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Specifying Concurrent Systems with TLA+

Leslie LAMPORT
Compaq

1 Introduction

Writing a specification for a system helps us understand it. It’s a good idea to understand
something before building it, so it’s a good idea to specify a system before implementing
it. Specifications written in an imprecise language like English are usually imprecise. In
engineering, imprecision is an invitation to error. Science and engineering have adopted
mathematics as a language for writing precise descriptions.

The mathematics written by most mathematicians and scientists is still imprecise. Most
mathematics texts are precise in the small, but imprecise in the large. Each equation is a
precise assertion, but you have to read the text to understand how the equations relate to one
another and what the theorems really mean. Logicians have developed ways of eliminating the
words and formalizing mathematics. Most mathematicians and computer scientists think that
writing mathematics formally, without words, is tiresome. Once you learn how, I hope you’ll
find that it’s easy to express ordinary mathematics in a precise, completely formal language.

To specify systems with mathematics, we must decide what kind of mathematics to use.
We can specify an ordinary sequential program by describing its output as a function of its
input. So, sequential programs can be specified in terms of functions. Concurrent systems are
usually described in terms of their behaviors—what they do in the course of an execution. In
1977, Amir Pnueli introduced the use of temporal logic for describing such behaviors [12].

Temporal logic is appealing because, in principle, it allows a concurrent system to be
described by a single formula. In practice, temporal logic proved to be cumbersome. Pnueli’s
temporal logic was ideal for describing some properties of systems, but awkward for others.
So, it was usually combined with some more traditional way of describing systems.

In the late 1980’s, I discovered TLA, the Temporal Logic of Actions. TLA is a simple vari-
ant of Pnueli’s original logic that makes it practical to write a specification as a single formula.
Most of a TLA specification consists of ordinary, nontemporal mathematics. Temporal logic
plays a significant role only in describing those properties that it’s good at describing. TLA
also provides a nice way to formalize the style of reasoning about systems that has proved to
be most effective in practice—a style known as assertional reasoning. However, the topic of
this chapter is specification, not proof, so I will have little to say about proofs.

TLA provides a mathematical foundation for describing concurrent systems. To write
specifications, we need a complete language built atop that foundation. Although mathe-
maticians have developed the science of writing formulas, they haven’t turned that science
into an engineering discipline. They have developed notations for mathematics in the small,
but not for mathematics in the large. The specification of a real system can be dozens or
even hundreds of pages long. Mathematicians know how to write 20-line formulas, not 20-
page formulas. So, I had to introduce notations for writing long formulas. I also took from
programming languages some ideas for modularizing large specifications.

The language I came up with is called TLA+. I refined TLA+ in the course of writing
specifications of disparate systems. But, it has changed little in the last few years. I have
found TLA+ to be quite good for specifying a wide class of systems—from program interfaces

Copyright c© 1999 by Leslie Lamport
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(api’s) to distributed systems. It can be used to write a precise, formal description of almost
any sort of discrete system. It’s especially well suited to describing asynchronous systems—
that is, systems with components that do not operate in strict lock-step.

One advantage of a precise specification language is that it enables us to build tools that
can help us write correct specifications. Among the tools currently under development are a
parser and a model checker. The parser can catch simple errors in any TLA+ specification.
The model checker can catch many more errors, but it will work on a restricted class of
specifications—a class that should include a large fraction of the specifications of interest to
industry today. These tools will be described elsewhere; see the TLA Web page for the latest
information [7].

A system specification consists of a lot of ordinary mathematics glued together with a
little bit of temporal logic. So, most of the work in writing a precise specification consists
of expressing ordinary mathematics precisely. That’s why most of the details of TLA+ are
concerned with ordinary mathematics.

Unfortunately, the computer science departments in many universities apparently believe
that fluency in C++ is more important than a sound education in elementary mathematics.
So, some readers may be unfamiliar with the mathematics needed to write specifications.
Fortunately, this mathematics is quite simple. If overexposure to C++ hasn’t destroyed your
ability to think logically, you should have no trouble filling any gaps in your mathematics
education. You probably learned arithmetic before being exposed to C++, so I will assume
you know about numbers and arithmetic operations on them.2 I will try to explain all other
mathematical concepts that you need, starting in Section 2 with a review of some elementary
math. I hope most readers will find this review completely unnecessary. However, you should
at least glance at it, since it introduces some notation that is used later.

After the brief review of simple mathematics in the next section, Sections 3 through 6
describe TLA+ with a sequence of examples. Section 7 explains some more about the math
used in writing specifications. By the time you finish Section 7, you should be able to specify
the class of properties known as safety properties. Specifying safety properties requires almost
no temporal logic. Temporal logic comes to the fore in Section 8, where it is used to specify
the additional class of properties known as liveness properties. In practice, specifications are
written to help detect errors—hopefully, before the system is built. Experience indicates that
specifying safety properties catches many more errors than specifying liveness properties. So,
you may decide not to bother reading Section 8. Finally, Section 9 reviews what we’ve done
and provides some practical advice. At the end of the chapter is some useful reference material:
Figures 12 and 13 list all the built-in operators of TLA+, Figure 14 lists the user-definable
operator symbols, and Figure 15 shows the ascii representations of all TLA+ symbols.

2 A Little Simple Math

2.1 Propositional Logic

Elementary algebra is the mathematics of real numbers and the operators +, −, ∗ (multipli-
cation), and / (division). Propositional logic is the mathematics of the two Boolean values
true and false and the five operators whose names (and common pronunciations) are:

∧ conjunction (and)
∨ disjunction (or)
≡ equivalence (is equivalent to)

¬ negation (not)
⇒ implication (implies)

To learn how to compute with numbers, you had to memorize addition and multiplication
tables and algorithms for calculating with multidigit numbers. Propositional logic is much

2Some readers may need reminding that numbers are not strings of bits, and 233 ∗ 233 equals 266,
not overflow error.
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simpler, since there are only two values, true and false. To learn how to compute with
these values, all you need to know are the following definitions of the five Boolean operators:

∧ F ∧G equals true iff3 both F and G equal true.

∨ F ∨G equals true iff F or G equals true (or both do).4

¬ ¬F equals true iff F equals false.

⇒ F ⇒ G equals true iff F equals false or G equals true (or both).

≡ F ≡ G equals true iff F and G both equal true or both equal false.

We can also describe these operators by truth tables. This truth table for F ⇒ G gives its
value for all four combinations of truth values of F and G :

F G F ⇒ G

true true true

true false false

false true true

false false true

People are often confused about why ⇒ means implication. In particular, they don’t under-
stand why false ⇒ true and false ⇒ false should equal true. The explanation is simple.
We expect that if n is greater than 3 then it should be greater than 1, so n > 3 should imply
n > 1. Substituting 4, 2, and 0 for n in the formula (n > 3)⇒ (n > 0) explains why we can
read F ⇒ G as F implies G or, equivalently, as if F then G .

The equivalence operator ≡ is equality for Booleans. We can replace ≡ by =, but not vice
versa. (We can write false = ¬true, but not 2 + 2 ≡ 4.) Writing ≡ instead of = makes it
clear that the equal expressions are Booleans.5

Formulas of propositional logic are made up of values, operators, variables, and paren-
theses just like those of algebra. In algebraic formulas, ∗ has higher precedence (binds more
tightly) than +, so x + y ∗ z means x +(y ∗ z ). Similarly, ¬ has higher precedence than ∧ and
∨, which have higher precedence than ⇒ and ≡, so ¬F ∧G ⇒ H means ((¬F ) ∧G)⇒ H .
Other mathematical operators like + and > have higher precedence than the operators of
propositional logic, so n > 0⇒ n − 1 ≥ 0 means (n > 0)⇒ (n − 1 ≥ 0). Redundant paren-
theses can’t hurt and often make a formula easier to read. If you have any doubt about
whether parentheses are needed, use them.

The operators ∧ and ∨ are associative, just like + and ∗. Associativity of + means that
x + (y + z ) equals (x + y) + z , so we can write x + y + z without parentheses. Similarly,
associativity of ∧ and ∨ lets us write F ∧G ∧ H or F ∨G ∨ H .

