
module Voting

This is a high-level algorithm in which a set of processes cooperatively choose a value. It is
a high-level abstraction of the Paxos consensus algorithm. Although I don’t remember exactly
what went through my mind when I invented/discovered that algorithm, I’m pretty sure that this
spec formalizes the way I first thought of the algorithm. It would have been very hard to find
this algorithm had my mind been distracted by the irrelevant details introduced by having the
processes communicate by messages.

extends Integers

For historical reasons, the processes that choose a value are called acceptors. We now declare the
set Value of values, the set Acceptors of acceptors, and another set Quorum that is a set of sets
of acceptors called quorums.

constants Value, Acceptor , Quorum

The following assumption asserts that Quorum is a set of subsets of the set Acceptor , and that
any two elements of Quorum have at least one element (an acceptor) in common. Think of a

quorum as a set consisting of a majority (more than half) of the acceptors.

assume ∧ ∀Q ∈ Quorum : Q ⊆ Acceptor
∧ ∀Q1, Q2 ∈ Quorum : Q1 ∩Q2 6= {}

Ballot is a set of “ballot numbers”. For simplicity, we let it be the set of natural numbers. However,

we write Ballot for that set to distinguish ballots from natural numbers used for other purposes.

Ballot
∆
= Nat

The algorithm works by having acceptors cast votes in numbered ballots. Each acceptor can cast
one or more votes, where each vote cast by an acceptor has the form 〈b, v〉 indicating that the
acceptor has voted for value v in ballot number b. A value is chosen if a quorum of acceptors have
voted for it in the same ballot.

We now declare the algorithm’s variables ’votes’ and ’maxBal’. For each acceptor a, he value of
votes[a] is the set of votes cast by a ; and maxBal [a] is an integer such that a will never cast any

further vote in a ballot numbered less than maxBal [a].

variables votes, maxBal

TypeOK asserts the “types” of the two variables. They are both functions with domain Acceptor
(arrays indexed by acceptors). For any acceptor a, the value of votes[a] a set of 〈ballot , value〉
pairs; and the value of maxBal [a] is either a ballot number or − 1.

TypeOK
∆
=

∧ votes ∈ [Acceptor → subset (Ballot ×Value)]
∧maxBal ∈ [Acceptor → Ballot ∪ { − 1}]

Next comes a sequence of definitions of concepts used to explain the algorithm.

VotedFor(a, b, v)
∆
= 〈b, v〉 ∈ votes[a]

True iff (if and only if) acceptor a has votted for value v in ballot number b.

ChosenAt(b, v)
∆
=

∃Q ∈ Quorum : ∀ a ∈ Q : VotedFor(a, b, v)

True iff a quorum of acceptors have all voted for value v in ballot number b.

1



chosen
∆
= {v ∈ Value : ∃ b ∈ Ballot : ChosenAt(b, v)}

Defines chosen to be the set of all values v for which ChosenAt(b, v) is true for some ballot
number b. This is the definition of what it means for a value to be chosen under which the
Voting algorithm implements the Consensus specification.

DidNotVoteAt(a, b)
∆
= ∀ v ∈ Value : ¬VotedFor(a, b, v)

True iff acceptor a has not voted in ballot number .

CannotVoteAt(a, b)
∆
= ∧maxBal [a] > b
∧DidNotVoteAt(a, b)

The algorithm will not allow acceptor a to vote in ballot number b if maxBal [a] > b. Hence,

CannotVoteAt(a, b) implies that a has not and never will vote in ballot number b.

NoneOtherChoosableAt(b, v)
∆
=

∃Q ∈ Quorum :
∀ a ∈ Q : VotedFor(a, b, v) ∨ CannotVoteAt(a, b)

This is true iff there is some quorum Q such that each acceptor a in Q either has voted for
v in ballot b or has not and never will vote in ballot b. It implies that no value other than
v has been or ever can be chosen at ballot b. This is because for a value w to be chosen at
ballot b, all the acceptors in some quorum R must have voted for w in ballot b. But any two
ballots have an acceptor in common, so some acceptor a in R that voted for w is in Q , and an
acceptor in Q can only have voted for v , so w must equal v .

