# A Summary of TLA ${ }^{+}$ 

Leslie Lamport

25 Aug 2000

## Module-Level Constructs

$\square$ MODULE $M \longrightarrow$
Begins the module or submodule named $M$.
EXTENDS $M_{1}, \ldots, M_{n}$
Incorporates the declarations, definitions, assumptions, and theorems from the modules named $M_{1}, \ldots, M_{n}$ into the current module.

CONSTANTS $C_{1}, \ldots, C_{n}{ }^{(1)}$
Declares the $C_{j}$ to be constant parameters (rigid variables). Each $C_{j}$ is either an identifier or has the form $C\left(\_, \ldots,-\right)$, the latter form indicating that $C$ is an operator with the indicated number of arguments.

VARIABLES $x_{1}, \ldots, x_{n}{ }^{(1)}$
Declares the $x_{j}$ to be variables (parameters that are flexible variables).
ASSUME $P$
Asserts $P$ as an assumption.
$F\left(x_{1}, \ldots, x_{n}\right) \triangleq \exp$
Defines $F$ to be the operator such that $F\left(e_{1}, \ldots, e_{n}\right)$ equals exp with each identifier $x_{k}$ replaced by $e_{k}$. (For $n=0$, it is written $F \triangleq \exp$.)
$f[x \in S] \triangleq \exp { }^{(2)}$
Defines $f$ to be the function with domain $S$ such that $f[x]=\exp$ for all $x$ in $S$. (The symbol $f$ may occur in exp, allowing a recursive definition.)
(1) The terminal S in the keyword is optional.
(2) $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where $v$ is either a comma-separated list or a tuple of identifiers.

INSTANCE $M$ WITH $p_{1} \leftarrow e_{1}, \ldots, p_{m} \leftarrow e_{m}$
For each defined operator $F$ of module $M$, this defines $F$ to be the operator whose definition is obtained from the definition of $F$ in $M$ by replacing each declared constant or variable $p_{j}$ of $M$ with $e_{j}$. (If $m=0$, the with is omitted.)
$N\left(x_{1}, \ldots, x_{n}\right) \triangleq$ INSTANCE $M$ WITH $p_{1} \leftarrow e_{1}, \ldots, p_{m} \leftarrow e_{m}$
For each defined operator $F$ of module $M$, this defines $N\left(d_{1}, \ldots, d_{n}\right)!F$ to be the operator whose definition is obtained from the definition of $F$ by replacing each declared constant or variable $p_{j}$ of $M$ with $e_{j}$, and then replacing each identifier $x_{k}$ with $d_{k}$. (If $m=0$, the WITH is omitted.)

THEOREM $P$
Asserts that $P$ can be proved from the definitions and assumptions of the current module.

LOCAL def
Makes the definition(s) of def (which may be a definition or an INSTANCE statement) local to the current module, thereby not obtained when extending or instantiating the module.

Ends the current module or submodule.

## The Constant Operators

## Logic

```
\wedge \neg 
TRUE FALSE BOOLEAN [the set {TRUE, FALSE}]
\forallx:p\quad\existsx:p\quad\forallx\inS:p (1) }\existsx\inS:
CHOOSE x : p [An x satisfying p] CHOOSE x 隹 : p [An x in S satisfying p]
```


## Sets

```
\(=\neq \in \notin \cup \cap \subseteq\) [set difference]
\(\left\{e_{1}, \ldots, e_{n}\right\} \quad\) [Set consisting of elements \(\left.e_{i}\right]\)
\(\{x \in S: p\}^{(2)} \quad[\) Set of elements \(x\) in \(S\) satisfying \(p]\)
\(\{e: x \in S\}^{(1)} \quad[\) Set of elements \(e\) such that \(x\) in \(S]\)
SUBSET \(S \quad\) [Set of subsets of \(S\) ]
Union \(S \quad\) [Union of all elements of \(S\) ]
```


## Functions

| $f[e]$ | [Function application] |
| :--- | :--- |
| DOMAIN $f$ | [Domain of function $f]$ |
| $[x \in S \mapsto e]^{(1)}$ | [Function $f$ such that $f[x]=e$ for $x \in S]$ |
| $[S \rightarrow T]$ | [Set of functions $f$ with $f[x] \in T$ for $x \in S]$ |
| $\left[f \text { EXCEPT ! }\left[e_{1}\right]=e_{2}\right]^{(3)}$ | [Function $\widehat{f}$ equal to $f$ except $\widehat{f}\left[e_{1}\right]=e_{2}$. An @ |
|  | in $e_{2}$ equals $\left.f\left[e_{1}\right].\right]$ |