A tautology of propositional logic is a formula like (F ⇒ G) ≡ (¬F ∨G) that is true for all
possible truth values of its variables. One can prove all tautologies from a few simple axioms
and rules. However, that would be like computing 437+256 from the axioms of arithmetic. It’s
much easier to verify that a simple formula is a tautology by writing its truth table—that is,
by directly calculating the value of the formula for all possible truth values of its components.
The formula is a tautology iff it equals true for all these values. To construct the truth table

3iff stands for if and only if.
4Like most mathematicians, I use or to mean and/or.
5Section 7.2 touches on a more subtle reason to write ≡ instead of =.
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for a formula, we construct the truth table for all its subformulas. For example, the following
truth table shows that (F ⇒ G) ≡ (¬F ∨G) is indeed a tautology.

F G F ⇒ G ¬F ¬F ∨G (F ⇒ G) ≡ ¬F ∨ G

true true true false true true

true false false false false true

false true true true true true

false false true true true true

Propositional logic is the basis of all mathematical reasoning. It should be as familiar to you
as simple algebra. Checking that ¬(F ∨G) ≡ ¬F ∧ ¬G is a tautology should be as easy as
checking that 2 ∗ (x + 3 ∗ y) equals 2 ∗ x + 6 ∗ y .

Although propositional logic is simple, complex propositional formulas can get confusing.
You may find yourself trying to simplify some formula and not being sure if the simplified
version means the same thing as the original. There exist a number of programs for verifying
propositional logic tautologies; some of them can be found and used on the World Wide Web.

2.2 Sets

Set theory is the foundation of ordinary mathematics. A set is often described as a collection
of elements, but saying that a set is a collection doesn’t explain very much. The concept of
set is so fundamental that we don’t try to define it. We take as undefined concepts the notion
of a set and the relation ∈, where x ∈ S means that x is an element of S . We often say is in
instead of is an element of.

A set can have a finite or infinite number of elements. The set of all natural numbers (0,
1, 2, etc.) is an infinite set. The set of all natural numbers less than 3 is finite, and contains
the three elements 0, 1, and 2. We can write this set {0, 1, 2}.

A set is completely determined by its elements. Two sets are equal iff they have the same
elements. Thus, {0, 1, 2} and {2, 1, 0} and {0, 0, 1, 2, 2} are all the same set—the unique set
containing the three elements 0, 1, and 2. The empty set, which we write {}, is the unique
set that has no elements.

The most common operations on sets are:

∩ intersection ∪ union ⊆ subset \ set difference

Here are their definitions and examples of their use:

S ∩ T The set of elements in both S and T . {1,−1/2, 3} ∩ {1, 2, 3, 5, 7} = {1, 3}
S ∪ T The set of elements in S or T (or both). {1,−1/2} ∪ {1, 5, 7} = {1,−1/2, 5, 7}
S ⊆ T True iff every element of S is an element of T . {1, 3} ⊆ {3, 2, 1}
S \T The set of elements in S that are not in T . {1,−1/2, 3} \ {1, 5, 7} = {−1/2, 3}

This is all you need to know about sets before we start looking at how to specify systems.
We’ll return to set theory in Section 7.1.

2.3 Predicate Logic

Once we have sets, it’s natural to say that some formula is true for all the elements of a set,
or for some of the elements of a set. Predicate logic extends propositional logic with the two
quantifiers:

∀ universal quantification (for all)
∃ existential quantification (there exists)
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The formula ∀ x ∈ S :F asserts that formula F is true for every element x in the set S . For
example, ∀ n ∈ Nat : n + 1 > n asserts that the formula n + 1 > n is true for all elements n
of the set Nat of natural numbers. This formula happens to be true.

The formula ∃ x ∈ S :F asserts that formula F is true for at least one element x in S . For
example, ∃ n ∈ Nat : n2 = 2 asserts that there exists a natural number n whose square equals
2. This formula happens to be false.

Formula F is true for all x ∈ S iff there is no x ∈ S for which F is false, which is true iff
there is no x ∈ S for which ¬F is true. Hence, the formula

(∃ x ∈ S :F ) ≡ ¬(∀ x ∈ S :¬F )(1)

is a tautology of predicate logic.6

Since there exists no element in the empty set, the formula ∃ x ∈ {} :F is false for every
formula F . By (1), this implies that ∀ x ∈ {} :F must be true for every F .

The quantification in the formulas ∀ x ∈ S :F and ∃ x ∈ S :F is said to be bounded, since
these formulas make an assertion only about elements in the set S . There is also unbounded
quantification. The formula ∀ x :F asserts that F is true for all values x , and ∃ x :F asserts
that F is true for at least one value of x—a value that is not constrained to be in any particular
set. Bounded and unbounded quantification are related by the following tautologies:

(∀ x ∈ S :F ) ≡ (∀ x : (x ∈ S )⇒ F )
(∃ x ∈ S :F ) ≡ (∃ x : (x ∈ S ) ∧ F )

The analog of (1) for unbounded quantifiers is also a tautology:

(∃ x :F ) ≡ ¬(∀ x :¬F )
Whenever possible, it is better to use bounded than unbounded quantification in a specifica-
tion. This makes the specification easier for both people and tools to understand.

Logicians have rules for proving such predicate-logic tautologies, but you shouldn’t need
them. You should become familiar enough with predicate logic that simple tautologies are
obvious. It can help to think of ∀ x ∈ S :F as the conjunction of the formulas obtained by
substituting all possible elements of S for x in F . The associativity and commutativity of
conjunction then lead to the tautology:

(∀ x ∈ S : F ) ∧ (∀ x ∈ S : G) ≡ (∀ x ∈ S : F ∧G)

Similarly, you can think of ∃ x ∈ S :F as the disjunction of formulas, so associativity and
commutativity of disjunction imply:

(∃ x ∈ S : F ) ∨ (∃ x ∈ S : G) ≡ (∃ x ∈ S : F ∨G)

for any set S and formulas F and G .
Mathematicians use some obvious abbreviations for nested quantifiers. For example:

∀ x ∈ S , y ∈ T :F means ∀ x ∈ S : (∀ y ∈ T :F )
∃w , x , y , z ∈ S :F means ∃w ∈ S : (∃ x ∈ S : (∃ y ∈ S : (∃ z ∈ S :F )))

In the expression ∃ x ∈ S :F , logicians say that x is a bound variable and that occurrences
of x in F are bound. For example, n is a bound variable in the formula ∃ n ∈ Nat : n + 1 > n,
and the two occurrences of n in the subexpression n+1 > n are bound. A variable x that’s not
bound is said to be free, and occurrences of x that are not bound are called free occurrences.

6Strictly speaking, ∈ isn’t an operator of predicate logic, so this isn’t really a predicate logic
tautology.
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This terminology is rather misleading. A bound variable doesn’t really occur in a formula
because replacing it by some new variable doesn’t change the formula. The two formulas

∃ n ∈ Nat : n + 1 > n ∃ x ∈ Nat : x + 1 > x

are completely equivalent. Calling n a variable of the first formula is a bit like calling a
a variable of that formula because it appears in the name Nat . Although misleading, this
terminology is common and often convenient.

3 Specifying a Simple Clock

3.1 Behaviors

Before we try to specify a system, let’s look at how scientists do it. For centuries, they have
described a system with equations that determine how its state evolves with time, where the
state consists of the values of variables. For example, the state of the system comprising
the earth and the moon might be described by the values of the four variables e pos, m pos,
e vel , and m vel , representing the positions and velocities of the two bodies. These values
are elements in a 3-dimensional space. The earth-moon system is described by equations
expressing the variables’ values as functions of time and of certain constants—namely, their
masses and initial positions and velocities.

A behavior of the earth-moon system consists of a function F from time to states, F (t)
representing the state of the system at time t . A computer system differs from the systems
traditionally studied by scientists because we can pretend that its state changes in discrete
steps. So, we represent the execution of a system as a sequence of states. Formally, we define
a behavior to be a sequence of states, where a state is an assignment of values to variables.
We specify a system by specifying a set of possible behaviors—the ones representing a correct
execution of the system.

3.2 An Hour Clock

Let’s start with a very trivial system—a digital clock that displays only the hour. To make
the system completely trivial, we ignore the relation between the display and the actual time.
The hour clock is then just a device whose display cycles through the values 1 through 12. Let
the variable hr represent the clock’s display. A typical behavior of the clock is the sequence

[hr = 11] → [hr = 12] → [hr = 1] → [hr = 2] → · · ·(2)

of states, where [hr = 11] is a state in which the variable hr has the value 11. A pair of
successive states, such as [hr = 1]→ [hr = 2], is called a step.

To specify the hour clock, we describe all its possible behaviors. We write an initial
predicate that specifies the possible initial values of hr , and a next-state relation that specifies
how the value of hr can change in any step.

