A Summary of TLA⁺

Leslie Lamport

25 Aug 2000

Module-Level Constructs

MODULE M

Begins the module or submodule named M.

EXTENDS M_1, \ldots, M_n

Incorporates the declarations, definitions, assumptions, and theorems from the modules named M_1, \ldots, M_n into the current module.

Constants C_1, \ldots, C_n (1)

Declares the C_j to be constant parameters (rigid variables). Each C_j is either an identifier or has the form $C(_, ..., _)$, the latter form indicating that C is an operator with the indicated number of arguments.

VARIABLES x_1, \ldots, x_n (1)

Declares the x_j to be variables (parameters that are flexible variables).

ASSUME P

Asserts P as an assumption.

 $F(x_1, \ldots, x_n) \stackrel{\Delta}{=} exp$

Defines F to be the operator such that $F(e_1, \ldots, e_n)$ equals exp with each identifier x_k replaced by e_k . (For n = 0, it is written $F \triangleq exp$.)

 $f[x \in S] \stackrel{\Delta}{=} exp^{(2)}$

Defines f to be the function with domain S such that f[x] = exp for all x in S. (The symbol f may occur in exp, allowing a recursive definition.)

⁽¹⁾ The terminal s in the keyword is optional.

⁽²⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

INSTANCE M WITH $p_1 \leftarrow e_1, \ldots, p_m \leftarrow e_m$

For each defined operator F of module M, this defines F to be the operator whose definition is obtained from the definition of F in M by replacing each declared constant or variable p_j of M with e_j . (If m=0, the WITH is omitted.)

 $N(x_1, \ldots, x_n) \stackrel{\triangle}{=} \text{INSTANCE } M \text{ WITH } p_1 \leftarrow e_1, \ldots, p_m \leftarrow e_m$

For each defined operator F of module M, this defines $N(d_1, \ldots, d_n)!F$ to be the operator whose definition is obtained from the definition of F by replacing each declared constant or variable p_j of M with e_j , and then replacing each identifier x_k with d_k . (If m=0, the WITH is omitted.)

THEOREM P

Asserts that P can be proved from the definitions and assumptions of the current module.

LOCAL def

Makes the definition(s) of *def* (which may be a definition or an INSTANCE statement) local to the current module, thereby not obtained when extending or instantiating the module.

Ends the current module or submodule.

The Constant Operators

Logic

Sets

```
\begin{array}{lll} = & \neq & \notin & \cup & \cap & \subseteq & \text{[set difference]} \\ \{e_1, \dots, e_n\} & & \text{[Set consisting of elements $e_i$]} \\ \{x \in S : p\} & \text{[Set of elements $x$ in $S$ satisfying $p$]} \\ \{e : x \in S\} & \text{[Set of elements $e$ such that $x$ in $S$]} \\ \text{SUBSET $S$} & & \text{[Set of subsets of $S$]} \\ \text{UNION $S$} & & \text{[Union of all elements of $S$]} \end{array}
```

Functions

```
\begin{array}{ll} f[e] & [\text{Function application}] \\ \text{DOMAIN}\, f & [\text{Domain of function}\, f] \\ [x \in S \mapsto e] \ ^{(1)} & [\text{Function}\, f \text{ such that } f[x] = e \text{ for } x \in S] \\ [S \to T] & [\text{Set of functions}\, f \text{ with } f[x] \in T \text{ for } x \in S] \\ [f \text{ EXCEPT }![e_1] = e_2] \ ^{(3)} & [\text{Function}\, \hat{f} \text{ equal to } f \text{ except } \hat{f}[e_1] = e_2. \text{ An } @ \text{ in } e_2 \text{ equals } f[e_1]. ] \end{array}
```

