that it might not be.

The theorem does not make any assumption about v . That’s because if w
is the tuple of all variables appearing in the formulas (including in v), then
F+w implies F+v . Thus, if hypothesis 2(a) is satisfied for any state function
v , then it’s satisfied with v equal to the tuple of all variables in the formulas.
Letting v equal that tuple produces the weakest (hence easiest to satisfy)
hypothesis.

8.2.2 Composing Components

In Section 8.2.1, we decomposed a given program as the conjunction of
components. We now assume we are given a collection of components and
define the program to be the conjunction of those components. As a tiny
example, assume we want to write a program that satisfies the property
2(c = 0) ∧ 2(d = 0), and we want to do it by conjoining a c component
that implements 2(c = 0) and a d component that implements 2(d = 0).
We find that someone has written a program M l

x that satisfies 2(x = 0)
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when run in an environment that satisfies 2(y = 0). So, we decide to write
our program as M l

c ∧M l
d where:

M l
c

∆
= (M l

x with x ← c, y ← d)

M l
d

∆
= (M l

x with x ← d , y ← c)

This silly example captures the most important aspect of specifying com-
ponents: No real device will satisfy a specification such as 2(c = 0) when
executed in an arbitrary environment. For example, a process will not be
able to compute the GCD of two numbers if other processes can at any time
arbitrarily change the values of its variables.

We want to deduce that M l
c ∧ M l

d implies 2(c = 0) ∧ 2(d = 0)
from the properties that components c and d satisfy, without knowing
what M l

c and M l
d are. The property that the c component satisfies is

that if its environment satisfies 2(d = 0) then the component satisfies
2(c = 0); and d satisfies the same condition with d and c interchanged.
The obvious way to express these two properties is 2(d = 0)⇒ 2(c = 0)
and 2(c = 0)⇒ 2(d = 0), but those two properties obviously don’t imply
2(c = 0) ∧2(d = 0). We need to find the right way to express mathemati-
cally the condition that a component satisfies the property M if its environ-
ment satisfies the property E . We do this by assuming that the condition is
expressed by a formula E +−. M and figuring out what the definition of +−.
should be, given the assumption that the definition should make this true:

|= 2(d = 0) +−. 2(c = 0) and |= 2(c = 0) +−. 2(d = 0)

implies |= 2(c = 0) ∧ 2(d = 0)

(8.36)

We first ask when we can deduce this:

|= E 1
+−. M 1 and |= E 2

+−. M 2 implies |= M 1 ∧ M 2(8.37)

The answer lies in Theorem 8.7. Since (8.37) doesn’t mention the programs
M l

1 and M l
2, it should be true if we let those programs equal true. Substi-

tuting true for them, the conclusion of Theorem 8.7 for n = 2 is M 1 ∧M 2.
We define +−. so that hypotheses 2(a) and 2(b) are equivalent to E i

+−. M i .
The definition is:

E +−. M
∆
= (C(E )+v ⇒ C(M )) ∧ (E ⇒ M )

where v is the tuple of all variables in E and M . The theorem then implies
that (8.37) is true if hypothesis 1 is satisfied, that hypothesis asserting:

|= C(M 1) ∧ C(M 2)⇒ E 1 and |= C(M 1) ∧ C(M 2)⇒ E 2(8.38)
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These conditions are true for our example, so (8.36) is true.
The conclusion of Theorem 8.7 is |= M 1 ∧M 2, which asserts that the

composition of the components satisfies M 1 and M 2 assuming nothing about
its environment. We need a more general theorem whose conclusion is
|= E +−. M 1 ∧M 2, asserting that the composition satisfies M 1∧M 2 if its en-
vironment satisfies E . There is actually a stronger result, asserting that the
composition satisfies |= E +−. M for any property M implied by E∧M 1∧M 2.
Here is the theorem, generalized from two to n components. It is Theorem 3
of [2].

Theorem 8.8 (Composition Theorem) If

1. |= ∀ i ∈ 1 . .n : C(E ) ∧ (∀ j ∈ 1 . .n : C(M j )) ⇒ E i

2. (a) |= C(E )+v ∧ (∀ j ∈ 1 . .n : C(M j )) ⇒ C(M )

(b) |= E ∧ (∀ j ∈ 1 . .n : M j ) ⇒ M

then |= (∀ j ∈ 1 . .n : E j
+−. M j ) ⇒ (E +−. M )

It’s instructive to compare Theorems 8.7 and 8.8. They both make no
assumption about v , since letting it equal the tuple of all variables in the
formulas yields the weakest hypothesis 2(a). Hypothesis 1 differs only in
Theorem 8.8 having the additional conjunct C(E ). This conjunct (which
weakens the hypothesis) is expected because, if M is the conjunction of the
M i , then the M in the conclusion of Theorem 8.7 is replaced in Theorem 8.8
by E +−. M .

As we observed for Theorem 8.7, hypothesis 1 of Theorem 8.8 pretty
much requires the E i to be safety properties. However, when applying The-
orem 8.8, we can choose to make them safety properties by moving the
liveness property of E i into the liveness property of M i . More precisely,
suppose we write E i as ES

i ∧ EL
i , where ES

i is a safety property and EL
i

a liveness property such that 〈ES
i , EL

i 〉 is machine closed; and we simi-
larly write M i as M S

i ∧ M L
i . We can then replace E i by ES

i and M i by
M S

i ∧ (EL
i ⇒ M L

i ).5 This replaces the property E i
+−. M i by the stronger

property:

ES
i

+−. (M S
i ∧ (EL

i ⇒ M L
i ))(8.39)

It is stronger because if the environment doesn’t satisfy its liveness property
EL

i , then E i
+−. M i is satisfied no matter what the component does; but in

5By definition of machine closure, 〈M S
i , M

L
i 〉 machine closed implies 〈M S

i , E
L
i ⇒M L

i 〉
is also machine closed, because M L

i implies EL
i ⇒ M L

i .
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that case, (8.39) still requires the component to satisfy its safety property
M S

i if the environment satisfies its safety property ES
i . The two formulas

should be equivalent in practice because machine closure of 〈ES
i , EL

i 〉 implies
that, as long as the environment satisfies its safety property, the component
can’t know that the environment’s entire infinite behavior will violate its
liveness property.

Theorem 8.8 has been explained in terms of M i being the property sat-
isfied by a component whose description M l

i we don’t know, with M a
property we want the composition of the components to satisfy. It can also
be applied by letting M i be the actual component M l

i and letting M be
the composition ∀ i ∈ 1 . .n : M l

i of those components. The theorem then
tells us under what environment assumption E the composition will behave
properly if each M l

i behaves properly under the environment assumption
E i . However, there is a problem when using it in this way. To explain
the problem, we return to our two components c and d whose composition
satisfies 2(c = 0) ∧2(d = 0).

The definitions M l
c and M l

d in (8.29) were written for components c and
d intended to be composed with one another. They were not written to de-
scribe a component that satisfies its desired property only if the environment
satisfies its property. We now want to define them and their environment
assumptions E c and E d so that:

|= (E c
+−. M l

c)⇒ 2(c = 0)

|= (E d
+−. M l

d )⇒ 2(d = 0)

The definition of M l
c asserts that the value of d cannot change when the

value of c changes (because of the conjunct d ′ = d in the next-state relation)
and d cannot change when c doesn’t change (because of the subscript 〈c, d 〉).
That’s a property of its environment. If we want d to satisfy that property,
we should state it in E c , not inside the definition of M l

c . So, the definition
of M l

c should be

M l
c

∆
= (c = 0) ∧ 2[c′ = d ]c ∧ WFc(c′ = d)

and the definition of M l
d should be similarly changed.

If you recall how we decomposed programs in Section 8.2.1.1, expressed
in Theorem 8.5, you will realize that the conjuncts d ′ = d and c′ = c in the
original definitions of M l

c and M l
d were there so that the next-state action of

the conjunction of M l
c and M l

d would be the disjunction of their next-state
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actions. With these new definitions, the next-state action of M l
c∧M l

d equals

[∨ (c′ = d) ∧ (d ′ = d)
∨ (d ′ = c) ∧ (c′ = c)
∨ (c′ = d) ∧ (d ′ = c) ]〈c,d 〉

The additional disjunct (c′ = d)∧(d ′ = c) describes a step that is performed
jointly by the two components. If we want the composition of the two com-
ponents to allow such steps, then there is no problem. However, components
are often processes, and in all the examples we’ve considered, each step is
a step of exactly one process. Program descriptions in which each step is
performed by a single component are called interleaving descriptions.6

Suppose we want to consider only interleaving program descriptions. We
would take the approach used in Theorem 8.5 that for each i , there is a list
m i of variables that can be modified only by component M l

i . It would be
nice to let E i assert that any step that changes a variable other than one of
the variables of m i must leave all the variables of m i unchanged. However,
this is impossible because there are infinitely many variables other than the
ones in m i , and a formula E i can mention only finitely many of them.

Instead, we modify Theorem 8.8 so its conclusion is:

|= G ∧ (∀ j ∈ 1 . .n : E j
+−. M j ) ⇒ (E +−. G ∧M )(8.40)

for a property G . We can then apply the theorem with M i equal to M l
i , M

equal to ∀ i ∈ 1 . .n : M l
i , and G the property asserting that if i 6= j , then a

step can’t change both 〈m i 〉 and 〈m j 〉. Formula G ∧M is the interleaving
description that is presumably what we intended the composition of the
components M l

i to mean.
In the same way as we could generalize Theorem 8.5, we can replace

〈m j 〉′ = 〈m j 〉 in the definition of G by a step predicate νj and have G
assert that every step must satisfy νi ∨ νj for i 6= j .

You can write the theorem whose conclusion is (8.40) by yourself. All you
have to do is apply Theorem 8.8 substituting n +1 for n, letting En+1 equal
true, letting M n+1 equal G , and replacing M with G ∧M . The hypotheses
of Theorem 8.8 after making these substitutions are the hypotheses of the
theorem.

6An interleaving description is often taken to mean any description of a program’s
executions as sequences of states and/or events, so by that meaning all TLA program
descriptions are interleaving descriptions.



Appendix A

Miscellany

A.1 Ordinary Math Summary

This is a summary of all the ordinary math introduced in the main text of the
book. Each subsection indicates in [square brackets] the sections where the
operators it describes were introduced. Section A.1.5 introduces an operator
not described earlier that is used in the appendix. In this summary, variable
means a variable of ordinary math, which is a constant in temporal logic.

A.1.1 Arithmetic [Section 2.1, Math I]

Ordinary Operators +, −, ∗ (multiplication), / (real-number division),
>, ≥, <, ≤ .

The Operator % For integers m and n, if n > 0 then m % n is the unique
integer r satisfying 0 ≤ r < n and m = d ∗ n + r , for some integer d .

A.1.2 Propositional Logic [Sections 2.4 and 2.9.2]

Booleans true and false

Operators For any Boolean values A and B :

¬A Equals true iff A equals false .

A ∧ B Equals true iff both A and B equal true .

A ∨ B Equals true iff A or B or both equal true .

A⇒ B Equals false iff A equals true and B Equals false .

A ≡ B Equals true iff A equals B .

266
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Conjunction/Disjunction Lists An aligned list of formulas A1, . . . , An

“bulleted” by ∧ like this:

∧ A1
...

∧ An

equals (A1) ∧ . . . ∧ (An). The analogous notation is also used for ∨ .