SafeAt(b, v)
∆
= ∀ c ∈ 0 . . (b − 1) : NoneOtherChoosableAt(c, v)

True iff no value other than v has been or ever will be chosen in any ballot numbered less than

b. We read SafeAt(b, v) as “v is safe at b”.

This theorem asserts that every value is safe at ballot 0.

theorem AllSafeAtZero
∆
= ∀ v ∈ Value : SafeAt(0, v)

The following theorem asserts that NoneOtherChoosableAt means what it’s name implies. The

comments after its definition essentially contain a proof of this theorem.

theorem ChoosableThm
∆
=

∀ b ∈ Ballot , v ∈ Value :
ChosenAt(b, v)⇒ NoneOtherChoosableAt(b, v)

Now comes the definition of the inductive invariant Inv that essentially explains why the algorithm

is correct.

OneValuePerBallot
∆
=

∀ a1, a2 ∈ Acceptor , b ∈ Ballot , v1, v2 ∈ Value :
VotedFor(a1, b, v1) ∧VotedFor(a2, b, v2)⇒ (v1 = v2)

This formula asserts that if any acceptors a1 and a2 have voted in a ballot b, then they voted
for the same value in ballot b. For a1 = a2, this implies that an acceptor can vote for at most
one value in any ballot.

VotesSafe
∆
= ∀ a ∈ Acceptor , b ∈ Ballot , v ∈ Value :

VotedFor(a, b, v)⇒ SafeAt(b, v)

2



This formula asserts that an acceptors can have voted in a ballot b only if that value is safe at

b.

The algorithm is essentially derived by ensuring that this formula Inv is always true.

Inv
∆
= TypeOK ∧VotesSafe ∧OneValuePerBallot

This definition is used in the defining the algorithm. You should study it and make sure you

understand what it says.

ShowsSafeAt(Q , b, v)
∆
=

∧ ∀ a ∈ Q : maxBal [a] ≥ b
∧ ∃ c ∈ − 1 . . (b − 1) :
∧ (c 6= − 1)⇒ ∃ a ∈ Q : VotedFor(a, c, v)
∧ ∀ d ∈ (c + 1) . . (b − 1), a ∈ Q : DidNotVoteAt(a, d)

This is the theorem that’s at the heart of the algorithm. It shows that if the algorithm has
maintained the invariance of Inv , then the truth of ShowsSafeAt(Q , b, v) for some quorum Q
ensures that v is safe at b, so the algorithm can let an acceptor vote for v in ballot b knowing
VotesSafe will be preserved.

theorem ShowsSafety
∆
=

Inv ⇒ ∀Q ∈ Quorum, b ∈ Ballot , v ∈ Value :
ShowsSafeAt(Q , b, v)⇒ SafeAt(b, v)

Finally, we get to the definition of the algorithm. The initial predicate is obvious.

Init
∆
= ∧ votes = [a ∈ Acceptor 7→ {}]
∧maxBal = [a ∈ Acceptor 7→ − 1]

An acceptor a can increase maxBal [a] at any time.

IncreaseMaxBal(a, b)
∆
=

∧ b > maxBal [a]
∧maxBal ′ = [maxBal except ! [a] = b]
∧ unchanged votes

The heart of the algorithm is the action in which an acceptor a votes for a value v in ballot number
b. The enabling condition contains the following conjuncts, which ensure that the invariance of
Inv is maintained.

− a cannot vote in a ballot numbered less than b

− a cannot already have voted in ballot number b

- No other acceptor can have voted for a value other than v in ballot b.

- Uses Theorem ShowsSafety to ensure that v is safe at b.