We don’t want to specify exactly what the display reads initially; any hour will do. So,
we want the initial predicate to assert that hr can have any value from 1 through 12. Let’s
call the initial predicate HCini . We might informally define HCini by:

HCini ∆= hr ∈ {1, . . . , 12}
Later, we’ll see how to write this definition formally, without the “. . . ” that stands for the
informal and so on.

The next-state relation HCnxt is a formula expressing the relation between the values of
hr in the old (first) state and new (second) state of a step. We let hr represent the value of hr
in the old state and hr ′ represent its value in the new state. (The ′ in hr ′ is read prime.) We
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want the next-state relation to assert that hr ′ equals hr + 1 except if hr equals 12, in which
case hr ′ should equal 1. Using an if/then/else construct with the obvious meaning, we can
define HCnxt to be the next-state relation by writing:

HCnxt ∆= hr ′ = if hr �= 12 then hr + 1 else 1

HCnxt is an ordinary mathematical formula, except that it contains primed as well as un-
primed variables. Such a formula is called an action. An action is true or false of a step. A
step that satisfies the action HCnxt is called an HCnxt step.

When an HCnxt step occurs, we sometimes say that HCnxt is executed. However, it would
be a mistake to take this terminology seriously. An action is a formula, and formulas aren’t
executed.

We want our specification to be a single formula, not the pair of formulas HCini and
HCnxt . We write this formula with the temporal-logic operator ✷ (pronounced box ). The
temporal formula ✷F asserts that formula F is always true. In particular, ✷HCnxt is the
assertion that HCnxt is true for every step in the behavior. A formula without a ✷ is an
assertion about the beginning of the behavior. So, HCini ∧ ✷HCnxt is true of a behavior
iff the initial state satisfies HCini and every step satisfies HCnxt . This formula describes all
behaviors like the one in (2); it seems to be the specification we’re looking for.

If we considered the clock only in isolation and never tried to relate it to another sys-
tem, then this would be a fine specification. However, suppose the clock is part of a larger
system—for example, the hour display of a weather station that displays the current hour
and temperature. The state of the station is described by two variables: hr , representing the
hour display, and tmp, representing the temperature display. Consider this behavior of the
weather station:[

hr = 11
tmp = 23.5

]
→

[
hr = 12
tmp = 23.5

]
→

[
hr = 12
tmp = 23.4

]
→

[
hr = 12
tmp = 23.3

]
→[

hr = 1
tmp = 23.3

]
→ · · ·

In the second and third steps, tmp changes but hr remains the same. These steps are not
allowed by ✷HCnxt , which asserts that every step must increment hr . The formula HCini ∧
✷HCnxt does not describe the hour clock in the weather station.

A formula that describes any hour clock must allow steps that leave hr unchanged—in
other words, hr ′ = hr steps. These are called stuttering steps of the clock. A specification
of the hour clock should allow both HCnxt steps and stuttering steps. So, a step should be
allowed iff it is either an HCnxt step or a stuttering step—that is, iff it is a step satisfying
HCnxt ∨ (hr ′ = hr). This suggests that we adopt HCini ∧ ✷(HCnxt ∨ (hr ′ = hr)) as our
specification. In TLA, we let [HCnxt ]hr stand for HCnxt ∨ (hr ′ = hr), so we can write the
formula more compactly as HCini ∧ ✷[HCnxt ]hr .

The formula HCini∧✷[HCnxt ]hr does allow stuttering steps. In fact, it allows the behavior

[hr = 11] → [hr = 12] → [hr = 12] → [hr = 12] → [hr = 12] → · · ·
that ends with an infinite sequence of stuttering steps. This behavior describes a clock whose
display attains the value 12 and then keeps that value forever—in other words, a clock that
stops at 12. In a like manner, we can represent a terminating execution of any system by an
infinite behavior that ends with a sequence of nothing but stuttering steps. We have no need
of finite behaviors (finite sequences of states), so we consider only infinite ones.

It’s natural to require that a clock does not stop, so our specification should assert that
there are infinitely many nonstuttering steps. Section 8 explains how to express this re-
quirement. For now, we content ourselves with clocks that may stop, and we take as our
specification of an hour clock the formula HC defined by

HC ∆= HCini ∧✷[HCnxt ]hr
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3.3 A Closer Look at the Hour-Clock Specification

A state is an assignment of values to variables, but what variables? The answer is simple: all
variables. In the behavior (2), [hr = 1] represents some particular state that assigns the value
1 to hr . It might assign the value 23 to the variable tmp and the value

√−17 to the variable
m pos. We can think of a state as representing a potential state of the entire universe. A
state that assigns 1 to hr and a particular point in 3-space to m pos describes a state of the
universe in which the hour clock reads 1 and the moon is in a particular place. A state that
assigns

√−2 to hr doesn’t correspond to any state of the universe that we recognize, because
the hour-clock can’t display the value

√−2. It might represent the state of the universe after
a bomb fell on the clock, making its display purely imaginary.

A behavior is an infinite sequence of states—for example:

[hr = 11] → [hr = 77.2] → [hr = 78.2] → [hr =
√−2] → · · ·(3)

A behavior describes a potential history of the universe. The behavior (3) doesn’t correspond
to a history that we understand, because we don’t know how the clock’s display can change
from 11 to 77.2. Whatever kind of history it represents is not one in which the clock is doing
what it’s supposed to.

Formula HC is a temporal formula. A temporal formula is an assertion about behaviors.
We say that a behavior satisfies HC iff HC is a true assertion about the behavior. Behavior
(2) satisfies formula HC . Behavior (3) does not, because HC asserts that every step satisfies
HCnxt , and the first and third steps of (3) don’t. (The second step, [hr = 77.2] → [hr = 78.2],
does satisfy HCnxt .) We regard formula HC to be the specification of an hour clock because
it is satisfied by exactly those behaviors that represent histories of the universe in which the
clock functions properly.

If the clock is behaving properly, then its display should be an integer from 1 through 12.
So, hr should be an integer from 1 through 12 in every state of any behavior satisfying the
clock’s specification, HC . Formula HCini asserts that hr is an integer from 1 through 12,
and ✷HCini asserts that HCini is always true. So, ✷HCini should be true for any behavior
satisfying HC . Another way of saying this is that HC implies ✷HCini , for any behavior.
Thus, the formula HC ⇒ ✷HCini should be satisfied by every behavior. A temporal formula
satisfied by every behavior is called a theorem, so HC ⇒ ✷HCini should be a theorem. It’s
easy to see that it is: HC implies that HCini is true initially (in the first state of the behavior),
and ✷[HCnxt ]hr implies that each step either advances hr to its proper next value or else leaves
hr unchanged. We can formalize this reasoning using the proof rules of TLA, but I’m not
going to delve into proofs and proof rules.

3.4 The Hour-Clock Specification in TLA+

Figure 1 shows how the hour clock specification can be written in TLA+. There are two
versions: the ascii version on the bottom is the actual TLA+ specification, the way you type
it; the top version is typeset the way a “pretty-printer” might display it. Before trying to
understand the specification, observe the relation between the two syntaxes:

• Reserved words that appear in small upper-case letters (like extends) are written in
ascii with ordinary upper-case letters.

• When possible, symbols are represented pictorially in ascii—for example, ✷ is typed as
[ ] and �= as #. (You can also type �= as /=.)

• When there is no good ascii representation, TEX notation [5] is used—for example, ∈
is typed as \in.
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module HourClock
extends Naturals
variable hr
HCini ∆= hr ∈ (1 . . 12)

HCnxt ∆= hr ′ = if hr �= 12 then hr + 1 else 1

HC ∆= HCini ∧ ✷[HCnxt ]hr

theorem HC ⇒ ✷HCini

---------------------- MODULE HourClock ----------------------
EXTENDS Naturals
VARIABLE hr
HCini == hr \in (1 .. 12)
HCnxt == hr’ = IF hr # 12 THEN hr + 1 ELSE 1
HC == HCini /\ [][HCnxt]_hr
--------------------------------------------------------------
THEOREM HC => []HCini
==============================================================

Figure 1: The hour clock specification—typeset and ASCII versions.

A complete list of symbols and their ascii equivalents appears at the end of this chapter in
Figure 15. I will usually show the typeset version of a specification.

Now let’s look at what the specification says. It starts with

module HourClock

which begins a module named HourClock . TLA+ specifications are partitioned into modules;
the hour clock’s specification consists of this single module.