A.1.3 Predicate Logic [Section 2.7, Math IX]

∀ v : F Equals true iff F equals true for all values of the variable v .

∃ v : F Equals true iff F equals true for some value of the variable v .

∀ v ∈ S : F Equals ∀ v : (v ∈ S )⇒ F .

∃ v ∈ S : F Equals ∃ v : (v ∈ S ) ∧ F .

|= F A meta-formula that is true iff formula F is true for any
assignment of values to its variables.

∃ Introduction Rule |= (F with v ← exp) ⇒ (∃ v : F )

∃ Elimination Rule |= F ⇒ G implies |= (∃ v : F )⇒ (∃ v : G)

A.1.4 Sets [Section 2.5, Math II, Math V, Math VI, Math XI]

v ∈ S Equals true iff v is an element of the set S .

{exp1, . . . , expn} The set for which v ∈ S equals true iff v equals one (or
more) of the expressions expi .

Sets of Numbers

R The set of all real numbers.

I The set of all integers.

N The set of all non-negative integers (natural numbers).

m . .n The set of all integers i satisfying m ≤ i ≤ n.

#(S ) The number of elements in S , if S is a finite set.

S ⊆ T Equals true iff every element of set S is an element of set T .

S ∩ T The set of all elements in both S and T .

S ∪ T The set of all elements in S or T or both.
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S \T The set of all elements in S that are not elements of T .

{v ∈ S : F} The set of all values of the variable v for which (v ∈ S ) ∧ F
equals true .

{exp : v ∈ S} The set of all values of exp obtained by substituting an ele-
ment of S for v .

Countable Set A set S is countable iff there is a mapping M such that
this formula equals true: ∀ s ∈ S : ∃n ∈ N : M (n) = s .

A.1.5 The choose Operator

Mathematicians often define something in terms of its properties. For ex-
ample, they might define

√
r for a real number r to be the non-negative

real number such that (
√

r)2 = r . We can express such a definition using
an operator invented by the mathematician David Hilbert in the 1920s. I
didn’t learn about this operator until some 25 years after I completed my
studies; I suspect it’s still unknown to most mathematicians. Hilbert called
it ε , but I think it’s better to call it choose. We can use this operator to
define the square root as follows:

√
r

∆
= choose s ∈ R : (s ≥ 0) ∧ (s2 = r)

The choose operator is much like ∃ in that choose v ∈ S : F is defined to
equal choose v : (v ∈ S ) ∧ F , where the scope of the bound variable v does
not include S . The expression choose v : F is defined to equal a value e
that makes F true when e is substituted for v . If there is no such e, then
the value of the expression is unspecified. If there is more than one such
value e, then the expression can equal any one of those values. For example,
define the mapping ASqrt by:

ASqrt(r)
∆
= choose s ∈ R : s2 = r

Then ASqrt(4) might equal 2 and ASqrt(9) might equal −3. Since this is
math, |= ASqrt(4) = ASqrt(4) is true. The value of ASqrt(4) may be 2 or
−2. But whichever value it equals, like every mathematical expression with
no free variable, it always equals the same value.

Formally, choose is defined by the following rules:

(a) |= (∃ v : F ) ⇒ (F with v ← (choose v : F ))

(b) |= (∀ v : F ≡ G) ⇒ ((choose v : F ) = (choose v : G))

(A.1)
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If there is more than one value of x for which F equals true, then
choose x : F can equal any of those values. But it always equals the same
value.

No matter how often I repeat that the choose operator always chooses
the same value, there are engineers who think that choose is nondeter-
ministic, possibly choosing a different value each time it’s evaluated; and
they try to use it to describe nondeterminism in a program. I’ve also heard
computer scientists talk about “nondeterministic functions”.1 There’s no
such thing. There’s no nondeterminism in mathematics. Nondeterminism
is important in concurrent programs, and Section 3.3 shows that it’s easy
to describe mathematically. Adding nondeterminism to math for describing
nondeterminism in a program makes as much sense as adding water to math
for describing fluid dynamics.

An expression choose v : F is most often used when there is only a
single choice of v that makes F true, as in the definition of

√
r above.

Sometimes, it appears within an expression whose value doesn’t depend on
which value of v satisfying F is chosen.

A.1.6 Functions [Section 2.8.2, Math II]

A function f is a mapping that is a value such that f (e) is defined only on
its domain, which is a set.

domain(f ) The domain of f , if f is a function.

v ∈ S 7→ exp The function f with domain S such that f (v) = exp for all
values of the variable v in the set S .

D → S The set of all functions f with domain D such that ∀ v ∈ D : f (v) ∈ S
equals true .

f except exp1 7→ exp2 If f is a function, then this equals the function:

v ∈ domain(f ) 7→ if v = exp1 then exp2 else f (v)

A function of n arguments, for n > 1, is one whose domain is a set of
n-tuples, where f (v1, . . . , vn) is an abbreviation of f (〈v1, . . . , vn 〉) .

A.1.7 Sequences [Section 2.8.3, Math VII]

A finite ordinal sequence σ of length n, also called an n-tuple, is a function
σ with domain 1 . .n. We can write such a function σ as 〈σ(1), . . . , σ(n)〉 .

1I must confess that, many years ago, I used that term in a paper [29].
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An infinite ordinal sequence is a function with domain the set of all positive
integers.

A finite cardinal sequence σ of length n is a function σ with domain
0 . . (n − 1). We can write such a function σ as σ(0) → . . . → σ(n − 1) , if
n > 0. An infinite cardinal sequence is a function with domain the set N of
all natural numbers.

Except for Append , all the following operators that take sequences as
arguments are defined for both ordinal and cardinal sequences.

Len(σ) The length of the sequence σ.

σ ◦ τ The concatenation of the finite sequence σ and the finite or infinite
sequence τ , where the sequences are both ordinal or both cardinal.

Head(σ) The first element (σ(1) or σ(0)) of the nonempty (positive-length)
sequence σ.

Tail(σ) The sequence obtained by removing the first element of the nonempty
sequence σ.

Append(σ, exp) The sequence σ ◦ 〈exp 〉 for an ordinal sequence σ.

Seq(S ) The set of all ordinal sequences σ such that σ(i) ∈ S for all i ∈
domain(σ).

S1 × . . .× Sn The set of all n-tuples σ such that σ(i) ∈ S i for all i in 1 . .n,
for any integer n > 1.

A.1.8 Notation [Section 2.9.1, Chapter 6 introduction]

if P then exp1 else exp2

Equals exp1 if P equals true and exp2 if P equals false .

E with v1 ← exp1, . . . , vm ← expm

The expression obtained by simultaneously substituting every expres-
sion expi for the variable v i in expression E .

A.1.9 Recursive Definitions [Math IV, Math XI]

Recursive function definitions are defined using the choose operator intro-
duced in Section A.1.5 above. For example, the recursive definition of the
factorial function ! in Math IV is an abbreviation for

!
∆
= choose f :

f = (n ∈ N 7→ if n = 0 then 1 else n ∗ f (n − 1))
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In general, any recursive definition with no definition parameters can be
expressed this way in terms of choose. Such a definition has the form
g

∆
= M (g) for some mapping M . This definition is an abbreviation for

g
∆
= choose f : f = M (f )

The rule (A.1a) implies |= (∃ f : M (f )) ⇒ (g = M (g)) .
Sometimes we want to write a recursive definition of a mapping that

takes an argument and isn’t a function. For example here is a definition
of the operator #, where #(S ) is defined in Math II to equal the number
of elements in S , for any finite set S . This operator can’t be a function
because its domain would have to be the collection of all finite sets, which
is too big to be a set. (The one-to-one correspondence S ↔ {S} implies
that the collection of finite sets is at least as big as the collection of all sets.)
However, it’s intuitively clear that the following recursive definition of #
defines #(S ) for any finite set S :

#(S )
∆
= if S = {} then 0

else 1 + #(S \ {choose e : e ∈ S})

In general, a recursive definition of a mapping M has the form:

M (v)
∆
= Def (v ,M )(A.2)

where Def is called a higher-order mapping because it takes a mapping as
its second argument. Allowing recursive definitions of mappings in ZF with-
out introducing logical inconsistency is tricky. A method of doing this by
translating a recursive definition to a non-recursive one was apparently first
given in this century [17]. That work essentially showed that for any value
v such that the recursive computation of M (v) defined by (A.2) terminates,
M (v) equals Def (v ,M ).

A.2 Structured Proofs

To understand structured proofs, we need to understand what a completely
rigorous proof would be. We therefore pretend that our proofs appear in a
completely rigorous book of ordinary math, written for a reader who knows
ZF. The book consists of a sequence of global definitions, theorems, and the
proofs of some of the theorems. (Theorems without proofs are axioms.) A
proof is either a terminal proof (corresponding to a paragraph proof in an
informal proof) or a sequence of proof steps, each with a proof. Mathglish
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can appear only in comments, which would not be needed by sufficiently
brilliant mathematicians (or computers).

A context consists of a collection of definitions, formulas that can be
assumed to be true, and constant and variable declarations. Every defini-
tion, theorem, proof, and proof step occurs in a context. The context of a
global definition or a theorem consists of all previous global definitions and
theorems. A proof step and a proof also have associated with it a formula
called its current goal. The contexts and current goals of proofs and proof
steps are described below. We state here only that the context and current
goal of the first step of a proof are the same as for the proof.

The statement of a theorem or proof step asserts a formula. That formula
should be provable using the formulas and definitions of the context of the
theorem or step. The statement of a theorem and of most proof steps has
the form

Assume: F 1, . . . , F n

Prove: G
(A.3)

where G is a formula called the statement’s goal and each F i is an assump-
tion that is either a formula or a new declaration. (When n = 0, so there
is no assumption, the statement is written simply as G .) If there is no new
declaration, statement (A.3) asserts the formula

F 1 ∧ . . . ∧ F n ⇒ G .(A.4)

By propositional logic, (P ∧Q)⇒ R is equivalent to P ⇒ (Q ⇒ R), so (A.4)
is equivalent to:

F 1 ⇒ (F 2 ⇒ ( . . . ⇒ (F n ⇒ G ) . . . ))(A.5)

A new declaration has the form new v ∈ S for a constant2 v and an
expression S . For every such new assumption F i in (A.3), the “F i ⇒” in
(A.5) is replaced by “ ∀ v ∈ S :”. For example, the statement

Assume: P , new v ∈ S , Q
Prove: G

asserts the formula P ⇒ (∀ v ∈ S : (Q ⇒ G)) . The scope of the bound vari-
able v is the assumption Q and the goal G ; it does not include P or S . The
Safe Scoping Rule implies that no constant (or variable) named v is declared
in the context of the theorem or step.

2Formal reasoning about ∃∃∃∃∃∃ might require new v declarations for variables v , but we
will not do such reasoning.
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The context of the proof of (A.3) contains everything in the context of
that statement, plus the additional formulas assumed to be true consisting
of all the assumptions F i that are formulas and all the assumptions v ∈ S
from assumptions new v ∈ S , plus declarations of all the constants intro-
duced by new assumptions. The scope of such a declaration consists of all
subsequent assumptions in the Assume clause, the goal G , and the proof of
the statement. The current goal of the proof of (A.3) is G .

If (A.3) is a proof step, then the context of the next proof step (if there
is one) contains everything in that step plus the formula (A.5) asserted
by (A.3).