In TLA+, a tuple t is a function (array) whose first element is t [1], whose second element if t [2],

and so on. Thus, a vote vt is the pair

〈vt [1], vt [2]〉

VoteFor(a, b, v)
∆
=

∧ maxBal [a] ≤ b
∧ ∀ vt ∈ votes[a] : vt [1] 6= b

3



∧ ∀ c ∈ Acceptor \ {a} :
∀ vt ∈ votes[c] : (vt [1] = b)⇒ (vt [2] = v)

∧ ∃Q ∈ Quorum : ShowsSafeAt(Q , b, v)
∧ votes ′ = [votes except ! [a] = votes[a] ∪ {〈b, v〉}]
∧ maxBal ′ = [maxBal except ! [a] = b]

The rest of the spec is straightforward.

Next
∆
= ∃ a ∈ Acceptor , b ∈ Ballot :

∨ IncreaseMaxBal(a, b)
∨ ∃ v ∈ Value : VoteFor(a, b, v)

Spec
∆
= Init ∧2[Next ]〈votes,maxBal〉

This theorem asserts that Inv is an invariant of the algorithm. The high-level steps in its proof

are given.

theorem Invariance
∆
= Spec ⇒ 2Inv

〈1〉1. Init ⇒ Inv

〈1〉2. Inv ∧ [Next ]〈votes,maxBal〉 ⇒ Inv ′

〈1〉3. qed
by 〈1〉1, 〈1〉2 def Spec

This instance statement imports definitions from module Consensus into the current module. All
definition in module Consensus can be expanded to definitions containing only TLA+ primitives
and the declared names Value and chosen. To import a definition from Consensus into the current
module, we have to say what expressions from the current module are substituted for Value and
chosen. The instance statement says that expressions of the same name are substituted for
them. (Because of this, the with statement is redundant.) Note that in both modules, Value is
just a declared constant. However, in the current module, chosen is an expression defined in terms
of the variables votes and maxBal while it is a variable in module consensus. The “C !

∆
= ” in

the statement means that defined identifiers are imported with “C !” prepended to their names.
Thus Spec of module Consensus is imported, with these substitutions, as C !Spec.

C
∆
= instance Consensus

with Value ← Value, chosen ← chosen

The following theorem asserts that the Voting algorithm implements the Consensus specification,
where the expression chosen of the current module implements the variable chosen of Consensus.
The high-level steps of the the proof are also given.

theorem Implementation
∆
= Spec ⇒ C !Spec

〈1〉1. Init ⇒ C !Init

〈1〉2. Inv ∧ Inv ′ ∧ [Next ]〈votes,maxBal〉 ⇒ [C !Next ]chosen

〈1〉3. qed
by 〈1〉1, 〈1〉2, Invariance def Spec, C !Spec

4



This Voting specification comes with a TLC model named SmallModel . That model tells TLC
that Spec is the specification, that Acceptor and Values should equal sets of model values with 3
acceptors and 2 values and Quorums should equal the indicated set of values, and that it should
check theorems Invariance and Implementation. Observe that you can’t tell TLC simply to
check those theorems; you have to tell TLC to check the properties the theorems assert that Spec
satisfies. (Instead of telling TLC that Inv should be an invariant, you can tell it that the spec

should satisfy the temporal property 2Inv .)

Even though the constants are finite sets, the spec has infinitely many reachable sets because a
ballot number can be any element of the set Nat of natural numbers. The model modifies the
spec so it has a finite set of reachable states by using a definition override (on the Spec Options
page) to redefine Ballot to equal 0 . . 2. (Alternatively, we could override the definition of Nat to

equal 0 . . 2.)

Run TLC on the model. It should just take a couple of seconds.

After doing that, show why the assumption that any pair of quorums has an element in common is
necessary by modifying the model so that assumption doesn’t hold. (It’s best to clone SmallModel
and modify the clone.) Since TLC reports an error if an assumption isn’t true, you will have
to comment out the second conjunct of the assume statement, which asserts that assumption.
Comments can be written as follows:

\ * This is an end-of-line comment.

To help you see what the problem is, use the Trace Explorer on the

Error page to show the value of chosen in each state of the trace.

5