Records

```
e.h [The h-component of record e] [h_1 \mapsto e_1, \dots, h_n \mapsto e_n] \quad [\text{The record whose } h_i \text{ component is } e_i] \\ [h_1 : S_1, \dots, h_n : S_n] \quad [\text{Set of all records with } h_i \text{ component in } S_i] \\ [r \text{ EXCEPT } !.h = e] \qquad [\text{Record } \widehat{r} \text{ equal to } r \text{ except } \widehat{r}.h = e. \text{ An } @ \text{ in } e \text{ equals } r.h.]
```

Tuples

```
\begin{array}{ll} e[i] & [\text{The $i^{\text{th}}$ component of tuple $e$}] \\ \langle e_1, \ldots, e_n \rangle & [\text{The $n$-tuple whose $i^{\text{th}}$ component is $e_i$}] \\ S_1 \times \ldots \times S_n & [\text{The set of all $n$-tuples with $i^{\text{th}}$ component in $S_i$}] \end{array}
```

Strings and Numbers

```
"c<sub>1</sub> ... c<sub>n</sub>" [A literal string of n characters]

STRING [The set of all strings]

d_1 \ldots d_n \quad d_1 \ldots d_n \ldots d_{n+1} \ldots d_m [Numbers (where the d_i are digits)]
```

⁽¹⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

⁽²⁾ x may be an identifier or tuple of identifiers.

^{(3) ![} e_1] or !.h may be replaced by a comma separated list of items ! $a_1 \cdots a_n$, where each a_i is $[e_i]$ or . h_i .

Miscellaneous Constructs

The Action Operators

```
\begin{array}{lll} e' & & [\text{The value of } e \text{ in the final state of a step}] \\ [A]_e & & [A \lor (e'=e)] \\ \langle A \rangle_e & & [A \land (e' \neq e)] \\ \text{ENABLED } A & [\text{An } A \text{ step is possible}] \\ \text{UNCHANGED } e & [e'=e] \\ A \cdot B & [\text{Composition of actions}] \end{array}
```

The Temporal Operators

```
\Box F
             [F \text{ is always true}]
\Diamond F
             [F \text{ is eventually true}]
WF_e(A)
             [Weak fairness for action A]
SF_e(A)
             [Strong fairness for action A]
F \leadsto G
             [F \text{ leads to } G]
F \xrightarrow{+} G
             [F \text{ guarantees } G \text{ (an assumption/guarantee specification)}]
\exists x : F
             [Temporal existential quantification (hiding).]
\forall x : F
             [Temporal universal quantification.]
```

User-Definable Operator Symbols

Infix Operators

+ (1)	_ (1)	* (1)	(2)	O (3)	++
· (1)	% (1)	^ (1,4)	(1)		
⊕ ⁽⁵⁾	\ominus ⁽⁵⁾	\otimes	\oslash	\odot	**
< (1)	> (1)	\leq (1)	> ⁽¹⁾	П	//
\prec	\succ	\preceq	\succeq	Ш	^^
«	>>	<:	$:>^{(6)}$	&	&&
		\sqsubseteq (5)	\supseteq		
\subset	\supset		\supseteq	*	%%
\vdash	\dashv	=	=	•	##
\sim	\simeq	\approx	\cong	\$	\$\$
:=	::=	\asymp	Ė	?	??
\propto	}	\biguplus	\bigcirc	!!	@@(6)

Postfix Operators (7)

Prefix Operator

_ (8)

⁽¹⁾ Defined by the Naturals, Integers, and Reals modules.

⁽²⁾ Defined by the *Reals* module.

⁽³⁾ Defined by the Sequences module.

⁽⁴⁾ x^y is printed as x^y .

⁽⁵⁾ Defined by the Bags module.

⁽⁶⁾ Defined by the TLC module.

⁽⁷⁾ e^+ is printed as e^+ , and similarly for * and *#.

⁽⁸⁾ Defined by the *Integers* and *Reals* modules.