There are two abbreviations for a step of the form (A.3). The statement
case P is an abbreviation for Assume: P Prove: G , where G is the step’s
current goal. The other abbreviation is Q.E.D., which must be the statement
of the last step of a proof. It is an abbreviation for the formula that is the
step’s current goal.

A definition step makes one or more definitions that are local to the
current proof. It consists of Define followed by one or more definitions.
Such a step has no proof. The context of the next step is the same as the
definition step’s context with those definitions added to it. The goal of the
next step is the same as that of the definition step.

The only other kind of step is a suffices step whose statement is:

Suffices: Assume: F 1, . . . , F n

Prove: G
(A.6)

(If there are no assumptions F i , then the “Assume:” and “Prove:” are
omitted.) Suppose that the current goal of this statement is H . Statement
(A.6) asserts that to prove H , it suffices to prove G under the additional
assumptions F 1, . . . F n . In other words, the statement asserts the formula
A⇒ H where A is the assertion made by the Assume/Prove. The context
of the proof of (A.6) is the same as for the statement:

Assume: A Prove: H

The context of the following step consists of the context of the Suffices
step with the added assumptions F i . This means that F i is assumed true
if it is a formula, and if it is new v ∈ S then the context contains the
declaration of v and the assumption that v ∈ S is true. The current goal of
the following step is G .

Finally, there is a terminal proof. It specifies which formulas and defi-
nitions in the proof’s context are used to prove its current goal. A formula
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in the context that comes from a previous theorem or step is identified by
its name. Steps are numbered like sections in the main body of this book,
so the 4th step of the proof of the 5th step of the proof of the 2nd step of a
theorem is step 2.5.4. (It can be abbreviated as 〈3〉4, meaning it is step 4 of
a depth-3 proof.) The other formulas in a context come from Assume clause
assumptions, and for our purpose there is no need to consider how they are
identified. Definitions are identified by the name of the defined symbol, so
definition steps need no number.

Of course, this is not a completely formal book. Our proofs contain
many formulas written in Mathglish, and the terminal proofs attempt to
explain why the current goal follows from the assertions and definitions in
the current context. But you should now understand what that context is
and what the proof has to prove.

A.3 Why Not All Mappings Are Sets

Section 2.8.2 states that a function is a special kind of mapping that is
assumed to be a value—meaning that it’s a set, although we don’t know
what its elements are. This raises the question of why we can’t simply
assume that all mappings are sets. The answer is provided by the following
theorem, whose proof is due to Stephan Merz. It asserts that there has to be
a mapping that is not a set. Although we could assume that some mappings
other than functions are sets, the theorem means that we can’t assume all
mappings are sets. For simplicity, we let functions be the only mappings
that we assume to be sets.

Theorem There exists a mapping that is not a set.

1. Suffices: Assume: Every mapping is a set.
Prove: false

Proof: Obvious.

Define M to be the mapping such that M (S ) = S if S is a set that is a
mapping.

2. M (S )(U ) = S (U ) for every mapping S and every set U .

Proof: Since we are assuming that every mapping S is a set, M is a
mapping on the collection of all mappings, and by definition M (S ) = S
for every mapping S , so M (S )(U ) = S (U ) for every set U .
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Define Russell to be the mapping on the collection of all sets that are
mappings such that Russell(S )

∆
= choose U : U 6= M (S )(S ).

3. Russell is a mapping such that Russell(S ) 6= M (S )(S ) for all sets S that
are mappings.

Proof: The value of any syntactically correct formula is a set, even if its
elements are unspecified. Therefore, M (S )(S ) is a set, and for any set T
there exists a set U such that U 6= T . Thus, Russell is a mapping such
that Russell(S ) 6= M (S )(S ) for every mapping S .

4. Russell(S ) 6= S (S ) for all sets S that are mappings.

Proof: Substituting S for U in step 2 shows S (S ) equals M (S )(S ), which
by step 3 is unequal to Russell(S ).

5. Q.E.D.

Proof: Since Russell is a mapping, and all mappings are assumed to
be sets, substituting Russell for S in step 4 proves Russell(Russell) 6=
Russell(Russell), which equals false.

A.4 How Not to Write x ′′′

Here is an amusing paradox. It’s illegal to prime a primed expression, so it’s
illegal to write x ′′ or x ′′′ if x is a variable. However, consider this definition:

F (n)
∆
= if n = 0 then x else F (n − 1)′(A.7)

It apparently defines F (3) to equal x ′′′. It doesn’t. To see why not, let’s
simplify things by defining F to be a function with domain N:

F
∆
= choose f : f = (n ∈ N 7→ if n = 0 then x else f (n − 1)′)

In this definition, f and n are bound constants, so f (n − 1) is a constant
expression; and exp′ = exp for any constant expression exp. Therefore, this
definition of F is equivalent to

F
∆
= choose f : f = (n ∈ N 7→ if n = 0 then x else f (n − 1))

which defines f (n) to equal x for all n ∈ N.
If we defined F as a mapping by (A.7), using the meaning of that

definition described in [17], we would see that F (n) equals an expression
(choose f : . . . ) (n) where the primed expression in “. . . ” is a constant.
Again, we would obtain F (n) = x for all n ∈ N.
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This example illustrates why we should not write a recursive defini-
tion that contains an expression that isn’t a constant or a state expression.
There’s no problem applying a recursively defined mapping to a step expres-
sion. It should also be all right to apply one to a temporal logic formula,
though I can’t imagine why we would want to do that. Recursively defined
mappings are used to define the meaning of temporal logic operators, but
those are mappings of ordinary math whose definitions contain no primes
or temporal operators.

A.5 Hoare Logic

Hoare logic is a science of traditional programs developed by C. A. R. (Tony)
Hoare [22]. Programs are described in a coding language, and the logic’s
goal is to prove properties of concrete programs. However, Hoare intended it
also to be applied to abstract programs written in code as well as to concrete
programs.

In Hoare logic, a program is viewed as a relation between the initial
and the final states of its execution. A formula of the logic has the form
{P}S{Q}, where S is a program (written in code) and P and Q are state
predicates. This formula asserts that if program S is executed starting in a
state in which P is true and the execution terminates, then Q is true in the
final state of the execution. The formula {P}S{Q} is called a Hoare triple,
P is called its precondition, and Q is called its postcondition. Hoare logic
provides a way of showing that a program S satisfies a Hoare triple.

The following is the Hoare logic rule for a program consisting of the
single assignment statement x : = exp, where x is a variable and exp is an
expression:

|= (P with x ← exp) ⇒ Q implies {P} x : =exp {Q}(A.8)

There are also rules for deriving a Hoare triple for a program from Hoare
triples of its components. Here are three such rules:

{P}S{R} and {R}T{Q} imply {P}S;T {Q}(A.9)

{P ∧ R}S{Q} and {P ∧ ¬R}T{Q} imply

{P} if R then S else T end if {Q}
(A.10)

|= P ⇒ I and {I ∧ R}S{I } and |= I ∧ ¬R ⇒ Q imply

{P} while R do S end while {Q}
(A.11)
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Such rules decompose the proof of a Hoare triple for any program to proofs of
Hoare triples for elementary statements of the language, such as assignment
statements.

It was quickly realized that pre- and postconditions are not adequate to
describe what a program should do. For example, suppose S is a program
to sort an array x of numbers. The obvious Hoare triple for it to satisfy has
a precondition asserting that x is an array of numbers and a postcondition
asserting that x is sorted. But this Hoare triple is true of a program that
simply sets all the elements of the array x to 0. A postcondition needs to
be able to state a relation between the final values of the variables and their
initial values. Various ways were proposed for doing this, one of them being
to allow formulas P and Q to contain constants whose values are the same
in the initial and final states. For example, the precondition for a sorting
program could assert that the constant x0 equals x , and the postcondition
could assert that the elements of the array x are a sorted permutation of
the elements of x0.

Viewing a program as a relation between initial and final states means
that it can be described mathematically as a formula of the Logic of Actions.
If we represent the program S as an LA formula, then {P}S{Q} is the
assertion |= P ∧ S ⇒ Q ′; and the Hoare logic rules follow from rules of LA.
For example, the program S ; T is represented in LA as S · T , where “·” is
the action composition operator defined in Section 3.4.1.4. The Hoare Logic
rule (A.9) is equivalent to this LA rule:

|= P ∧ S ⇒ R′ and |= R ∧ T ⇒ Q ′ imply |= P ∧ (S · T )⇒ Q ′

The program if R then S else T end if is represented by the LA formula
(R∧S )∨(¬R∧T ), and rule (A.10) becomes the propositional-logic tautology:

|= (P ∧ R ∧ S ⇒ Q ′) ∧ (P ∧ ¬R ∧ T ⇒ Q ′) ⇒
(P ∧ ((R ∧ S ) ∨ (¬R ∧ T ))⇒ Q ′)

Hoare’s rule (A.8) for assignment statements is obtained from LA by rep-
resenting the statement x := exp as (x ′ = exp) ∧ ((v x̃ )′ = v x̃ ) , where
v x̃ is the tuple of all program variables other than x . It is valid because
|= P ∧ (x ′ = exp) ∧ ((v x̃ )′ = v x̃ ) ⇒ Q ′ equals |= (P with x ← exp) ⇒ Q
if v x̃ is a tuple containing all variables other than x that appear in P or exp.

Rule (A.11) is a bit tricky because, when executed in a state in which R
equals false, the while statement leaves all variables unchanged. We can
represent that while statement by

((R ∧ S )+ ∧ ¬R′) ∨ (¬R ∧ (v ′ = v))
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where v is the tuple of all program variables and (. . .)+ is defined in Sec-
tion 3.4.1.4. With this representation of the while statement, (A.11) can
be derived from the following rule of LA, where I is any state predicate and
A any action:

|= I ∧A⇒ I ′ implies |= I ∧A+ ⇒ I ′(A.12)

The LA definition of a Hoare triple implies that the validity of rule (A.11)
is proved by the following theorem:

Theorem A.1 Assume: 1. |= P ⇒ I

2. |= I ∧ R ∧ S ⇒ I ′

3. |= I ∧ ¬R ⇒ Q

4. v is the tuple of all variables occurring in Q .

Prove: |= P ∧ ((R ∧ S )+ ∧ ¬R′) ∨ (¬R ∧ (v ′ = v)) ⇒ Q ′

1. Suffices: Assume: P ∧ ((R ∧ S )+ ∧ ¬R′) ∨ (¬R ∧ (v ′ = v))
Prove: Q ′

Proof: Because assumptions 1–3 have the form |= . . . , proving that they
imply a formula F ⇒ G proves that they imply |= (F ⇒ G), and F ⇒ G
is proved by assuming F and proving G .

2. Case: P ∧ (R ∧ S )+ ∧ ¬R′

2.1. I ∧ (R ∧ S )+ ⇒ I ′

Proof: By assumption 2 and (A.12), with R ∧ S substituted for A.

2.2. P ∧ (R ∧ S )+ ⇒ I ′

Proof: By 2.1 and assumption 1.

2.3. I ′

Proof: By 2.2 and the step 2 case assumption

2.4. ¬R′

Proof: By the step 2 case assumption

2.5. Q.E.D.

Proof: By 2.3, 2.4, and assumption 3 (since |= F implies |= F ′ for any
state predicate F ).