## Records

| $e . h$ | [The $h$-component of record $e$ ] |
| :--- | :--- |
| $\left[h_{1} \mapsto e_{1}, \ldots, h_{n} \mapsto e_{n}\right]$ | [The record whose $h_{i}$ component is $e_{i}$ ] |
| $\left[h_{1}: S_{1}, \ldots, h_{n}: S_{n}\right]$ | [Set of all records with $h_{i}$ component in $S_{i}$ ] |
| $[r \text { EXCEPT }!. h=e]^{(3)}$ | [Record $\widehat{r}$ equal to $r$ except $\widehat{r} . h=e$. An @ in $e$ |
|  | equals $r . h]$. |

## Tuples

| $e[i]$ | [The $i^{\text {th }}$ component of tuple $\left.e\right]$ |
| :--- | :--- |
| $\left\langle e_{1}, \ldots, e_{n}\right\rangle$ | [The $n$-tuple whose $i^{\text {th }}$ component is $e_{i}$ ] |
| $S_{1} \times \ldots \times S_{n}$ | [The set of all $n$-tuples with $i^{\text {th }}$ component in $S_{i}$ ] |

## Strings and Numbers

| "c $c_{1} \ldots \mathrm{c}_{n} "$ | [A literal string of $n$ characters] |
| :--- | :--- |
| STRING | [The set of all strings] |
| $d_{1} \ldots d_{n}$ | $d_{1} \ldots d_{n} \cdot d_{n+1} \ldots d_{m}$ |
| [Numbers (where the $d_{i}$ are digits)] |  |

(1) $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where $v$ is either a comma-separated list or a tuple of identifiers.
(2) $x$ may be an identifier or tuple of identifiers.
(3)! $\left[e_{1}\right]$ or !. $h$ may be replaced by a comma separated list of items ! $a_{1} \cdots a_{n}$, where each $a_{i}$ is $\left[e_{i}\right]$ or.$h_{i}$.

## Miscellaneous Constructs

IF $p$ THEN $e_{1}$ ELSE $e_{2}$
[ $e_{1}$ if $p$ true, else $e_{2}$ ]
$\operatorname{CASE} p_{1} \rightarrow e_{1} \square \ldots \square p_{n} \rightarrow e_{n}$
[Some $e_{i}$ such that $p_{i}$ true]
CASE $p_{1} \rightarrow e_{1} \square \ldots \square p_{n} \rightarrow e_{n} \square$ OTHER $\rightarrow e \quad\left[\right.$ Some $e_{i}$ such that $p_{i}$ true, or $e$ if all $p_{i}$ are false]
LET $d_{1} \triangleq e_{1} \ldots d_{n} \triangleq e_{n}$ IN $e \quad$ [ $e$ in the context of the definitions]

| $\wedge$ | $p_{1}\left[\right.$ the conjunction $\left.p_{1} \wedge \ldots \wedge p_{n}\right]$ |  |
| :---: | :---: | :---: |
| $\vdots$ |  | $p_{1}$ |
|  | $\vdots$ the disjunction $\left.p_{1} \vee \ldots \vee p_{n}\right]$ |  |
| $\wedge p_{n}$ |  | $\vdots p_{n}$ |

## The Action Operators

```
\(e^{\prime}\)
\([A]_{e}\)
    [The value of \(e\) in the final state of a step]
    \(\left[A \vee\left(e^{\prime}=e\right)\right]\)
\(\langle A\rangle_{e}\)
\(\left[A \wedge\left(e^{\prime} \neq e\right)\right]\)
Enabled \(A \quad[\) An \(A\) step is possible]
UNCHANGED \(e \quad\left[e^{\prime}=e\right]\)
\(A \cdot B \quad\) [Composition of actions]
```