Arithmetic operators like + are not built into TLA+, but are themselves defined in modules.
(You might want to write a specification in which + means addition of matrices rather than
numbers.) The usual operators on natural numbers are defined in the Naturals module. Their
definitions are incorporated into module HourClock by the statement

extends Naturals

Every symbol that appears in a formula must either be a built-in operator of TLA+, or else
it must be declared or defined. The statement

variable hr

declares hr to be a variable.
To define HCini , we need to express the set {1, . . . , 12} formally, without the ellipsis “. . . ”.

We can write this set out completely as

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
but that’s tiresome. Instead, we use the operator . . defined in the Naturals modules to write
this set as 1 . . 12. In general i . . j is the set of integers from i through j , for any integers i
and j . (It equals the empty set if j < i .) It’s now obvious how to write the definition of HCini .
The definitions of HCnxt and HC are written just as before. (The ordinary mathematical
operators of logic and set theory, like ∧ and ∈, and the if construct are built into TLA+.)

The line
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can appear anywhere between statements; it’s purely cosmetic and has no meaning. Following
it is the statement

theorem HC ⇒ ✷HCini

of the theorem that was discussed above. This statement asserts that the formula HC ⇒
✷HCini is true in the context of the statement. More precisely, it asserts that the formula
follows logically from the definitions in this module, the definitions in the Naturals module,
and the rules of TLA+. If the formula were not true, then the module would be incorrect.

The module is terminated by the symbol

The specification of the hour clock is the definition of HC , including the definitions of
the formulas HCnxt and HCini and of the operators . . and + that appear in the definition
of HC . Formally, nothing in the module tells us that HC rather than HCini is the clock’s
specification. TLA+ is a language for writing mathematics—in particular, for writing math-
ematical definitions and theorems. What those definitions represent, and what significance
we attach to those theorems, lies outside the scope of mathematics and therefore outside the
scope of TLA+. Engineering requires not just the ability to use mathematics, but the ability
to understand what, if anything, the mathematics tells us about an actual system.

3.5 Another Way to Specify the Hour Clock

The Naturals module also defines the modulus operator, which we write %. The formula
i % n, which mathematicians write i mod n, is the remainder when i is divided by n. More
formally, i % n is the natural number less than n satisfying i = q ∗ n + (i % n) for some
natural number q . Let’s express this condition mathematically. The Naturals module defines
Nat to be the set of natural numbers, and the assertion that there exists a q in the set Nat
satisfying a formula F is written ∃ q ∈ Nat : F . Thus, if i and n are elements of Nat and
n > 0, then i % n is the unique number satisfying

(i % n ∈ 0 . . (n − 1)) ∧ (∃ q ∈ Nat : i = q ∗ n + (i % n))

We can use % to simplify our hour-clock specification a bit. Observing that (11 % 12) + 1
equals 12 and (12 % 12) + 1 equals 1, we can define a different next-state action HCnxt2 and
a different formula HC2 to be the clock specification:

HCnxt2 ∆= hr ′ = (hr % 12) + 1 HC2 ∆= HCini ∧ ✷[HCnxt2]hr

Actions HCnxt and HCnxt2 are not equivalent. The step [hr = 24] → [hr = 25] satisfies
HCnxt but not HCnxt2, while the step [hr = 24] → [hr = 1] satisfies HCnxt2 but not
HCnxt . However, any step starting in a state with hr in 1 . . 12 satisfies HCnxt iff it satisfies
HCnxt2. It’s therefore not hard to deduce that any behavior starting in a state satisfying
HCini satisfies ✷[HCnxt ]hr iff it satisfies ✷[HCnxt2]hr . Hence, formulas HC and HC2 are
equivalent. It doesn’t matter which of them we take to be the specification of an hour clock.

Mathematics provides infinitely many ways of expressing the same thing. The expressions
6 + 6, 3 ∗ 4, and 141− 129 all have the same meaning; they are just different ways of writing
the number 12. We could replace either instance of the number 12 in module HourClock by
any of these expressions without changing the meaning of any of the module’s formulas.

When writing a specification, you will often be faced with a choice of how to express
something. When that happens, you should first make sure that the choices yield equivalent
specifications. If they do, then you can choose the one that you feel makes the specification
easiest to understand. If they don’t, then you must decide which one you mean.
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4 An Asynchronous Interface

We now specify an interface for transmitting data between asynchronous devices. A sender
and a receiver are connected as shown here:

Sender Receiver

val

rdy

✲
✲

ack✛

Data is sent on val , and the rdy and ack lines are used for synchronization. The sender must
wait for an acknowledgement (an Ack) for one data item before it can send the next. The
interface uses the standard two-phase handshake protocol, described by the following sample
behavior.val = 26

rdy = 0
ack = 0

 Send 37−→
val = 37
rdy = 1
ack = 0

 Ack
−→

val = 37
rdy = 1
ack = 1

 Send 4−→
val = 4
rdy = 0
ack = 1

 Ack−→

val = 4
rdy = 0
ack = 0

 Send 19−→
val = 19
rdy = 1
ack = 0

 Ack−→ · · ·

(It doesn’t matter what value val has in the initial state.)
It’s easy to see from this sample behavior what the set of all possible behaviors should

be—once we decide what the data values are that can be sent. But, before writing the TLA+

specification that describes these behaviors, let’s look at what I’ve just done.
In writing this behavior, I made the decision that val and rdy should change in a single

step. The values of the variables val and rdy represent voltages on some set of wires in the
physical device. Voltages on different wires don’t change at precisely the same instant. I
decided to ignore this aspect of the physical system and pretend that the values of val and
rdy represented by those voltages change instantaneously. This simplifies the specification,
but at the price of ignoring what may be an important detail of the system. In an actual
implementation of the protocol, the voltage on the rdy line shouldn’t change until the voltages
on the val lines have stabilized; but you won’t learn that from my specification. Had I wanted
the specification to convey this requirement, I would have written a behavior in which the
value of val and the value of rdy change in separate steps.

A specification is an abstraction. It describes some aspects of the system and ignores
others. We want the specification to be as simple as possible, so we want to ignore as many
details as we can. But, whenever we omit some aspect of the system from the specification,
we admit a potential source of error. With my specification, we can verify the correctness of a
system that uses this interface, and the system could still fail because the implementor didn’t
know that the val line should stabilize before the rdy line is changed.

The hardest part of writing a specification is choosing the proper abstraction. I can teach
you about TLA+, so expressing an abstract view of a system as a TLA+ specification becomes
a straightforward task. But, I don’t know how to teach you about abstraction. A good
engineer knows how to abstract the essence of a system and suppress the unimportant details
when specifying and designing it. The art of abstraction is learned only through experience.

When writing a specification, you must first choose the abstraction. In a TLA+ specifi-
cation, this means choosing (i) the variables that represent the system’s state and (ii) the
granularity of the steps that change those variables’ values. Should the rdy and ack lines be
represented as separate variables or as a single variable? Should val and rdy change in one
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step, two steps, or an arbitrary number of steps? To help make these choices, I recommend
that you start by writing the first few steps of one or two sample behaviors, just as I did at
the beginning of this section. Section 9 has more to say about these choices.

4.1 The First Specification

Now let’s specify the interface with a module AsynchInterface. The variables rdy and ack can
assume the values 0 and 1, which are natural numbers, so our module extends the Naturals
module. We next decide what the possible values of val should be—that is, what data values
may be sent. We could write a specification that places no restriction on the data values.
The specification could allow the sender to first send 37, then send

√−15, and then send Nat
(the entire set of natural numbers). However, any real device can send only a restricted set of
values. We could pick some specific set—for example, 32-bit numbers. However, the protocol
is the same regardless of whether it’s used to send 32-bit numbers or 128-bit numbers. So,
we compromise between the two extremes of allowing anything to be sent and allowing only
32-bit numbers to be sent by assuming only that there is some set Data of data values that
may be sent. The constant Data is a parameter of the specification. It’s declared by the
statement

constant Data

Our three variables are declared by

variables val , rdy , ack

The keywords variable and variables are synonymous, as are constant and constants.
The variable rdy can assume any value—for example, −1/2. That is, there exist states

that assign the value −1/2 to rdy . When discussing the specification, we usually say that rdy
can assume only the values 0 and 1. What we really mean is that the value of rdy equals 0 or
1 in every state of any behavior satisfying the specification. But, a reader of the specification
shouldn’t have to understand the complete specification to figure this out. We can make the
specification easier to understand by telling the reader what values the variables can assume
in a behavior that satisfies the specification. We could do this with comments, but I prefer to
use a definition like this one:

TypeInvariant ∆= (val ∈ Data) ∧ (rdy ∈ {0, 1}) ∧ (ack ∈ {0, 1})
I call the set {0, 1} the type of rdy , and I call TypeInvariant a type invariant. Let’s define
type and some other terms more precisely:

• A state function is an ordinary expression (one with no prime or ✷) that can contain
variables and constants.