3. Case: P ∧ ¬R ∧ (v ′ = v)

Proof: By assumptions 1 and 3, P ∧¬R implies Q , which by v ′ = v and
assumption 4 implies Q ′.
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4. Q.E.D.

Proof: By the step 1 assumption, steps 2 and 3 cover all possibilities.

A.6 Another Way to Look at Safety and Liveness

This section provides a different view of safety and liveness based on viewing
behavior predicates as sets of behaviors. This view was first recognized by
Gordon Plotkin. I find that it helps me understand safety and liveness. To
understand it, we first need some more math.

A.6.1 Metric Spaces

A metric space M is a set with a distance function δ that assigns a non-
negative real number δ(p, q), called the distance between p and q , to all
elements p and q of M . The function δ must satisfy these conditions for all
elements p, q , and r of M :

M1. δ(p, q) = 0 iff p = q .

M2. δ(p, q) = δ(q , p)

M3. δ(p, q) ≤ δ(p, r) + δ(r , q)

Do you see why these conditions imply δ(p, q) ≥ 0 for all p and q in M ?
The set R of real numbers is a metric space with δ(p, q) equal to |p − q |,

where |r | is the absolute value of the number r , defined by

|r | ∆
= if r ≥ 0 then r else − r

An infinite plane, represented as in analytic geometry by the set R× R of
pairs of real numbers, is a metric space with δ(〈x 1, y1 〉, 〈x 2, y2 〉) defined to
equal

√
(x 1 − x 2)2 + (y1 − y2)2. I find that thinking of a metric space M as

the set of points in a plane is a good way to visualize the concepts presented
here.

For a metric space M , the distance δ̂(p,S ) from p ∈ M to a nonempty
subset S of M is defined to be the largest number r such that r ≤ δ(p, q)
for all q ∈ S .3 For example, if S is the set of all points 〈x , y 〉 in the plane
such that x < 3, then δ̂(〈4, 7〉,S ) equals 1 because δ̂(〈4, 7〉,S ) > 1 for all q

3To handle the uninteresting case of S equal to the empty set, we can define δ̂(p, {})
to equal ∞, which is a value satisfying r <∞ for all r ∈ R.
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in S and there are elements q of S such that δ(〈4, 7〉, q) is arbitrarily close
to 1.

For any metric space M and subset S of M , if p ∈ S then δ̂(p,S ) = 0
because condition M1 implies δ(p, p) = 0. In general, δ̂(p,S ) = 0 for p ∈ M
iff for every e > 0 there exists q ∈ S such that δ(p, q) < e.

The closure operation C on subsets of a metric space M is defined by
letting C(S ) be the set {p ∈ M : δ̂(p,S ) = 0} of all elements M that are a
distance 0 from S . For example, if M is the plane, let OD and CD be the
open and closed disks of radius 1 centered at the origin, defined by:

OD
∆
= {p ∈ M : δ(p, 〈0, 0〉) < 1}

CD
∆
= {p ∈ M : δ(p, 〈0, 0〉) ≤ 1}

Both C(OD) and C(CD) equal CD .

Theorem A.2 For any subset S of a metric space, S ⊆ C(S ) and C(S ) =
C(C(S )).

Proof: The definition of C and property M1 imply S ⊆ C(S ) for any set S ,
which implies C(S ) ⊆ C(C(S )) for any S . Therefore, to show C(S ) = C(C(S )),
it suffices to assume p ∈ C(C(S )) and show p ∈ C(S ). By definition of C
and δ̂, we do this by assuming e > 0 and showing there exists q ∈ S with
δ(q , p) < e. Because p ∈ C(C(S )), there exists u ∈ C(S ) with δ(p, u) < e/2;
and u ∈ C(S ) implies there exists q ∈ S with δ(q , u) < e/2. By M2 and M3,
this implies δ(p, q) < e. End Proof

As you will have guessed by its name, the operator C on behavior predicates
is a special case of the closure operator C on metric spaces. But for now,
forget about behavior predicates and just think about metric spaces.

A set S that, like CD , equals its closure is said to be closed. The following
result shows that for any set S , its closure C(S ) is the smallest closed set
that contains S .

Theorem A.3 For any subsets S and T of a metric space, if T is a closed
set and S ⊆ T then C(S ) ⊆ T .

Proof: It follows from the definition of C that S ⊆ T implies C(S ) ⊆ C(T ),
and the definition of a closed set implies T = C(T ). End Proof

For any subset S of a metric space M , the boundary of S is defined to be
the set of all p ∈ M with δ̂(p,S ) = 0 and δ̂(p,M \S ) = 0. The boundary
of both disks OD and CD is {p ∈ M : δ(p, 〈0, 0〉) = 1}, the circle of radius



APPENDIX A. MISCELLANY 281

1 centered at the origin. For any metric space M and S ⊆ M , any element
p of M with δ̂(p,S ) = 0 that is not in S must be in M \S and therefore
must satisfy δ̂(p,M \S ) = 0. This shows that the closure of any set S is the
union of S and the boundary of S .

A subset S of a metric space M is said to be dense iff C(S ) = M . A
dense set is one that, for any element p of M , contains p or elements of M
arbitrarily close to p. As an example, let’s call a finite-digit real number one
that can be written in decimal notation with a finite number of digits—for
example, 123.5432. The set of all pairs of finite-digit numbers is dense in
the plane because any real number can be approximated arbitrarily closely
with a finite-digit number. Thus, for any pair of real numbers 〈x , y 〉 and
any e > 0, we can find a pair of finite-digit numbers 〈p, q 〉 within a distance
e of 〈x , y 〉 by choosing p and q such that |x − p| and |y − q | are both less
than e/

√
2.

Theorem A.4 Any subset S of a metric space equals C(S )∩D for a dense
set D .

Proof: Let M be the metric space and let D equal S ∪ (M \ C(S )). The set
D consists of all elements of M except those elements in the boundary of S
that are not in S . It follows from this that C(S ) ∩ D = S . Since elements
in the boundary of S are a distance 0 from S , which is a subset of D , they
are a distance 0 from D . Therefore all elements in M are a distance 0 from
D , so D is dense. End Proof

What we’re interested in is not the distance function δ, but the closure op-
erator C. Imagine that the plane was an infinite sheet of rubber that was
then stretched and shrunk unevenly in some way. Define the distance be-
tween two points on the original plane to be the distance between them
after the plane was deformed. For example, if the plane was stretched
to make everything twice as far apart in the y direction but the same
distance apart in the x direction, then δ(〈x 1, y1 〉, 〈x 2, y2 〉) would equal√

(x 1 − x 2)2 + (2 ∗ (y1 − y2))2. As long as the stretching and shrinking is
continuous, meaning that the rubber sheet is not torn, the boundary of a
set S in the plane after it is deformed is the set obtained by deforming the
boundary of S . This implies that the new distance function produces the
same closure operator as the ordinary distance function on the plane.

Topology is the study of properties of objects that depend only on a
closure operation, which need not be generated by a metric space. But we
are interested in a closure operator that is generated by a particular kind of
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metric space, and it helps me to think in terms of its distance function.

A.6.2 The Metric Space of Behaviors

Safety and liveness will be explained by viewing behaviors as elements of a
metric space. In particular, we will see that:

• The operator C on behavior predicates corresponds to the operator C
on sets of behaviors.

• Safety predicates correspond to closed sets of behaviors.

• Liveness predicates correspond to dense sets of behaviors.

Doing this poses two problems. The first is that mathematicians describe
metric spaces as sets, and the collection of all behaviors isn’t a set. I believe
that all the results about metric spaces that we need would remain true
if metric spaces were arbitrary collections rather than sets, but I haven’t
checked this. So for the rest of this section, we assume that the collection of
all behaviors is a set, which we call B. For example, we can let a behavior
here mean an infinite sequence of states in which each variable satisfies some
type invariant. Since our purpose is an intuitive understanding of safety and
liveness, there’s no need to be very rigorous.

The second problem is that we are relating properties, which are temporal-
logic formulas, to sets of behaviors. Recall that the meaning [[F ]] of a prop-
erty F is a Boolean-valued mapping on behaviors. There’s a standard way of
identifying predicates on a set with subsets of that set: we identify the pred-
icate P with the subset consisting of all elements e such that P(e) equals
true. (This is the basis of Venn diagrams, which you have probably seen.)

We can therefore identify the property F with the subset F of B defined
by:

F
∆
= {b ∈ B : [[F ]](b)}

Under this identification, the propositional logic operators ∧, ∨, ⇒, and ≡
correspond to the set-theoretic operators ∩, ∪, ⊆, and =. That is, for any
properties F and G :

|= F ∨G = (F ∪G) |= F ⇒ G = (F ⊆ G)

|= F ∧G = (F ∩G) |= F ≡ G = (F = G)

We’re interested in the closure operator on sets of behaviors, which can be
the same for many different distance functions. The property of the distance
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function that provides the closure operator we want is that behaviors with
a long prefix in common are close together. More precisely, for two different
behaviors σ and τ , define o(σ, τ) to be the largest n such that σ and τ
have the same prefix of length n − 1—that is, the largest value n such that
∀ i ∈ 0 . . (n − 1) : σ(i) = τ(i). Thus, o(σ, τ) equals 1 iff σ(0) = τ(0) and
σ(1) 6= τ(1). (There is no such n iff σ = τ , in which case we let o(σ, τ) =∞,
where ∞ > i for all i ∈ N.) We get the right closure operator on sets of
behaviors if δ satisfies this property:

For any e > 0, there is an n ∈ N such that o(σ, τ) > n implies
δ(σ, τ) < e, for any behaviors σ and τ .

The simplest choice of δ satisfying this and the properties of a distance
function for a metric space is δ(σ, τ)

∆
= 1/(1 + o(σ, τ)) for σ 6= τ . (Of

course, δ(σ, τ) = 0 if σ = τ .)
With the correspondence between the operator C on behavior predicates

and the closure operator on this metric space, Theorems 4.3 and 4.4 of Sec-
tion 4.1.3 are immediate consequences of Theorems A.2–A.4 of Section A.6.1.
I find it more elegant to deduce the results about behavior predicates from
the corresponding results about metric spaces than to prove them directly.
But that might be because I was educated as a mathematician. Whichever
you prefer, I hope that having an alternative way of thinking about safety
and liveness helps you understand those concepts.
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Proofs

Most of the proofs here are structured proofs. To understand them, you
should first read Appendix Section A.2.

B.1 Invariance Proof of Increment

Figure 3.5 in Section 3.4.1.1 defines the initial predicate Init and next-state
action Next for the RTLA formula describing a program having the inductive
invariant Inv . As described in Section 3.4.1.3, to prove the invariance of Inv
we had to prove the two conditions of (3.10). As with most programs, the
proof of the first condition is simple. Here, we describe the proof of the
second condition, which is:

Theorem Next ∧ Inv ⇒ Inv ′

If the program were described in TLA instead of RTLA, the disjunct Stutter
would be removed from the definition of Next ; and Next in the theorem
would be replaced by [Next ]v , where v is the tuple 〈x , t , pc 〉 of variables.
The proof of the theorem would be essentially the same, the only difference
being that the action Stutter would be replaced everywhere by its second
conjunct, which is v ′ = v .

The proof of the theorem is decomposed hierarchically. The first two
levels are determined by the logical structure of the theorem. There are two
standard ways to decompose the proof of a formula of the form F ⇒ G :

• Write F in the form F 1 ∨ . . . ∨ Fm and prove F i ⇒ G for all i .