## The Temporal Operators

| $\square F$ | $[F$ is always true $]$ |
| :--- | :--- |
| $\diamond F$ | $[F$ is eventually true $]$ |
| $\mathrm{WF}_{e}(A)$ | $[$ Weak fairness for action $A]$ |
| $\mathrm{SF}_{e}(A)$ | $[$ Strong fairness for action $A]$ |
| $F \leadsto G$ | $[F$ leads to $G]$ |
| $F \pm G$ | $[F$ guarantees $G$ (an assumption/guarantee specification) $]$ |
| $\exists x: F$ | [Temporal existential quantification (hiding). $]$ |
| $\forall x: F$ | [Temporal universal quantification.] |

## User-Definable Operator Symbols

## Infix Operators

| $+{ }^{(1)}$ | $-{ }^{(1)}$ | * (1) | / ${ }^{(2)}$ | $\bigcirc{ }^{(3)}$ | + + |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\div$ (1) | \% ${ }^{(1)}$ | - (1,4) | . . ${ }^{(1)}$ | . | -- |
| $\oplus{ }^{(5)}$ | $\ominus{ }^{(5)}$ | $\otimes$ | $\oslash$ | $\odot$ | ** |
| $<{ }^{(1)}$ | $>{ }^{(1)}$ | $\leq{ }^{(1)}$ | $\geq$ (1) | $\sqcap$ | // |
| $\prec$ | $\succ$ | 亿 | $\succeq$ | $\sqcup$ | - |
| $\ll$ | $>$ | $<$ : | $:>^{(6)}$ | \& |  |
| $\sqsubset$ | $\sqsupset$ | $\sqsubseteq{ }^{(5)}$ | $\sqsupseteq$ | \| |  |
| $\subset$ | $\bigcirc$ |  | $\geq$ | $\star$ | \% \% |
| $\vdash$ | - | 1 | $=$ | $\bullet$ | \#\# |
| $\sim$ | $\simeq$ | $\approx$ | $\cong$ | \$ | \$\$ |
| $:=$ | :: $=$ | $\asymp$ | $=$ | ? | ?? |
| $\propto$ | 2 | $\uplus$ | $\bigcirc$ | ! ! | @@ ${ }^{(6)}$ |

Postfix Operators ${ }^{(7)}$
~ + * ~

## Prefix Operator

$-{ }^{(8)}$
(1) Defined by the Naturals, Integers, and Reals modules.
(2) Defined by the Reals module.
(3) Defined by the Sequences module.
(4) $x^{\wedge} y$ is printed as $x^{y}$.
(5) Defined by the Bags module.
(6) Defined by the $T L C$ module.
(7) $e^{\wedge}+$ is printed as $e^{+}$, and similarly for ${ }^{*} *$ and ${ }^{\wedge} \#$.
(8) Defined by the Integers and Reals modules.

## ASCII Representations of Symbols

| $\wedge$ | 八 or \land | $\checkmark$ | \/ or \lor | $\Rightarrow$ | => |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\neg$ | $\sim$ or \lnot or \neg | 三 | <=> or \equiv | $\triangleq$ | = |
| $\epsilon$ | \in | $\notin$ | $\backslash$ notin | $\neq$ | \# or /= |
| < | << | $\rangle$ | >> | $\square$ | [] |
| $<$ | < | > | > | $\diamond$ | <> |
| $\leq$ | $\backslash \mathrm{leq}$ or $=<$ | $\geq$ | \geq or >= | $\sim$ | $\sim$ |
| $\ll$ | \ll | $>$ | $\backslash \mathrm{gg}$ | $\pm$ | -+-> |
| $\prec$ | $\backslash \mathrm{prec}$ | $\succ$ | \succ | $\mapsto$ | \|-> |
| $\preceq$ | \preceq | $\succeq$ | $\backslash$ succeq | $\div$ | $\backslash$ div |
| $\subseteq$ | \subseteq | $\supseteq$ | $\backslash$ supseteq | . | \cdot |
| $\subset$ | \subset | $\supset$ | \supset | $\bigcirc$ | \o or \circ |
| $\sqsubset$ | \sqsubset | $\sqsupset$ | \sqsupset | - | $\backslash$ bullet |
| $\sqsubseteq$ | \sqsubseteq | $\sqsupseteq$ | $\backslash$ \qsupseteq | $\star$ | \star |
| $\vdash$ | 1- | - | -1 | $\bigcirc$ | \bigcirc |
| $\vDash$ | I= | $=$ | = 1 | $\sim$ | \sim |
| $\rightarrow$ | -> | $\leftarrow$ | <- | $\simeq$ | $\backslash$ simeq |
| $\cap$ | \cap or \intersect | $\cup$ | \cup or \union | $\asymp$ | \asymp |
| $\sqcap$ | \sqcap | $\sqcup$ | \sqcup | $\approx$ | \approx |
| $\oplus$ | (+) or \oplus | $\uplus$ | \uplus | $\cong$ | \cong |
| $\ominus$ | (-) or \ominus | $\times$ | $\backslash \mathrm{X}$ or \times | $\stackrel{ }{=}$ | \doteq |
| $\odot$ | (.) or \odot | 2 | \wr | $x^{y}$ | $\mathrm{x}^{\wedge} \mathrm{y}^{(2)}$ |
| $\otimes$ | ( \X) or \otimes | $\propto$ | \propto | $x^{+}$ | $\mathrm{x}^{\wedge}+{ }^{(2)}$ |
| $\varnothing$ | (/) or \oslash | "s" | "s" ${ }^{(1)}$ | $x^{*}$ | $\mathrm{x}^{\sim} *^{(2)}$ |
| $\exists$ | $\backslash \mathrm{E}$ | $\forall$ | $\backslash \mathrm{A}$ | $x^{\#}$ | $\mathrm{x}^{\text {\# }}{ }^{(2)}$ |
| $\exists$ | $\backslash \mathrm{EE}$ | $\forall$ | $\backslash$ AA | , | , |
| $\Gamma$ | -------- ${ }^{(3)}$ |  |  |  |  |