• A state predicate is a Boolean-valued state function.

• An invariant Inv of a specification Spec is a state predicate such that Spec ⇒ ✷Inv is
a theorem.

• A variable v has type T in a specification Spec iff v ∈ T is an invariant of Spec.

We can make the definition of TypeInvariant easier to read by writing it as follows.

TypeInvariant ∆= ∧ val ∈ Data
∧ rdy ∈ {0, 1}
∧ ack ∈ {0, 1}
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Each conjunct begins with a ∧ and must lie completely to the right of that ∧. (The conjunct
may occupy multiple lines). We use a similar notation for disjunctions. When using this
bulleted-list notation, the ∧’s or ∨’s must line up precisely (even in the ascii input). Because
the indentation is significant, we can eliminate parentheses, making this notation especially
useful when conjunctions and disjunctions are nested.

The initial predicate is straightforward. Initially, val can equal any element of Data. We
can start with rdy and ack either both 0 or both 1.

Init ∆= ∧ val ∈ Data
∧ rdy ∈ {0, 1}
∧ ack = rdy

Now for the next-state action Next . A step of the protocol either sends a value or receives
a value. We define separately the two actions Send and Rcv that describe the sending and
receiving of a value. A Next step (one satisfying action Next) is either a Send step or a Rcv
step, so it is a Send ∨ Rcv step. Therefore, Next is defined to equal Send ∨ Rcv . Let’s now
define Send and Rcv .

We say that action Send is enabled in a state from which it is possible to take a Send step.
From the sample behavior above, we see that Send is enabled iff rdy equals act . Usually, the
first question we ask about an action is, when is it enabled? So, the definition of an action
usually begins with its enabling condition. The first conjunct in the definition of Send is
therefore rdy = ack . The next conjuncts tell us what the new values of the variables val ,
rdy , and ack are. The new value val ′ of val can be any element of Data—that is, any value
satisfying val ′ ∈ Data. The value of rdy changes from 0 to 1 or from 1 to 0, so rdy ′ equals
1− rdy (because 1 = 1− 0 and 0 = 1− 1). The value of ack is left unchanged. TLA+ defines
unchanged v to mean that the expression v has the same value in the old and new states.
More precisely, unchanged v equals v ′ = v , where v ′ is the expression obtained from v by
priming all variables. So, we define Send by:

Send ∆= ∧ rdy = ack
∧ val ′ ∈ Data
∧ rdy ′ = 1− rdy
∧ unchanged ack

(I could have written ack ′ = ack instead of unchanged ack , but I prefer the unchanged
construct.)

A Rcv step is enabled iff rdy is different from ack ; it complements the value of ack and
leaves rdy and ack unchanged. Both rdy and ack are left unchanged iff the pair of values rdy ,
ack is left unchanged. TLA+ uses angle brackets 〈 and 〉 to enclose ordered tuples, so Rcv
asserts that 〈rdy , ack 〉 is left unchanged. (Angle brackets are typed in ascii as << and >>.)
The definition of Rcv is therefore:

Rcv ∆= ∧ rdy �= ack
∧ ack ′ = 1− ack
∧ unchanged 〈val , rdy 〉

As in our clock example, the complete specification Spec should allow stuttering steps—in
this case, ones that leave all three variables unchanged. So, Spec allows steps that leave
〈val , rdy , ack 〉 unchanged. Its definition is

Spec ∆= Init ∧ ✷[Next ]〈val ,rdy ,ack 〉

Module AsynchInterface also asserts the invariance of TypeInvariant . It appears in full in
Figure 2.
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module AsynchInterface

extends Naturals
constant Data
variables val , rdy , ack
TypeInvariant ∆= ∧ val ∈ Data

∧ rdy ∈ {0, 1}
∧ ack ∈ {0, 1}

Init ∆= ∧ val ∈ Data
∧ rdy ∈ {0, 1}
∧ ack = rdy

Send ∆= ∧ rdy = ack
∧ val ′ ∈ Data
∧ rdy ′ = 1− rdy
∧ unchanged ack

Rcv ∆= ∧ rdy �= ack
∧ ack ′ = 1− ack
∧ unchanged 〈val , rdy 〉

Next ∆= Send ∨ Rcv
Spec ∆= Init ∧ ✷[Next ]〈val ,rdy ,ack 〉

theorem Spec ⇒ ✷TypeInvariant

Figure 2: The First Specification of an Asynchronous Interface

4.2 Another Specification

Module AsynchInterface is a fine description of the interface and its handshake protocol.
However, it’s not easy to use it to help specify a system that uses the interface. Let’s rewrite
the interface specification in a form that makes it more convenient to use as part of a larger
specification.

The first problem with the original specification is that it uses three variables to describe
a single interface. A system might use several different instances of the interface. To avoid
a proliferation of variables, we replace the three variables val , rdy , ack with a single variable
chan (short for channel). A mathematician would do this by letting the value of chan be
an ordered triple—for example, a state [chan = 〈−1/2, 0, 1〉] might replace the state with
val = −1/2, rdy = 0, and ack = 1. But programmers have learned that using tuples like
this leads to mistakes; it’s easy to forget if the ack line is represented by the second or third
component. TLA+ therefore provides records in addition to more conventional mathematical
notation.

Let’s represent the state of the channel as a record with val , rdy , and ack fields. If r is
such a record, then r .val is its val field. The type invariant asserts that the value of chan is
an element of the set of all such records r in which r .val is an element of the set Data and
r .rdy and r .ack are elements of the set {0, 1}. This set of records is written:

[val :Data, rdy : {0, 1}, ack : {0, 1}]
The components of a record are not ordered, so it doesn’t matter in what order we write
them. This same set of records can also be written as:

[ack : {0, 1}, val :Data, rdy : {0, 1}]
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Initially, chan can equal any element of this set whose ack and rdy fields are equal, so the initial
predicate is the conjunction of the type invariant and the condition chan.ack = chan.rdy .

A system that uses the interface may perform an operation that sends some data value d
and performs some other changes that depend on the value d . We’d like to represent such
an operation as an action that is the conjunction of two separate actions: one that describes
the sending of d and the other that describes the other changes. Thus, instead of defining
an action Send that sends some unspecified data value, we define the action Send(d) that
sends data value d . The next-state action is satisfied by a Send(d) step, for some d in Data,
or a Rcv step. (The value received by a Rcv step equals chan.val .) Saying that a step is
a Send(d) step for some d in Data means that there exists a d in Data such that the step
satisfies Send(d)—in other words, that the step is an ∃ d ∈ Data : Send(d) step. So we define

Next ∆= (∃ d ∈ Data : Send(d)) ∨ Rcv

The Send(d) action asserts that chan ′ equals the record r such that:

r .val = d r .rdy = 1− chan.rdy r .ack = chan.ack

This record is written in TLA+ as:

[val �→ d , rdy �→ 1− chan.rdy , ack �→ chan.ack ]

(The symbol �→ is typed in ascii as |-> .) The fields of records are not ordered, so this record
can just as well be written:

[ack �→ chan.ack , val �→ d , rdy �→ 1− chan.rdy ]

The enabling condition of Send(d) is that the rdy and ack lines are equal, so we can define:

Send(d) ∆= ∧ chan.rdy = chan.ack
∧ chan ′ = [val �→ d , rdy �→ 1− chan.rdy , ack �→ chan.ack ]

This is a perfectly good definition of Send(d). However, I prefer a slightly different one. We
can describe the value of chan ′ by saying that it is the same as the value of chan except that
its val component equals d and its rdy component equals 1 − chan.rdy . In TLA+, we can
write this value as

[chan except ! .val = d , ! .rdy = 1− chan.rdy ]

Think of the ! as standing for chan, the record being modified by the except expression. In
the value replacing ! .rdy , the symbol @ stands for chan.rdy , so we can write this expression
as:

[chan except ! .val = d , ! .rdy = 1−@]