• Write G in the form G1 ∧ . . . ∧Gn and prove F ⇒ G j for all j .

284
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In this case, we can do both, proving F ⇒ G by proving F i ⇒ G j for all i
and j , performing the two decompositions in either order. We can do the first
decomposition by writing Next as a disjunction (since (P ∨Q ∨ . . . ) ∧ Inv
equals (P ∧ Inv)∨ (Q ∧ Inv)∨ . . . ), and we can do the second decomposition
because Inv is defined to be the conjunction of three formulas. We do the
first decomposition first.

Expanding the definitions of Next and PgmStep and using some propo-
sitional and predicate logic, including this rule:

|= (∃ v ∈ S : F ∨G) ≡ (∃ v ∈ S : F ) ∨ (∃ v ∈ S : G)

we see that Next ∧ Inv is equivalent to:

(∀ p ∈ Procs : aStep(p) ∧ Inv) ∨ (∀ p ∈ Procs : bStep(p) ∧ Inv)
∨ (Stutter ∧ Inv)

Writing each ∀ assertion as an Assume/Prove, the top level of the proof
is:

1. Assume: new p ∈ Procs, aStep(p), Inv
Prove: Inv ′

2. Assume: new p ∈ Procs, bStep(p), Inv
Prove: Inv ′

3. Assume: Stutter , Inv
Prove: Inv ′

Proof: By the definitions of Stutter , Inv , TypeOK , and Num-
berDone, since a Stutter step leaves the three variables unchanged,
which by definition of Inv implies that the value of Inv is unchanged.

4. Q.E.D.

Proof: By steps 1–3 and the definition of Next .

Steps 3 and 4 are simple enough that there is no need to decompose their
proofs. You should try to understand why these steps, and the others whose
proofs are given here, follow from the facts and definitions mentioned in
their proofs. To help you, a little bit of explanation has been added to some
of the proofs.

We now have to prove steps 1 and 2. They can both be decomposed using
the definition of Inv as a conjunction. We consider the proof of step 1. Here
is the first level of its decomposition.
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1.1. TypeOK ′

1.2. ∀ i ∈ Procs : (pc′(i) = b) ⇒ (t ′(i) ≤ NumberDone ′)

1.3. x ′ ≤ NumberDone ′

1.4. Q.E.D.

Proof: By steps 1.1–1.3 and the definition of Inv .

Step 1.2 is the most difficult one to prove, so we examine its proof. The
standard way to prove a formula of this form is to assume i ∈ Procs and
pc′(i) = b and prove t ′(i) ≤ NumberDone ′. So, the first step of the proof
should be a Suffices step asserting that it suffices to make those assump-
tions and prove t ′(i) ≤ NumberDone ′. Thus far, we have used only the
logical structure of the formulas, without thinking about what the formulas
mean. We can go no further that way. To write the rest of the proof of
step 1.2, we have to ask ourselves why an aStep(p) step starting in a state
with Inv true produces a state with t ′(i) ≤ NumberDone ′ true.

When I asked myself that question, I realized that the answer depends
on whether or not i is the process p executing the step. That suggested
proving the two cases i 6= p and i = p separately, asserting them as Case
statements. In figuring out how to write those two proofs, I found that both
of them required proving NumberDone ′ = NumberDone. Moreover, this was
true for the same reason in both cases—namely, that an aStep step of any
process leaves NumberDone unchanged. Therefore, I could prove it once in
a single step that precedes the two Case statements. This produced the
following level-3 proof:

1.2.1. Suffices: Assume: new i ∈ Procs, pc′(i) = b
Prove: t ′(i) ≤ NumberDone ′

Proof: Obvious.

1.2.2. NumberDone ′ = NumberDone

1.2.3. Case: i = p

1.2.4. Case: i 6= p

1.2.5. Q.E.D.

Proof: By steps 1.2.3 and 1.2.4.
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This leaves three steps to prove. Here is the proof of step 1.2.4, which I
think is the most interesting one.

1.2.4.1. (t ′(i) = t(i)) ∧ (pc′(i) = pc(i))

Proof: By step 1 (which implies aStep(p) and Inv), the step 1.2.4
case assumption, and the definitions of aStep, Inv , and TypeOK ,
which together imply that the values of t(i) and pc(i) are unchanged.
(The definition of TypeOK is needed because type correctness is
required to deduce this.)

1.2.4.2. pc(i) = b

Proof: By step 1.2.4.1 and the step 1.2.1 assumption pc′(i) = b.

1.2.4.3. t(i) ≤ NumberDone

Proof: By step 1.2.4.2, the step 1 assumption (which implies Inv),
and the second conjunct in the definition of Inv .

1.2.4.4. Q.E.D.

Proof: Steps 1.2.4.1, 1.2.4.3, and 1.2.2 imply t ′(i) ≤ NumberDone ′,
which is the current goal (introduced in step 1.2.1).

The purpose of this example is to illustrate the science of proving correct-
ness of concurrent programs. The program and its proof are very simple.1

The example shows how proving that a program satisfies a property can
be hierarchically decomposed into proving simple mathematical assertions
whose proofs require no understanding of why the program works or what
it’s supposed to do. How this can be done for real abstract programs is an
engineering problem that is outside the scope of this book.

B.2 Proof of Theorem 4.3

Theorem 4.3 If F is a property, then C(F ) is a safety property such that
|= F ⇒ C(F ) and, for any safety property G , if |= F ⇒ G then |= C(F )⇒ G .

Proof: Let F be a property. Extend the definition of \ in Section 3.5.3
in the obvious way to finite behaviors ρ so that \ρ equals ρ with stuttering
steps removed.

1To check the level-1 proof, the TLA+ proof checker requires only that step 2 be
decomposed to a two-step proof, and that it be told to use two simple facts about the
cardinality of finite sets that it easily deduces from a standard library of such facts.
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1. Assume: F is a property.
Prove: C(F ) is a property.

1.1. Suffices: Assume: σ is a behavior.
Prove: σ satisfies C(F ) iff \σ does.

Proof: By definition of a property, it suffices to show that C(F ) is SI.
By definition of SI, it suffices to assume σ is a behavior and show σ
satisfies C(F ) iff \σ does.

1.2. Assume: σ satisfies C(F ).
Prove: \σ satisfies C(F ).

Proof: By definition of C (Section 4.1.3), it suffices to assume ρ is
a nonempty finite prefix of \σ and show it is a prefix of a behavior
satisfying F . Since ρ is a prefix of \σ, it equals \τ for some prefix τ
of σ, so σ satisfies C(F ) implies τ ◦ ν satisfies F for some behavior ν.
Since F is SI and ρ is obtained from τ by removing stuttering steps,
ρ ◦ ν also satisfies F , so ρ is a prefix of a behavior satisfying F .

1.3. Assume: \σ satisfies C(F ).
Prove: σ satisfies C(F ).

Proof: By definition of C, it suffices to show that any finite nonempty
prefix ρ of σ is the prefix of a behavior satisfying F . Since \ρ is a prefix
of \σ, by hypothesis there is a behavior τ such that (\ρ) ◦ τ satisfies F .
Since F is SI and ρ◦τ differs from (\ρ)◦τ only by stuttering steps, ρ◦τ
too satisfies F . Thus ρ is the prefix of a behavior satisfying F .

1.4. Q.E.D.

Proof: By steps 1.1–1.3.

2. C(F ) is a safety predicate.

2.1. Assume: ρ is a prefix of a behavior that satisfies C(F ).
Prove: ρ↑ satisfies C(F ).

2.1.1. Let σ be a behavior such that ρ ◦ σ satisfies F ; let φ(n) be the
sequence of states consisting of n copies of the final state of ρ, for
any n ∈ N; and let τ(n) equal ρ ◦ φ(n) ◦ σ. Then τ(n) satisfies
F for all n ∈ N.

Proof: A behavior σ such that ρ◦σ satisfies F exists by the step 2.1
assumption and the definition of C. That τ(n) satisfies F follows
from: (i) \τ(n) equals \(ρ◦σ) by definition of φ(n) and τ(n), (ii) ρ◦σ
satisfies F , and (iii) F is SI.

2.1.2. Every finite prefix of ρ↑ is a finite prefix of τ(n), for some n.
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Proof: By the definitions of τ(n) and of ρ↑.

2.1.3. Q.E.D.

Proof: By steps 2.1.1 and 2.1.2, every finite prefix of ρ↑ is a prefix
of a behavior satisfying F . By definition of C, this implies ρ↑ satisfies
C(F ), which proves the step 2.1 goal.

2.2. Assume: σ is a behavior such that ρ↑ satisfies C(F ) for every finite
prefix ρ of σ.

Prove: σ satisfies C(F ).

2.2.1. Suffices: Assume: ρ a prefix of σ.
Prove: ρ a prefix of a behavior satisfying F .

Proof: By definition of C(F ).

2.2.2. Every prefix of ρ↑ is a prefix of a behavior satisfying F .

Proof: By the steps 2.2 and 2.2.1 assumptions and the definition of
C(F ).

2.2.3. Q.E.D.

Proof: The step 2.2.1 goal follows from 2.2.2, since ρ is a prefix of
ρ↑.

2.3. Q.E.D.

Proof: By steps 2.1 and 2.2 and the definition of safety.

3. Assume: G a safety property and |= F ⇒ G
Prove: |= C(F )⇒ G

Proof: It suffices to assume σ is a behavior satisfying C(F ) and prove it
satisfies G . Since G is a safety property, it suffices to show that any finite
prefix ρ of σ satisfies G . By definition of C, ρ is a prefix of a behavior
satisfying F , and therefore by hypothesis satisfying G . Since G is a safety
property, this implies ρ satisfies G .

4. Q.E.D.

Proof: Steps 1–3 are the assertions of the theorem.

B.3 Proof of Theorem 4.4

Theorem 4.4 Every property F is equivalent to C(F ) ∧ L for a liveness
property L.

Define L
∆
= F ∨ ¬C(F )
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1. F is equivalent to C(F ) ∧ L .

Proof: By |= (F ⇒ C(F )) (from Theorem 4.3) and propositional logic.

2. L is a liveness property.

2.1. Suffices: Assume: ρ is a finite behavior.
Prove: ρ is a prefix of a behavior τ satisfying L.

Proof: By definition of liveness, since L is a property because the
operators of propositional logic preserve stuttering insensitivity, and
C(F ) is a property by Theorem 4.3.

2.2. Case: ρ is the prefix of a behavior τ satisfying F .

Proof: By definition of L, if τ satisfies F then it satisfies L.

2.3. Case: ρ is not the prefix of any behavior satisfying F .

Proof: By definition of C(F ), if ρ were the prefix of a behavior satis-
fying C(F ), then it would be the prefix of a behavior satisfying F . The
case assumption therefore implies that any behavior τ having ρ as a
prefix does not satisfy C(F ), so it satisfies ¬C(F ) and therefore satisfies
L by definition of L.

2.4. Q.E.D.

Proof: Steps 2.2 and 2.3 cover all possibilities.

3. Q.E.D.

Proof: By steps 1 and 2.

B.4 Proof of Theorem 4.5

Theorem 4.5 Assume: S a safety property and L a liveness property.

Prove: 〈S ,L〉 is machine closed iff C(S ∧ L) ≡ S .