(1) $s$ is a sequence of characters.
(2) $x$ and $y$ are any expressions.
(3) a sequence of four or more - or $=$ characters.

## The Most Common Standard Modules

Modules Naturals, Integers, Reals
Define $+\quad-\quad * \quad$ - .. Nat Real

$$
\div \quad<\quad \geq \quad>\quad \text { Int } \quad \text { Infinity }
$$

Prefix - is not defined in Naturals.
$a^{\wedge} b$ denotes $a^{b}$.
Nat, Int, and Real are the sets of naturals, integers, and real numbers.
$a \ldots b$ equals $\{n \in$ Int $: a \leq n \leq b\}$.
$a \% b$ equals $a \bmod b$, defined so $0 \leq a \% b<b$, if $b$ is a positive integer.
$\div$ is defined so $a=b *(a \div b)+(a \% b)$ for $a$ and $b$ integers with $b>0$.
/ (division) is defined only in Reals.
Infinity is defined in Reals so -Infinity $<r<$ Infinity for all $r \in$ Real.
Module Sequences
$\begin{array}{lllll}\text { Defines } & \circ & \text { Head } & \text { SelectSeq } & \text { SubSeq } \\ & \text { Append } & \text { Len } & \text { Seq } & \text { Tail }\end{array}$
The tuple/sequence $\left\langle e_{1}, \ldots, e_{n}\right\rangle$ equals the function $\left[i \in 1 \ldots n \mapsto e_{i}\right]$.
$s \circ t$ is the concatenation of sequences $s$ and $t$.
$\operatorname{Append}\left(\left\langle e_{1}, \ldots, e_{n}\right\rangle, e_{n+1}\right)=\left\langle e_{1}, \ldots, e_{n+1}\right\rangle$
$\operatorname{Head}\left(\left\langle e_{1}, \ldots, e_{n}\right\rangle\right)=e_{1}$
$\operatorname{Tail}\left(\left\langle e_{1}, \ldots, e_{n}\right\rangle\right)=\left\langle e_{2}, \ldots, e_{n}\right\rangle$
$\operatorname{Len}\left(\left\langle e_{1}, \ldots, e_{n}\right\rangle\right)=n$
$\operatorname{Seq}(S)$ is the set of all finite sequences of elements of $S$.
$\operatorname{SubSeq}\left(\left\langle e_{1}, \ldots, e_{n}\right\rangle, j, k\right)=\left\langle e_{j}, \ldots, e_{k}\right\rangle$
SelectSeq $(s$, Test) is the subsequence of elements $e$ of $s$ satisfying Test (e).
Module FiniteSets
Defines IsFiniteSet Cardinality
IsFiniteSet $(S)$ is true iff $S$ is a finite set.
$\operatorname{Cardinality}(S)$ is the number of elements in $S$, if $S$ is a finite set.