In general, for any record r , the expression

[r except ! .c1 = e1, . . . , ! .cn = en ]

is the record obtained from r by replacing r .ci with e i , for each i in 1 . . n. An @ in the
expression e i stands for r .ci . Using this notation, we define:

Send(d) ∆= ∧ chan.rdy = chan.ack
∧ chan ′ = [chan except ! .val = d , ! .rdy = 1−@]

The definition of Rcv is straightforward. A value can be received when chan.rdy �= chan.ack ,
and receiving the value complements chan.ack :

Rcv ∆= ∧ chan.rdy �= chan.ack
∧ chan ′ = [chan except ! .ack = 1−@]
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module Channel

extends Naturals
constant Data
variable chan
TypeInvariant ∆= chan ∈ [val :Data, rdy : {0, 1}, ack : {0, 1}]

Init ∆= ∧ TypeInvariant
∧ chan.ack = chan.rdy

Send(d) ∆= ∧ chan.rdy = chan.ack
∧ chan ′ = [chan except ! .val = d , ! .rdy = 1−@]

Rcv ∆= ∧ chan.rdy �= chan.ack
∧ chan ′ = [chan except ! .ack = 1−@]

Next ∆= (∃ d ∈ Data : Send(d)) ∨ Rcv

Spec ∆= Init ∧ ✷[Next ]chan

theorem Spec ⇒ ✷TypeInvariant

Figure 3: Our second specification of an asynchronous interface.

The complete specification appears in Figure 3.
We have now written two different specifications of the asynchronous interface. They

are two different mathematical representations of the same physical system. In module
AsynchInterface, we represented the system with the three variables val , rdy , and ack . In
module Channel , we used a single variable chan. Since these two representations are at the
same level of abstraction, they should, in some sense, be equivalent. Section 6.8 explains one
sense in which they’re equivalent.

4.3 Types: A Reminder

As defined in Section 4.1, a variable v has type T in specification Spec iff v ∈ T is an invariant
of Spec. Thus, hr has type 1 . . 12 in the specification HC of the hour clock. This assertion
does not mean that the variable hr can assume only values in the set 1 . . 12. A state is an
arbitrary assignment of values to variables, so there exist states in which the value of hr is√−2. The assertion does mean that, in every behavior satisfying formula HC , the value of
hr is an element of 1 . . 12.

If you are used to types in programming languages, it may seem strange that TLA+ allows
a variable to assume any value. Why not restrict our states to ones in which variables have
the values of the right type? In other words, why not add a formal type system to TLA+? A
complete answer would take us too far afield. The question is addressed further in Section 7.2.
For now, remember that TLA+ is an untyped language. Type correctness is just a name for
a certain invariance property. Assigning the name TypeInvariant to a formula gives it no
special status.

4.4 Definitions

Let’s examine what a definition means. If Id is a simple identifier like Init or Spec, then the
definition Id ∆= exp defines Id to be synonymous with the expression exp. Replacing Id by exp,
or vice-versa, in any expression e does not change the meaning of e. This replacement must
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be done after the expression is parsed, not in the “raw input”. For example, the definition
x ∆= a + b makes x ∗ c equal to (a + b) ∗ c, not to a + b ∗ c, which equals a + (b ∗ c).

The definition of Send has the form Id(p) ∆= exp, where Id and p are identifiers. For any
expression e, this defines Id(e) to be the expression obtained by substituting e for p in exp.
For example, the definition of Send in the Channel module defines Send(−5) to equal

∧ chan.rdy = chan.ack
∧ chan ′ = [chan except ! .val = −5, ! .rdy = 1−@]

Send(e) is an expression, for any expression e. Thus, Send(−5) ∧ (chan.ack = 1) is a for-
mula. The identifier Send by itself is not an expression, and Send ∧ (chan.ack = 1) is not a
grammatically well-formed string. It’s nonsyntactic nonsense, like a ∗ b+.

We say that Send is an operator that takes a single argument. In the obvious way, we can
define operators that take more than one argument, the general form being:

Id(p1, . . . , pn)
∆= exp(4)

where the pi are distinct identifiers and exp is an expression. We can consider defined identi-
fiers like Init and Spec to be operators that take no argument, but we generally use operator
to mean an operator that takes one or more arguments.

I will use the term symbol to mean an identifier like Send or an operator symbol like
+. Every symbol that is used in a specification must either be a built-in operator of TLA+

(like ∈) or it must be declared or defined. Every symbol declaration or definition has a scope
within which the symbol may be used. The scope of a variable or constant declaration,
and of a definition, is the rest of the module. Thus, we can use Init in any expression that
follows its definition in module Channel . The statement extends Naturals extends the scope
of symbols like + defined in the Naturals module to the Channel module.

The operator definition (4) implicitly includes a declarations of the identifiers p1, . . . , pn

whose scope is the expression exp. An expression of the form

∃ v ∈ S : exp

has a declaration of v whose scope is the expression exp. Thus the identifier v has a meaning
within the expression exp (but not within the expression S ).

A symbol cannot be declared or defined if it already has a meaning. The expression

(∃ v ∈ S : exp1) ∧ (∃ v ∈ T : exp2)

is all right, because neither declaration of v lies within the scope of the other. Similarly, the
two declarations of the symbol d in the Channel module (in the definition of Send and in the
expression ∃ d in the definition of Next) have disjoint scopes. However, the expression

(∃ v ∈ S : (exp1 ∧ ∃ v ∈ T : exp2))

is illegal because the declaration of v in the second ∃ v lies inside the scope of the its declaration
in the first ∃ v . Although conventional mathematics and programming languages allow such
redeclarations, TLA+ forbids them because they can lead to confusion and errors.

4.5 Comments

Even simple specifications like the ones in modules AsynchInterface and Channel can be hard
to understand from the mathematics alone. That’s why I began with an intuitive explanation
of the interface. That explanation made it easier for you to understand formula Spec in the
module, which is the actual specification. Every specification should be accompanied by an
informal prose explanation. The explanation may be in an accompanying document, or it
may be included as comments in the specification.
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module HourClock
This module specifies a digital clock that displays the current hour. It ignores real time, not specify-
ing when the display can change.

extends Naturals
variable hr Variable hr represents the display.

HCini ∆= hr ∈ (1 . . 12) Initially, hr can have any value from 1 through 12.

HCnxt This is a weird place for a comment.
∆=

The value of hr cycles from 1 through 12.

hr ′ = if hr �= 12 then hr + 1 else 1

HC ∆= HCini ∧ ✷[HCnxt ]hr
The complete spec. It permits the clock to stop.

theorem HC ⇒ ✷HCini Type-correctness of the spec.

---------------------- MODULE HourClock ----------------------
(********************************************************)
(* This module specifies a digital clock that displays *)
(* the current hour. It ignores real time, not *)
(* specifying when the display can change. *)
(********************************************************)

EXTENDS Naturals
VARIABLE hr \* Variable hr represents the display.
HCini == hr \in (1 .. 12) \* Initially, hr can have any

\* value from 1 through 12.
HCnxt (* This is a weird place for a comment. *) ==

(*************************************************)
(* The value of hr cycles from 1 through 12. *)
(*************************************************)
hr’ = IF hr # 12 THEN hr + 1 ELSE 1

HC == HCini /\ [][HCnxt]_hr
(* The complete spec. It permits the clock to stop. *)

--------------------------------------------------------------
THEOREM HC => []HCini \* Type-correctness of the spec.
==============================================================

Figure 4: The hour clock specification with comments.
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Figure 4 shows how the hour clock’s specification in module HourClock might be explained
by comments. In the typeset version, comments are distinguished from the specification itself
by the use of a different font. As shown in the figure, TLA+ provides two way of writing
comments in the ascii version. A comments may appear anywhere enclosed between (* and
*). The text of the comment itself may not contain *), so these comments can’t be nested.
An end-of-line comment is preceded by \*.

A comment almost always appears on a line by itself or at the end of a line. I put a
comment between HCnxt and ∆= just to show that it can be done.

To save space, I will write few comments in the example specifications. But specifications
should have lots of comments. Even if there is an accompanying document describing the
system, comments are needed to help the reader understand how the specification formalizes
that description.