1. Assume: 〈S ,L〉 is machine closed.
Prove: C(S ∧ L) ≡ S

1.1. C(S ∧ L)⇒ S

Proof: Theorem 4.3 implies |= S ⇒ C(S ), so |= S ∧ L ⇒ C(S ).
That theorem also implies C(S ) is a safety property and therefore
|= C(S ∧ L)⇒ C(S ). Since S is a safety property, it equals C(S ), so
|= C(S ∧ L)⇒ C(S ) implies C(S ∧ L)⇒ S .

1.2. S ⇒ C(S ∧ L)

Proof: It suffices to assume a behavior σ satisfies S and prove σ satis-
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fies C(S ∧ L). By definition of machine closure, every finite prefix of σ
can be completed to a behavior of S ∧L. By definition of C, this implies
σ satisfies C(S ∧ L).

1.3. Q.E.D.

Proof: By steps 1.1 and 1.2.

2. Assume: C(S ∧ L) ≡ S
Prove: 〈S ,L〉 is machine closed.

Proof: By definition of machine closure, it suffices to assume ρ is a
finite behavior satisfying S and prove ρ can be completed to a behavior
satisfying S ∧ L. By definition of what it means for a finite behavior
to satisfy a property, ρ↑ satisfies S . Since S ≡ C(S ∧ L), behavior ρ↑

satisfies C(S ∧ L). By definition of C, this implies every prefix of ρ↑ can
be completed to a behavior satisfying S ∧ L, and ρ is a prefix of ρ↑.

3. Q.E.D.

Proof: By steps 1 and 2.

B.5 Proof of Theorem 4.6

Theorem 4.6 Assume: |= (E U P) ≡ (3P ∧ E U P) ∨ (¬3P ∧2E )

Prove: |= ((E U P) ; P) ≡ (2E ; P).

1. Suffices: |= ((E U P)⇒ 3P) ≡ (2E ⇒ 3P)

Proof: By (3.20) and (3.19), since F ; G equals 2(F ⇒ 3G).

2. |= ((E U P)⇒ 3P) ≡ ∧ (3P ∧ E U P)⇒ 3P
∧ (¬3P ∧2E )⇒ 3P

Proof: By the theorem’s assumption and the propositional logic tautol-
ogy |= ((F ∨G)⇒ H ) ≡ (F ⇒ H ) ∧ (G ⇒ H ).

3. Q.E.D.

Proof: |= 3P ∧ E U P ⇒ 3P is a propositional logic tautology, which
by step 2 implies |= ((E U P)⇒ 3P) ≡ (¬3P∧2E ⇒ 3P), which with
the propositional logic tautology |= (¬3P ∧2E ⇒ 3P) ≡ (2E ⇒ 3P)
proves the step 1 goal.
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B.6 Proof of Theorem 4.7

Theorem 4.7 Let Init be a state predicate, Next an action, and v a tuple
of all variables occurring in Init and Next . If Ai is a subaction of Next for
all i in a countable set I , then the pair

〈 Init ∧2[Next ]v , ∀ i ∈ I : XFiv(Ai) 〉

is machine closed, where each XFiv may be either WFv or SFv .

Define S
∆
= Init ∧ 2[Next ]v

1. Suffices: Assume: ρ is a finite behavior satisfying S .
Prove: There exists a behavior σ having ρ as a prefix that

satisfies S and SFv (Ai), for all i ∈ I .

Proof: By definition of machine closure, it suffices to show that any
finite behavior ρ satisfying S is the prefix of a behavior σ satisfying
S ∧ ∀ i ∈ I : XFi

v (Ai). Since SFv (Ai) implies WFv (Ai), it suffices to show
that σ satisfies SFv (Ai) for all i ∈ I .

2. Choose f ∈ (N→ I ) such that each i ∈ I equals f (n) for infinitely many
n ∈ N. Define τ j for each j ∈ N as follows. Let τ0 = ρ, and for j > 0,
define τ j such that:

if τ j−1 is a prefix of a finite behavior µ satisfying S and ending in a
state in which 〈Af (j−1) 〉v is enabled.

then τ j equals the finite behavior obtained by appending to µ a
state that makes the last step of τ j an 〈Af (j−1) 〉v step.

else τ j is obtained from τ j−1 by adding a stuttering step.

For all j ∈ N, τ j is a prefix of and shorter than τ j+1, and τ j satisfies S .

Proof: Theorem 4.1 of Math V shows the existence of f . By construction,
each τ j is a prefix of and shorter than τ j+1. We must just show that τ j
satisfies S . The proof is by induction. It is true for j = 0 since τ0 equals
ρ, which satisfies S by the step 1 assumption. So we complete the proof
by assuming j > 0 and τ j−1 satisfies S and proving as follows that τ j
satisfies S .

If the if condition in the definition of τ j is true, then τ j satisfies S
because τ j−1 does and τ j is obtained by appending to τ j−1 an 〈Af (j−1) 〉v
step, which is a Next step by the hypothesis that |= Ai ⇒ Next for all
i ∈ I . If the if condition is false, then τ j satisfies S because S is stuttering
insensitive, τ j−1 satisfies S , and τ j is obtained by adding a stuttering step
to τ j−1.
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3. Let σ be the behavior having every τ j as a prefix. Then σ is a behavior
satisfying S having the prefix ρ.

Proof: The behavior σ exists (and is unique) because each τ j is a prefix
of and shorter than τ j+1. Since ρ equals τ0, it is a prefix of σ. Step 2
asserts that every prefix τ j of σ satisfies S . By definition of S , this implies
σ satisfies S .

4. σ satisfies SFi(A) for all i ∈ I .

Proof: Step 2 asserts that for any i ∈ I , there are infinitely many j ∈ N
such that i = f (j − 1). If the if condition in the definition of τ j is true
for all of those values of j , then σ contains an 〈Ai 〉v step for each of those
values of j , so σ satisfies 23〈Ai 〉v . If the if condition is false for any
such j , then τ j−1 cannot be extended to any finite behavior containing
an 〈Ai 〉v step. Hence, 2¬ E〈Ai 〉v is true for the suffix of σ obtained
by removing the prefix τ j−1. Therefore, σ satisfies 32¬ E〈Ai 〉v , which
equals ¬23 E〈Ai 〉v . By (4.23), in either case σ satisfies SFv (Ai).

5. Q.E.D.

Proof: The theorem follows from steps 1, 3, and 4.

B.7 Proof of Theorem 4.8

Theorem 4.8 Let Ai be an action for each i ∈ I , let Q
∆
= ∃ i ∈ I : Ai ,

and let XF be either WF or SF. Then

|= (∀ i ∈ I : 2( E〈Ai 〉v ∧ 2[¬Ai ]v ⇒
2[¬Q ]v ∧ 2( E〈Q 〉v ⇒ E〈Ai 〉v ) )

⇒ ( XFv (Q) ≡ ∀ i ∈ I : XFv (Ai) )

1. Suffices: Assume: ∀ i ∈ I : 2( E〈Ai 〉v ∧ 2[¬Ai ]v ⇒
2[¬Q ]v ∧ 2( E〈Q 〉v ⇒ E〈Ai 〉v ))

Prove: XFv (Q) ≡ ∀ i ∈ I : XFv (Ai)

Proof: Obvious.

Define 2323 to equal 32 if XF is WF, and 23 if XF is SF.

2. XFv (Q) ⇒ ∀ i ∈ I : XFv (Ai)

2.1. Suffices: Assume: XFv (Q), new i ∈ I , 2323 E〈Ai 〉v ∧32[¬Ai ]v
Prove: false

Proof: By (4.14) and (4.23), since F ⇒ G is equivalent to F ∧ ¬G ⇒
false and ¬23〈Ai 〉v equals 32[¬Ai ]v .
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2.2. 3 (2[¬Q ]v ∧ 2( E〈Q 〉v ⇒ E〈Ai 〉v ) )

Proof: 2323 E〈Ai 〉v implies 23 E〈Ai 〉v , and 23 E〈Ai 〉v ∧ 32[¬Ai ]v
implies 3( E〈Ai 〉v ∧ 2[¬Ai ]v ) by temporal reasoning. Therefore, the
step 2.1 assumption implies 3( E〈Ai 〉v ∧2[¬Ai ]v ), which by the step 1
assumption implies 2.2.

2.3. 32[¬Q ]v ∧ 32( E〈Q 〉v ≡ E〈Ai 〉v )

Proof: By step 2.2, because 3(2F ∧2G) equals 32F ∧32G for any
F and G , and 2( E〈Q 〉v ⇒ E〈Ai 〉v ) implies 2( E〈Q 〉v ≡ E〈Ai 〉v )
because the definition of Q implies |= Ai ⇒ Q , which by the definition
of E in Section 4.2.1 implies |= E〈Ai 〉v ⇒ E〈Q 〉v .

2.4. 23〈Q 〉v
Proof: 2323F and 32(F ≡ G) imply 2323G , for any F and G .
Therefore step 2.3 and the step 2.1 assumption 2323 E〈Ai 〉v imply

2323 E〈Q 〉v . By definition of XF, the step 2.1 assumption XFv (Q)
and 2323 E〈Q 〉v imply 23〈Q 〉v .

2.5. Q.E.D.

Proof: Since 32[¬Q ]v is equivalent to ¬23〈Q 〉v , steps 2.3 and 2.4
imply false, the goal introduced in step 2.1.

3. (∀ i ∈ I : XFv (Ai)) ⇒ XFv (Q)

3.1. Suffices: Assume: (∀ i ∈ I : XFv (Ai)) ∧ 2323 E〈Q 〉v
Prove: 23〈Q 〉v

Proof: By (4.14) and (4.23).

3.2. E〈Q〉v ⇒ 3〈Q〉v
3.2.1. Suffices: Assume: (i ∈ I ) ∧ E〈Ai 〉v

Prove: 3〈Q 〉v
Proof: By predicate logic (the ∃ Elimination rule), since Q equals
∃ i ∈ I : Ai , so E〈Q 〉v equals ∃ i ∈ I : E〈Ai 〉v by rule E2 of Sec-
tion 6.4.4.2.

3.2.2. Case: 3〈Ai 〉v
Proof: 3〈Q 〉v follows from the case assumption and |= Ai ⇒ Q .

3.2.3. Case: 2[¬Ai ]v
Proof: Assumption E〈Ai 〉v from step 3.2.1, the case assumption,
and the step 1 assumption imply 2( E〈Q 〉v ⇒ E〈Ai 〉v ). This, the
temporal logic tautology |= 2(F ⇒ G)⇒ (2323F ⇒2323G), and the
step 3.1 assumption 2323 E〈Q 〉v imply 2323 E〈Ai 〉v . Since i ∈ I by
the step 3.2.1 assumption, the step 3.1 assumption implies XFv (Ai),
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which by 2323 E〈Ai 〉v and the definition of XF implies 3〈Ai 〉v , which
by |= Ai ⇒ Q implies 3〈Q 〉v .

3.3. Q.E.D.

Proof: All assumptions in effect at step 3.2 are 2 formulas so, as ex-
plained in Section 4.2.4, we can deduce 2( E〈Q 〉v ⇒ 3〈Q 〉v ) from 3.2.
This and the temporal logic tautology

|= 2(F ⇒ 3G)⇒ (2323F ⇒ 23G)

imply2323 E〈Q 〉v ⇒ 23Q , which by the step 3.1 assumption2323 E〈Q 〉v
implies the step 3.1 goal 23Q .

