
module SpanTreeRandom

The specification in this module is a modified version of the one in module SpanTree obtained by
replacing the declared constant Edges with a defined constant that equals a randomly chosen set
of edges joining the nodes in Nodes. Thus it can be used to test the algorithm of SpanTree on a
randomly chosen node, making it easy to check the algorithm on a sequence of different graphs.

extends Integers, FiniteSets, TLC

constants Nodes, Root , MaxCardinality

Edges
∆
=

union {{{n, m} : m ∈ RandomElement(subset (Nodes \ {n}))} : n ∈ Nodes}
To understand this definition let’s look at its subformulas, from the inside out.

− subset (Nodes \ {n}) is the set of all subsets of the set Nodes \ {n} , which is the set of

all nodes other than n.

− RandomElement(. . .) is a hack introduced in the TLC module. TLC computes its value to
be a randomly chosen element in the set This is hack because, in math, an expression
has the same value whenever it’s computed. The value of 2ˆ{1/2} is the same next Thursday
as it is today. Every mathematical expression exp satisfies exp = exp. However, TLC may
evaluate

RandomElement(S) = RandomElement(S)

to equal false if S is a set with more than 1 element, This is one of the few cases in which
TLC does not obey the rules of math.

− {{n, m} : m ∈ RandomElement(. . .)} is the set of elements that equal the set {n, m} for

m some element of RandomElement(. . .) .

− union { . . . : n ∈ Nodes} is the union of all sets . . . for n an element of Nodes. This

expression makes sense if the expression equals a set that depends on the value of n.

assume ∧ Root ∈ Nodes
∧MaxCardinality ∈ Nat
∧MaxCardinality ≥ Cardinality(Nodes)

variables mom, dist
vars

∆
= 〈mom, dist〉

Nbrs(n)
∆
= {m ∈ Nodes : {m, n} ∈ Edges}

TypeOK
∆
= ∧mom ∈ [Nodes → Nodes]
∧ dist ∈ [Nodes → Nat]
∧ ∀ e ∈ Edges : (e ⊆ Nodes) ∧ (Cardinality(e) = 2)

Init
∆
= ∧mom = [n ∈ Nodes 7→ n]
∧ dist = [n ∈ Nodes 7→ if n = Root then 0 else MaxCardinality]

Next
∆
= ∃n ∈ Nodes :

∃m ∈ Nbrs(n) :
∧ dist [m] < 1 + dist [n]
∧ ∃ d ∈ (dist [m] + 1) . . (dist [n]− 1) :

1

∧ dist ′ = [dist except ! [n] = d]
∧mom ′ = [mom except ! [n] = m]

Spec
∆
= Init ∧2[Next]vars ∧WFvars(Next)

PostCondition
∆
=

∀n ∈ Nodes :
∨ ∧ n = Root
∧ dist [n] = 0
∧mom[n] = n

∨ ∧ dist [n] = MaxCardinality
∧mom[n] = n
∧ ∀m ∈ Nbrs(n) : dist [m] = MaxCardinality

∨ ∧ dist [n] ∈ 1 . . (MaxCardinality − 1)
∧mom[n] ∈ Nbrs(n)
∧ dist [n] = dist [mom[n]] + 1

Safety
∆
= 2((¬enabled Next)⇒ PostCondition)

Liveness
∆
= 3PostCondition

Model Model 1 has TLC check these correctness condition for a (randomly chosen) graph with

six nodes. On a few tries, it took TLC an average of a little more than 30 seconds to do it.

\ * Modification History

\ * Last modified Mon Jun 17 05:39:15 PDT 2019 by lamport

\ * Created Fri Jun 14 03:07:58 PDT 2019 by lamport

2