Comments can help solve a problem posed by the logical structure of a specification. A
symbol has to be declared or defined before it can be used. In module Channel , the definition
of Spec has to follow the definition of Next , which has to follow the definitions of Send and
Rcv . But it’s usually easiest to understand a top-down description of a system. We would
probably first want to read the declarations of Data and chan, then the definition of Spec,
then the definitions of Init and Next , and then the definitions of Send and Rcv . In other
words, we want to read the specification more or less from bottom to top. This is easy enough
to do for a module as short as Channel ; it’s inconvenient for longer specifications. We can use
comments to guide the reader through a longer specification. For example, we could precede
the definition of Send in the Channel module with the comment:

Actions Send and Rcv below are the disjuncts of the next-state action Next .

The module structure also allows us to choose the order in which a specification is read.
For example, we can rewrite the hour-clock specification by splitting the HourClock module
into three separate modules:

HCVar A module that declares the variable hr .

HCActions A module that extendsmodules Naturals and HCVar and defines HCini and
HCnxt .

HCSpec A module that extends module HCActions, defines formula HC , and asserts
the type-correctness theorem.

The extends relation implies a logical ordering of the modules: HCVar precedes HCActions,
which precedes HCSpec. But the modules don’t have to be read in that order. The reader can
be told to read HCVar first, then HCSpec, and finally HCActions. The instance construct
introduced below in Section 5 provides another tool for modularizing specifications.

Splitting a tiny specification like HourClock in this way would be ludicrous. But the
proper splitting of modules can help make a large specification easier to read. When writing
a specification, you should decide in what order it should be read. You can then design the
module structure to permit reading it in that order, when each individual module is read from
beginning to end. Finally, you should ensure that the comments within each module make
sense when the different modules are read in the appropriate order.

5 A FIFO

Our next example is a FIFO buffer, a device with which a sender process transmits a sequence
of values to a receiver. The sender and receiver use two channels, in and out , to communicate
with the buffer:
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Sender Buffer Receiverin out✲ ✲

Values are sent over in and out using the asynchronous protocol specified by the Channel
module of Figure 3. The system’s specification will allow behaviors with four kinds of non-
stuttering steps: Send and Rcv actions on both the in channel and the out channel.

5.1 The Inner Specification

The specification of the FIFO first extends modules Naturals and Sequences. The Sequences
module defines operations on finite sequences. We represent a finite sequence as a tuple, so
the sequence of three numbers 3, 2, 1 is the triple 〈3, 2, 1〉. The sequences module defines the
following operators on sequences.

Seq(S ) The set of all sequences of elements of the set S . For example, 〈3, 7〉 is an element
of Seq(Nat).

Head(s) The first element of sequence s. For example, Head(〈3, 7〉) equals 3.
Tail(s) The tail of sequence s (all but the head of s). For example, Tail(〈3, 7〉) equals

〈7〉.
Append(s, e) The sequence obtained by appending element e to the tail of sequence s.

For example, Append(〈3, 7〉, 3) equals 〈3, 7, 3〉.
s ◦ t The sequence obtained by concatenating the sequences s and t . For example,

〈3, 7〉 ◦ 〈3〉 equals 〈3, 7, 3〉. (We type ◦ in ascii as \o.)

Len(s) The length of sequence s. For example, Len(〈3, 7〉) equals 2.
The FIFO’s specification continues by declaring the constant Message, which represents the
set of all messages that can be sent.7 It then declares the variables. There are three variables:
in and out , representing the channels, and a third variable q that represents the queue of
buffered messages. The value of q is the sequence of messages that have been sent by the
sender but not yet received by the receiver. (Section 5.3 has more to say about this additional
variable q .)

We want to use the definitions in the Channel module to specify operations on the channels
in and out . This requires two instances of that module—one in which the variable chan of
the Channel module is replaced with the variable in of our current module, and the other in
which chan is replaced with out . In both instances, the constant Data of the Channel module
is replaced with Message. We obtain the first of these instances with the statement:

InChan ∆= instance Channel with Data ← Message, chan ← in

For every symbol σ defined in module Channel , this defines InChan !σ to have the same mean-
ing in the current module as σ had in module Channel , except with Message substituted for

7I like to use a singular noun like Message rather than a plural like Messages for the name of a set.
That way, the ∈ in the expression m ∈ Message can be read is a. This is the same convention that
most programmers use for naming types.
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Data and in substituted for chan. For example, this statement defines InChan !TypeInvariant
to equal

in ∈ [val :Message, rdy : {0, 1}, ack : {0, 1}]
We introduce our second instance of the Channel module with the analogous statement:

OutChan ∆= instance Channel with Data ← Message, chan ← out

The initial states of the in and out channels are specified by InChan !Init and OutChan !Init .
Initially, no messages have been sent or received, so q should equal the empty sequence. The
empty sequence is the zero-tuple (there’s only one, and it’s written 〈 〉), so we define the initial
predicate to be:

Init ∆= ∧ InChan !Init
∧ OutChan !Init
∧ q = 〈 〉

We next define the type invariant. The type invariants for in and out come from the Channel
module, and the type of q is the set of finite sequences of messages. The type invariant for
the FIFO specification is therefore:

TypeInvariant ∆= ∧ InChan !TypeInvariant
∧ OutChan !TypeInvariant
∧ q ∈ Seq(Message)

The four kinds of nonstuttering steps allowed by the next-state action are described by four
actions:

SSend(msg) The sender sends message msg on the in channel.

BufRcv The buffer receives the message from the in channel and appends it to the
tail of q .

BufSend The buffer removes the message from the head of q and sends it on channel
out .

RRcv The receiver receives the message from the out channel.

The definitions of these actions, along with the rest of the specification, are in module FIFO
of Figure 5.

5.2 Instantiation Examined

5.2.1 Parameterized Instantiation

The FIFO specification uses two instances of module Channel—one with in substituted for
chan and the other with out substituted for chan. We could instead use a single parametrized
instance by putting the following statement in module InnerFIFO :

Chan(ch) ∆= instance Channel with Data ← Message, chan ← ch

For any symbol σ defined in module Channel and any expression exp, this defines Chan(exp)!σ
to equal formula σ with Message substituted for Data and exp substituted for chan. The Rcv
action on channel in could then be written Chan(in)!Rcv , and the Send(msg) action on
channel out could be written Chan(out)!Send(msg).
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module InnerFIFO

extends Naturals,Sequences
constant Message
variables in, out , q
InChan ∆= instance Channel with Data ← Message, chan ← in
OutChan ∆= instance Channel with Data ← Message, chan ← out

Init ∆= ∧ InChan !Init
∧ OutChan !Init
∧ q = 〈 〉

TypeInvariant ∆= ∧ InChan !TypeInvariant
∧ OutChan !TypeInvariant
∧ q ∈ Seq(Message)

SSend(msg) ∆= ∧ InChan !Send(msg)
∧ unchanged 〈out , q 〉

Send msg on channel in.

BufRcv ∆= ∧ InChan !Rcv
∧ q ′ = Append(q , in.val)
∧ unchanged out

Receive message from channel in
and append it to tail of q.

BufSend ∆= ∧ q �= 〈 〉
∧ OutChan !Send(Head(q))
∧ q ′ = Tail(q)
∧ unchanged in

Enabled only if q is nonempty.

Send Head(q) on channel out
and remove it from q.

RRcv ∆= ∧ OutChan !Rcv
∧ unchanged 〈in, q 〉

Receive message from channel out .

Next ∆= ∨ ∃msg ∈ Message : SSend(msg)
∨ BufRcv
∨ BufSend
∨ RRcv

Spec ∆= Init ∧✷[Next ]〈in, out , q 〉

theorem Spec ⇒ ✷TypeInvariant

Figure 5: The specification of a FIFO, with the internal variable q visible.
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5.2.2 Implicit Substitutions

The use of Message as the name for the set of transmitted values in the FIFO specifica-
tion is a bit strange, since we had just used the name Data for the analogous set in the
asynchronous channel specifications. Suppose we had used Data in place of Message as the
constant parameter of module InnerFIFO . The first instantiation statement would then have
been

InChan ∆= instance Channel with Data ← Data, chan ← in

The substitution Data ← Data indicates that the constant parameter Data of the instantiated
module Channel is replaced with the expression Data of the current module. TLA+ allows us
to drop any substitution of the form σ ← σ, for a symbol σ. So, the statement above can be
written as

InChan ∆= instance Channel with chan ← in

We know there is an implied Data ← Data substitution because an instance statement
must have a substitution for every parameter (constant or variable) of the instantiated
module. If some parameter p has no explicit substitution, then there is an implicit substitution
p ← p. This means that the instance statement must lie within the scope of a declaration
or definition of the symbol p.