4. Q.E.D.

Proof: By steps 1–3.

B.8 Proof Sketch of Theorem 4.9

Theorem 4.9 Let x be the list x 1, . . . , xn of variables and let F be a
property such that F (σ) depends only on the values of the variables x in σ,
for any behavior σ. There exists a formula S equal to Init ∧2[Next ]〈x,y 〉 ∧
WF〈x,y 〉(Next), where Init and Next are defined in terms of F , y is a variable
not among the variables x, and the variables of S are x and y , such that
|= F ⇒ [[G ]] iff |= S ⇒ G , for any property G . If F is a safety property,
then the conjunct WF〈x,y 〉(Next) is not needed.

Proof sketch: For any behavior σ, let σ|x be the infinite sequence of n-
tuples of values such that σ|x(i) equals the value of 〈x〉 in state σ(i). The
basic idea is to define S so that the value of y in any state i of a behavior
of S always equals (σ|x)+i for some behavior σ satisfying F , and x always
equals y(0). (Remember that τ is the infinite sequence τ(0)→ τ(1)→ · · · ,
and τ+i equals τ(i)→ τ(i + 1)→ · · · .)

To do this, for any infinite sequence τ of n-tuples of values, we define
F̃ (τ) to equal F (σ) for any behavior σ such that σ|x equals τ . This uniquely
defines F̃ because, by hypothesis, the value of F (σ) depends only on the
values of the variables x in the behavior σ. Define IsTupleSeq to be the
mapping such that IsTupleSeq(τ) is true iff τ is an infinite cardinal sequence
of n-tuples of arbitrary values. We then define S by letting:

Init
∆
= ∃ τ : ∧ IsTupleSeq(τ) ∧ F̃ (τ)

∧ (y = τ) ∧ (〈x〉 = τ(0))

Next
∆
= (y ′ = Tail(y)) ∧ (〈x〉′ = y ′(0))
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With this definition, F (σ) equals true for a behavior σ iff there is a behavior
satisfying S in which the initial value of y is σ|x. Notice that σ is a halting
behavior iff τ ends with an infinite sequence of identical n-tuples. When
y equals that value Tail(y) = y , so 〈Next 〉〈x,y 〉 equals false and S allows
only stuttering steps from that point on.

Eliminating the conjunct WF〈x,y 〉(Next) allows S to halt even if the
behavior y initially equals σ|x for a non-halting behavior σ that satisfies F .
That makes no difference if F is a safety property, since in that case every
finite prefix of σ also satisfies F . End Proof Sketch

B.9 Proof of Theorem 7.2

Theorem 7.2 With the assumptions of Theorem 7.1, for all i ∈ I let B i

be a subaction of Ai such that

(*) T ∧ (i 6= j ) ⇒ 2[¬(B i ∧Aj )]v

for all j in I ; and let Bh
i

∆
= 〈B i 〉v ∧ (h ′ = expi). Then

T ∧ (∀ i ∈ I : XFiv(Bi)) ≡ ∃∃∃∃∃∃ h : T h ∧ (∀ i ∈ I : XFivh(Bh
i ))

where each XFi is either WF or SF.

1. Assume: i ∈ I
Prove: 〈Bh

i 〉vh ≡ 〈B i ∧ (h ′ = expi)〉v
1.1. 〈Bh

i 〉vh ≡ B i ∧ (v ′ 6= v) ∧ (h ′ = expi) ∧ (vh ′ 6= vh)

Proof: By the definitions of Bh
i , Next i , and 〈. . .〉....

1.2. 〈Bh
i 〉vh ≡ B i ∧ (v ′ 6= v) ∧ (h ′ = expi)

Proof: By step 1.1, since vh = v ◦ 〈h 〉 implies (v ′ 6= v)∧ (vh ′ 6= vh) ≡
(v ′ 6= v).

1.3. Q.E.D.

Proof: By step 1.2 and the definition of 〈 . . .〉v .

2. Assume: i ∈ I
Prove: E〈Bh

i 〉vh ≡ E〈B i 〉v
Proof: By step 1 because exp is assumed not to contain h ′, so rules E3
and E5 of Section 6.4.4.2 imply E〈B i ∧ (h ′ = expi)〉v equals E〈B i 〉v .

Define 2323 i to equal 32 if XFi is WF and to equal 23 if XFi is SF.

3. Assume: T h ∧ ∀ i ∈ I : XFi
vh(Bh

i )
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Prove: T ∧ ∀ i ∈ I : XFiv(Bi)

3.1. Suffices: Assume: (i ∈ I )
Prove: XFi

v (B i)

Proof: By Theorem 7.1, T h implies T . Therefore, if suffices to prove
∀ i ∈ I : XFi

v (B i) to prove step 3

3.2. Suffices: Assume: 2323 i E〈B i 〉v
Prove: 23〈B i 〉v

Proof: By (4.14) and (4.23)

3.3. 2323 i E〈Bh
i 〉vh

Proof: By the step 3.2 assumption and step 2. (Since step 2 is not in
the scope of any assumptions, it implies 2( E〈Bh

i 〉vh ≡ E〈B i 〉v ) .)

3.4. 23〈Bh
i 〉vh

Proof: The step 3 assumption implies XFivh(Bh
i ), which by step 3.3,

(4.14), and (4.23) implies 23〈Bh
i 〉vh .

3.5. Q.E.D.

Proof: Step 3.4 and step 1 imply 23〈B i∧(h ′ = expi)〉v , which implies
the goal introduced in step 3.2.

4. Assume: T ∧ ∀ i ∈ I : XFi
v (B i)

Prove: ∃∃∃∃∃∃ h : T h ∧ ∀ i ∈ I : XFi
vh(Bh

i )

4.1. Suffices: Assume: T h ∧ (i ∈ I )
Prove: XFi

vh(Bh
i )

Proof: Theorem 7.1 shows that T implies ∃∃∃∃∃∃ h : T h . This implies that
to prove T ∧ F implies ∃∃∃∃∃∃ h : (T h ∧G) for any F and G , it suffices
to prove that T ∧ F ∧ T h implies G .2 Thus, the step 4 assumption
shows that to prove the step 4 goal, it suffices to prove T h implies
∀ i ∈ I : XFi

vh(Bh
i ), which is asserted by this step’s Assume/Prove.

4.2. Suffices: Assume: 2323 i E〈Bh
i 〉vh

Prove: 23〈Bh
i 〉vh

Proof: By (4.14) and (4.23).

4.3. 2323 i E〈B i 〉v
Proof: By the step 4.2 assumption and step 2.

4.4. 23〈B i 〉v
Proof: The step 4 assumption implies XFiv(Bi), which by step 4.3,

2To understand this reasoning, convince yourself that it is sound for formulas of ordi-
nary math (not temporal logic) when ∃∃∃∃∃∃ is replaced by ∃ .
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(4.14), and (4.23) implies 23〈B i 〉v .

4.5. Q.E.D.

Proof: By hypothesis, B i is a subaction of Ai . By hypothesis (∗) and
the step 4 assumption (which implies T ), B i ∧Aj equals false if i 6= j .
Hence a B i step must be an Ah

i step. By definition of Ah
i and the step

4.1 assumption (which implies T h), every B i step is a B i ∧ (h ′ = expi)
step. Therefore, step 4.4 and step 1 imply 23〈Bh

i 〉vh , which is the goal
introduced by step 4.2.

5. Q.E.D.

Proof: Steps 3 and 4 imply that T ∧ (∀ i ∈ I : XFiv(Bi)) is equivalent
to ∃∃∃∃∃∃ h : T h ∧ (∀ i ∈ I : XFivh(Bh

i )) .

B.10 Proof Sketch of Theorem 7.3

Theorem 7.3 Let T equal Init ∧ 2[Next ]〈x〉 where x is the list of all
variables of S ; let F be a safety property such that F (σ) depends only on
the values of the variables x in σ, for any behavior σ; and let h be a variable
not one of the variables x. We can add h as a history variable to T to obtain
T h and define a state predicate IF in terms of F such that |= [[T ]]⇒ F is
true iff IF is an invariant of T h .

Proof sketch: Define T h as follows:

T h ∆
= Inith ∧ 2[Nexth ]〈x,h 〉

Inith
∆
= Init ∧ (h = 〈x〉)

Nexth
∆
= Next ∧ (h ′ = Append(h, 〈x〉′))

Since h is a history variable, so ∃∃∃∃∃∃ h : T h is equivalent to T , to every behavior
σ satisfying T there is a corresponding behavior satisfying T h that has the
same values of the variables of x as σ. Since F does not depend on h, this
means that |= [[T ]]⇒ F iff |= [[T h ]]⇒ F .

We now define ρ|x and F̃ to be the same as in the proof of Theorem 4.9,
except for finite behaviors ρ. We define ρ|x to be the finite cardinal sequence
of n-tuples of the same length as ρ such that ρ|x(i) equals the value of 〈x〉
in state ρ(i); and we define F̃ to be the predicate on finite sequences of
n-tuples of values such that F̃ (ρ|x ) equals F (ρ) (which by definition equals
F (ρ↑)). We then define IF to equal F̃ (h).

Much as in the proof of Theorem 4.9, for any behavior τ , a finite prefix
ρ of τ satisfies F iff F̃ (ρ|x) is true, which is true iff F̃ (h) is true of the last
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state of ρ. Every state of τ is the last state of some finite prefix of τ , and
the safety property F is true of τ iff it is true of every finite prefix of τ , so
F is true of τ iff IF is true of every state of τ . This proves that IF is an
invariant of T h iff T h satisfies F ; and T satisfies F iff T h does, because F
depends only on the variables x. End Proof Sketch

B.11 Proof Sketch of Theorem 7.6

Theorem 7.6 Let x, y, and z be lists of variables, all distinct from one
another; let the variables of T be x and z and the variables of IS be x and y;
and let T equal Init ∧ 2[Next ]〈x,z〉 ∧ L. Let the operator Φ map behaviors
satisfying T to behaviors satisfying IS such that Φ(σ) ∼y σ. By adding
history, stuttering, and prophecy variables to T , we can define a formula
T a such that ∃∃∃∃∃∃a : T a is equivalent to T and a tuple exp of expressions
defined in terms of Φ and the variables of T a such that

|= T a ⇒ (IS with y← exp)

Proof sketch: We first add an infinite stuttering variable t to T , defining
T t to equal

∧ Init ∧ 2[(Next ∧ (v ′ 6= v)) ∨ ((t ′ 6= t) ∧ (〈x, z〉′ = 〈x, z〉))]〈x,z,t 〉
∧ L ∧ 23〈t ′ 6= t 〉t

In addition to handling the weird case described in Section 7.3.5, this sim-
plifies the proof by not having to consider terminating behaviors, since T t

doesn’t allow them.
Let m be the number of variables in x, z, and t . We next define T th by

adding to T t a history variable h whose value in any state is a cardinal se-
quence of m-tuples. The initial value of h is the one-element sequence whose
single element is the value of 〈x, z, t 〉 in the initial state. Each step that
does not leave 〈x, z, t 〉 unchanged appends to h the new value of 〈x, z, t 〉.
For a behavior σ satisfying T th that has no stuttering steps (steps leaving
x, z, and t unchanged), the value of variable h always equals the sequence
h(0), . . . , h(Len(h)− 1) of m-tuples such that each h(i) equals the value of
〈x, z, t 〉 in state σ(i) for all i < Len(h).