ASCII Representations of Symbols

```
/ or \ land
                                       =>
     ~ or \lnot or \neg
                                       <=> or \equiv
                                                                    ==
     \in
                                       \notin
                                                              \neq
                                                                    \# or /=
     <<
                                       >>
                                                              []
<
     <
                                 >
                                       >
                                                              \Diamond
                                                                    <>
\leq
     \leq or = <
                                       \geq or >=
                                                                    ~>
     \11
                                 \gg
                                       \gg
                                                                    -+->
     \prec
                                       \succ
                                                                    |->
\cup \ \cup \ | \ | \ |
                                       \succeq
     \preceq
                                                                    \div
     \subseteq
                                       \supseteq
                                                                    \cdot
     \subset
                                 \supset
                                       \supset
                                                                    \o or \circ
\sqsubset
                                       \sqsupset
                                                                    \bullet
\sqsubseteq
     \sqsubseteq
                                       \sqsupseteq
                                                                    \star
     1-
                                       -1
                                                                   \bigcirc
\models
     1=
                                       = 1
                                                                    \sim
     ->
                                       <-
                                                                    \simeq
                                                              \simeq
\cap
     \cap or \intersect
                                 \bigcup
                                       \cup or \union
                                                              \asymp
                                                                    \asymp
                                 \Box
                                       \sqcup
П
     \sqcap
                                                              \approx
                                                                    \approx
     (+) or \oplus
                                       \uplus
\oplus
                                                                    \cong
     (-) or \ominus
                                       \X or \times
\ominus
                                                              \dot{=}
                                                                    \doteq
\odot
     (.) or \odot
                                 γ
                                       \wr
                                                                    x^y (2)
                                                                    x^+ (2)
\otimes
     (\X) or \otimes
                                       \propto
                                 \propto
\oslash
     (/) or \oslash
                                       ^{\mbox{"}}\mbox{s}^{\mbox{"}}
                                                                    x^* (2)
                                                              x^*
\exists
                                       \A
                                                                    x^# (2)
     \E
3
     \EE
                                       \AA
```

⁽¹⁾ s is a sequence of characters.

⁽²⁾ x and y are any expressions.

⁽³⁾ a sequence of four or more – or = characters.

The Most Common Standard Modules

Modules Naturals, Integers, Reals

Define + - * /
$$\hat{}$$
 ... Nat Real \div % \leq \geq $<$ > Int Infinity

Prefix - is not defined in Naturals.

 a^b denotes a^b .

Nat, Int, and Real are the sets of naturals, integers, and real numbers.

 $a \dots b \text{ equals } \{n \in Int : a \leq n \leq b\}.$

a % b equals $a \mod b$, defined so $0 \le a \% b < b$, if b is a positive integer.

 \div is defined so $a = b * (a \div b) + (a \% b)$ for a and b integers with b > 0. / (division) is defined only in *Reals*.

Infinity is defined in Reals so -Infinity < r < Infinity for all $r \in Real$.

Module Sequences

The tuple/sequence $\langle e_1, \ldots, e_n \rangle$ equals the function $[i \in 1 \ldots n \mapsto e_i]$.

 $s \circ t$ is the concatenation of sequences s and t.

$$Append(\langle e_1, \ldots, e_n \rangle, e_{n+1}) = \langle e_1, \ldots, e_{n+1} \rangle$$

$$Head(\langle e_1, \ldots, e_n \rangle) = e_1$$

$$Tail(\langle e_1, \ldots, e_n \rangle) = \langle e_2, \ldots, e_n \rangle$$

$$Len(\langle e_1, \ldots, e_n \rangle) = n$$

Seq(S) is the set of all finite sequences of elements of S.

$$SubSeq(\langle e_1, \ldots, e_n \rangle, j, k) = \langle e_j, \ldots, e_k \rangle$$

SelectSeq(s, Test) is the subsequence of elements e of s satisfying Test(e).

 ${\bf Module}\ {\it FiniteSets}$

Defines IsFiniteSet Cardinality

IsFiniteSet(S) is true iff S is a finite set.

Cardinality(S) is the number of elements in S, if S is a finite set.