We now add to T th a prophecy variable p that always makes an infinite
sequence of prophecies. The value of p in state σ(i) of a behavior σ satisfying
T thp is the infinite sequence of m-tuples such that in state σ(i), the value of
p(0), the next prediction made by p, is the m-tuple that equals the next value
of 〈x, z, t 〉 different from its current value. This is a generalized prophecy
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variable with predictions in the collection (not a set) of m-tuple of values.
It is defined by writing the next-state action Next th as ∃ i : Ai , where

Ai
∆
= (i = 〈x, z, t 〉′) ∧ Next th

and defining the next-state action Next thp of T thp by

Next thp
∆
= Ap(0) ∧ Next th ∧ (p′ = Tail(p))

A Next thp step removes the first element from p and appends that element
to the end of h. Therefore, the value of h ◦p remains unchanged throughout
any behavior that satisfies T thp . The value of h ◦ p during a behavior σ
satisfying T thp equals the sequence of values of 〈x, z, t 〉 in the entire behavior
σ, except that σ may have additional (stuttering) steps that leave 〈x, z, t 〉
unchanged.

In any state of a behavior satisfying T thp , the value of (h ◦p)(Len(h)−1)
(the last element in the sequence h of m-tuples of values) is the current value
of 〈x, z, t 〉. The variables h and p, together with the mapping Φ contain all
the information needed to define a refinement mapping under which T thp

implements IS . To see how this is done, we need some notation.
For any behavior σ and state expression exp, define σ|exp to be the infinite

sequence of values such that (σ|exp)(i) equals the value of exp in state σ(i),
for all i ∈ N. Thus σ|〈x,z,t 〉 is the sequence of m-tuples of values of 〈x, z, t 〉
in the states of σ. Define the mapping Φ̃ from sequences of m-tuples of
values to behaviors so that Φ̃(ρ) equals Φ(σ) for some behavior σ such
that σ|〈x,z,t 〉 = ρ. (It doesn’t matter what values the states of σ assign to
variables other than those in x, z, and t since they don’t affect whether or
not σ satisfies T .) We are assuming that Φ(σ) satisfies IS and Φ(σ) ∼y σ.
Therefore, for any behavior satisfying T thp , for the value of h ◦p in any state
of that behavior, Φ̃(h ◦ p) satisfies IS and Φ̃(h ◦ p) ∼y σ for some behavior
σ such that σ|〈x,z,t 〉 = h ◦ p.

To understand how to construct the needed refinement mapping, we con-
sider a simpler version of the theorem that would be true if we were using
RTLA rather than TLA, so we didn’t have the complication introduced by
stuttering insensitivity. In that case, Φ̃(h ◦ p) would satisfy Φ̃(h ◦ p) 'y σ
instead of Φ̃(h ◦p) ∼y σ. This means that the behavior Φ(σ) satisfying IS is
constructed from a behavior σ with σ|〈x,z,t 〉 equal to h ◦ p by just changing
the value of the variables y in each state of σ (without adding or removing
stuttering steps). For any state s, let sy be the list of values of the variables
y in that state. For σ to satisfy IS , the values of y in any state σ(i) of the
behavior σ should equal the values of Φ(σ)(i)y, the values of y in the corre-
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sponding state of Φ(σ).3 Remember that state number i of σ corresponds
to the m-tuple (h ◦p)(i) with i = Len(h)−1. Therefore, the values assigned
to y by the refinement mapping under which T thp implements IS should in
each state equal the values of y in state number Len(h)− 1 of Φ̃(h ◦ p). In
other words, we have:

|= T thp ⇒ (IS with y← (Φ̃(h ◦ p)(Len(h)− 1))y)(B.1)

Let’s now return to the actual situation in which Φ̃(h ◦ p) ∼y σ (rather
than Φ̃(h ◦p) 'y σ). The behavior Φ̃(h ◦p) is constructed from the behavior
σ, where σ|〈x,z,t 〉 equals the value of h ◦ p in every state of σ, by possibly
adding stuttering steps to σ and then modifying the values of y in its states.
(There are no stuttering steps to remove from σ because we defined T t and
the history variable h so that h is a sequence of m-tuples no two successive
elements of which are equal.)

To fix (B.1) to handle these stuttering steps, we have to add a stuttering
variable s to T thp to obtain the program T thps that adds to the behavior
σ satisfying T thp the stuttering steps needed to produce a behavior τ such
that the state τ(i) corresponds to the state Φ̃(h ◦p)(i) for every i ∈ N. The
behavior Φ̃(h ◦ p) tells us where those stuttering steps must be added: each
step Φ̃(h ◦p)(i)→ Φ̃(h ◦p)(i +1) that leaves the value of 〈x, z, t 〉 unchanged
corresponds to a stuttering step added to the behavior σ satisfying T thp to
form τ .

Define the function f in (N → N) in terms of h ◦ p as follows. Let
f (0) = 0, and for all i ∈ N, let f (i +1) be the smallest number greater than
f (i) such that the value of 〈x, z, t 〉 in state Φ̃(h ◦p)(f (i +1)) is different from
its value in state Φ̃(h ◦p)(f (i)). (Such a number f (i +1) exists for the value
of h ◦ p in any reachable state of T thp because adding the infinite-stuttering
variable t ensured that 23(t ′ 6= t) is true for every behavior of T thp .)

To construct Φ̃(h ◦ p) from a behavior σ with σ|〈x,z,t 〉 = h ◦ p, we have
to add stuttering steps to make each state number i of σ correspond to
state number f (i) of Φ̃(h ◦ p). The stuttering variable s added to T thp

to define T thps has to add f (i + 1) − f (i) − 1 stuttering steps between
states number i and i + 1 of a behavior of T thp . That means adding
f (Len(h))− f (Len(h)− 1)− 1 stuttering steps after every step of the next-
state action of T thp . (Of course no stuttering step is added if f (Len(h)) −
f (Len(h)− 1) = 1.) We then define k to be a state expression whose value
in any behavior satisfying T thps is the number of steps of the next-state

3This means that for each variable yj of y, the value of yj in any state σ(i) should
equal the value of yj in Φ(σ)(i).
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action of T thps that have occurred so far. We can define k in terms of the
values of f and s, or we can simply add k as a history variable to T thps .
However we define it, we can express the corrected version of (B.1) that
handles stuttering insensitivity by:

|= T thps ⇒ (IS with y← (Φ̃(h ◦ p)(k))y)

which completes the proof. End Proof Sketch

Replacing the Prophecy Variable with a Prophecy Constant

Theorem 7.6 is true if we use a prophecy constant, as defined in Section 7.7,
instead of a prophecy variable. This is proved by modifying the proof sketch
of Theorem 7.6 as follows. After adding the auxiliary variables t and h, we
add to T th a prophecy constant c whose value is the infinite sequence of
m-tuples that are the values of 〈x, z, t 〉 in the entire behavior. In other
words,

T thc ∆
= ∃ c : P(h, c) ∧ T th

where P(h, c) asserts that c is an infinite sequence of m-tuples such that,
in every state, h equals the sequence of the first Len(h) elements of c. We
then define p to be the state function such that, in any state, h ◦ p equals
c. The proof is then the same as the rest of the proof of Theorem 7.6, using
this as the definition of p.

B.12 Proof of Theorem 8.2

The proof uses the following assertion, which the definition of the action
composition operator “·” implies is true for all actions Ai and B j :

|= (∃ i ∈ I : Ai) · (∃ j ∈ J : B j ) ≡ (∃ i ∈ I , j ∈ J : Ai · B j )(B.2)

Theorem 8.2 If A ≡ ∃ i ∈ I : Ai and B ≡ ∃ j ∈ J : B j for actions Ai and
B j , then:

|= (∀ i ∈ I , j ∈ J : Ai · B j ⇒ B j ·Ai) ⇒ (A · B ⇒ B ·A)

Proof: It suffices to assume Ai · B j ⇒ B j · Ai for all i ∈ I and j ∈ J and
prove A · B ⇒ B ·A. Here is the proof:
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A · B ≡ (∃ i ∈ I , j ∈ J : Ai · B j ) by (B.2)

⇒ (∃ i ∈ I , j ∈ J : B j ·Ai) we assume Ai · B j ⇒ B j ·Ai for all i and j

≡ B ·A by (B.2), substituting I ← J , J ← I ,

Ai ← B j , and B j ← Ai .

End Proof

B.13 Proof of Theorem 8.3

Theorem 8.3 If S equals Init ∧2[Next ]x, P is a safety property, and Q is a
state predicate such that |= S ⇒ 2 E([Next ]+x ∧Q ′), then |= S ∧23Q ⇒ P
implies |= S ⇒ P .

1. 〈S ,23Q 〉 is machine closed.

1.1. Suffices: Assume: ρ a finite behavior satisfying S
Prove: ρ is a prefix of a behavior satisfying S ∧ L

Proof: By definition of machine closure.

1.2. There is a mapping Φ such that if µ is any finite behavior satisfying
S , then Φ(µ) is a finite behavior ending in a state satisfying Q such
that µ ◦ Φ(µ) satisfies S .

Proof: The hypothesis |= S ⇒ 2 E([Next ]+x ∧Q ′) implies that the ac-
tion [Next ]+x ∧Q ′ is enabled in the last state of µ. Therefore, there is
a finite behavior ψ beginning with the last state of µ and containing at
least two states such that the last state of ψ satisfies Q and every step
of ψ satisfies [Next ]+x . Let Φ(µ) equal Tail(ψ). Then µ ◦ Φ(µ) satisfies
S by definition of S , because µ satisfies Init and 2[Next ]x and every
step of ψ is a [Next ]+x step; and the last state of µ ◦ Φ(µ) satisfies Q .

Define τ i for i ∈ N by: τ0
∆
= ρ

τ i+1
∆
= τ i ◦ Φ(τ i) for all i ∈ N

1.3. Q.E.D.

Proof: Let σ be the (unique) behavior such that each τ i is a prefix of
σ, so ρ (which equals τ0) is a prefix of σ. Each finite prefix of σ is a
prefix of some τ i and therefore satisfies S . Since S is a safety property,
this implies σ satisfies S . For all i ∈ N, τ i+1 has at least one more
state satisfying Q than τ i does, so σ satisfies 23Q .

2. S = C(S ∧23Q)

Proof: By step 1 and Theorem 4.5.
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3. Q.E.D.

Proof: By step 2, the assumption that P is a safety property, and The-
orem 4.3.



Bibliography

[1] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real
time. ACM Transactions on Programming Languages and Systems,
16(5):1543–1571, September 1994. This paper has an appendix pub-
lished by ACM only online that contains proofs. Other online versions
of the paper might not contain the appendix.

[2] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM
Transactions on Programming Languages and Systems, 17(3):507–534,
May 1995. This paper has an appendix published by ACM only online
that contains proofs. Online versions of the paper might not contain
the appendix.

[3] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[4] E. A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10:110–135, February 1975.

[5] Selma Azaiez, Damien Doligez, Matthieu Lemerre, Tomer Libal, and
Stephan Merz. Proving determinacy of the PharOS real-time operating
system. In Michael Butler, Klaus-Dieter Schewe, Atif Mashkoor, and
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