It is quite common to instantiate a module with this kind of implicit substitution. Often,
every parameter has an implicit substitution, in which case the list of explicit substitutions is
empty. The with is then omitted.

5.2.3 Instantiation Without Renaming

So far, all the instantiations we’ve used have been with renaming. For example, the first
instantiation of module Channel renames the defined symbol Send as InChan !Send . This
kind of renaming is necessary if we are using multiple instances of the module, or a single
parameterized instance. The two instances InChan !Init and OutChan !Init of Init in module
InnerFIFO are different formulas, so they need different names.

Sometimes we need only a single instance of a module. For example, suppose we are
specifying a system with only a single asynchronous channel. We then need only one instance
of Channel , so we don’t have to rename the instantiated symbols. In that case, we can write
something like

instance Channel with Data ← D , chan ← x

This instantiates Channel with no renaming, but with substitution. Thus, it defines Rcv to
be the formula of the same name from the Channel module, except with D substituted for
Data and x substituted for chan. Of course, the expressions substituted for an instantiated
module’s parameters must be defined. So, this instance statement must be within the scope
of the definitions or declarations of D and x .

5.3 Hiding the Queue

Module InnerFIFO of Figure 5 defines Spec to be Init ∧✷[Next ]... , the sort of formula we’ve
become accustomed to as a system specification. However, formula Spec describes the value
of variable q , as well as of the variables in and out . My picture of the FIFO system shows
only channels in and out ; it doesn’t show anything inside the boxes. A specification of the
FIFO should describe only the values sent and received on the channels. The variable q , which
represents what’s going on inside the box labeled Buffer , is used to specify what values are
sent and received. In the final specification, it should be hidden.
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In TLA, we hide a variable with the existential quantifier ∃∃∃∃∃∃ of temporal logic. The formula
∃∃∃∃∃∃ x :F is true of a behavior iff there exists some sequence of values—one in each state of the
behavior—that can be assigned to the variable x that will make formula F true. (The meaning
of ∃∃∃∃∃∃ is defined more precisely in Section 8.6.)

The obvious thing to do now is to define the FIFO specification to be the formula ∃∃∃∃∃∃ q : Spec.
However, we can’t put this definition in module InnerFIFO because q is already declared there,
and a formula ∃∃∃∃∃∃ q : . . . would redeclare it. Instead, we use a new module with a parametrized
instantiation of the InnerFIFO module (see Section 5.2.1 above):

module FIFO

constant Message
variables in, out
Inner(q) ∆= instance InnerFIFO

Spec ∆= ∃∃∃∃∃∃ q : Inner(q)!Spec

Observe that the instance statement is an abbreviation for

Inner(q) ∆= instance InnerFIFO
with q ← q , in ← in, out ← out , Message ← Message

The variable parameter q of module InnerFIFO is instantiated with the parameter q of the
definition of Inner . The other parameters of the InnerFIFO module are instantiated with the
parameters of module FIFO .

5.4 A Bounded FIFO

We have specified an unbounded FIFO—a buffer that can hold an unbounded number of
messages. Any real system has a finite amount of resources, so it can contain only a bounded
number of in-transit messages. In many situations, we wish to abstract away the bound on
resources and describe a system in terms of unbounded FIFOs. In other situations, we may
care about that bound. We then want to strengthen our specification by placing a bound N
on the number of outstanding messages.

A specification of a bounded FIFO differs from our specification of the unbounded FIFO
only in that action BufRcv should be enabled only when there are fewer than N messages in
the buffer—that is, only when Len(q) is less than N . It would be easy to write a complete new
specification of a bounded FIFO by copying module InnerFIFO and just adding the conjunct
Len(q) < N to the definition of BufRcv . But let’s use module InnerFIFO as it is, rather than
copying it.

The next-state action BNext for the bounded FIFO is the same as the FIFO’s next-state
action Next except that it allows a BufRcv step only if Len(q) is less than N . In other words,
BNext should allow a step only if (i) it’s a Next step and (ii) if it’s a BufRcv step, then
Len(q) < N is true in the first state. In other words, BNext should equal

Next ∧ (BufRcv ⇒ (Len(q) < N ))

Module BoundedFIFO in Figure 6 contains the specification. It introduces the new constant
parameter N . It also contains the statement

assume (N ∈ Nat) ∧ (N > 0)

which asserts the assumption that N is a positive natural number. An assumption has no
effect on any definitions made in the module. However, it may be taken as a hypothesis
when proving any theorems asserted in the module. In other words, a module asserts that
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module BoundedFIFO

extends Naturals
variables in, out
constant Message,N
assume (N ∈ Nat) ∧ (N > 0)

Inner(q) ∆= instance InnerFIFO

BNext(q) ∆= ∧ Inner(q)!Next
∧ Inner(q)!BufRcv ⇒ (Len(q) < N )

Spec ∆= ∃∃∃∃∃∃ q : Inner(q)!Init ∧ ✷[BNext(q)]〈in,out ,q 〉

Figure 6: Specification of a FIFO buffer of length N.

its assumptions imply its theorems. It’s a good idea to assert this kind of simple assumption
about constants.

An assume statement should only be used to assert assumptions about constants. The
formula being assumed should not contain any variables. It might be tempting to assert
type declarations as assumptions—for example, to add to module InnerFIFO the assumption
q ∈ Seq(Message). However, that would be wrong because it asserts that, in any state, q
is a sequence of messages. As we observed in Section 4.3, a state is a completely arbitrary
assignment of values to variables, so there are states in which q has the value

√−17. Assuming
that such a state doesn’t exist would contradict the laws of TLA.

You may wonder why module BoundedFIFO asserts that N is a positive natural, but
doesn’t assert thatMessage is a set. Similarly, why didn’t we have to specify that the constant
parameter Data in our asynchronous interface specifications is a set? The answer is that, in
TLA+, every value is a set.8 A value like the number 3, which we don’t think of as a set, is
formally a set. We just don’t know what its elements are. The formula 2 ∈ 3 is a perfectly
reasonable one, but TLA+ does not specify whether it’s true or false. So, we don’t have to
assert that Message is a set because we know that it is one.

Although Message is automatically a set, it isn’t necessarily a finite set. For example,
Message could be instantiated with the set Nat of natural numbers. If you want to assume
that a constant parameter is a finite set, then you need to state this as an assumption.
(Writing a formula that asserts that a set is finite is a nice exercise in TLA+.) However, most
specifications make perfect sense for infinite sets of messages or processors, so there is no
reason to require these sets to be finite.

5.5 What We’re Specifying

I wrote above, at the beginning of this section, that we were going to specify a FIFO buffer.
Formula Spec of the FIFO module actually specifies a set of behaviors, each representing
a sequence of sending and receiving operations on the channels in and out . The sending
operations on in are performed by the sender, and the receiving operations on out are per-
formed by the receiver. The sender and receiver are not part of the FIFO buffer; they form
its environment.

Our specification describes a system consisting of the FIFO buffer and its environment.
The behaviors satisfying formula Spec of module FIFO represent those histories of the uni-
verse in which both the system and its environment behave correctly. It’s often helpful in

8TLA+ is based on the mathematical formalism known as Zermelo-Fränkel set theory, also called
ZF.
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understanding a specification to indicate explicitly which steps are system steps and which
are environment steps. We can do this by defining the next-state action to be

Next ∆= SysNext ∨ EnvNext

where SysNext describes system steps and EnvNext describes environment steps. For the
FIFO, we have

SySNext ∆= BufRcv ∨ BufSend

EnvNext ∆= (∃msg ∈ Message : SSend(msg)) ∨ RRcv

While suggestive, this way of defining the next-state action has no formal significance. The
specification Spec equals Init ∧✷[Next ]... ; changing the way we structure the definition of
Next doesn’t change its meaning. If a behavior fails to satisfy Spec, nothing tells us if the
system or its environment is to blame.

A formula like Spec, which describes the correct behavior of both the system and its en-
vironment, is called a closed-system or complete-system specification. An open-system spec-
ification is one that describes only the correct behavior of the system. A behavior satisfies
an open-system specification if it represents a history in which either the system operates
correctly, or it failed to operate correctly only because its environment did something wrong.
How to write open-system specifications is described elsewhere [1].

Open-system specifications are philosophically more satisfying. However, closed-system
specifications are a little bit easier to write, and the mathematics underlying them is simpler.
So, we almost always write closed-system specifications. It’s usually quite easy to turn a
closed-system specification into an open-system specification. But in practice, there’s little
reason to do so.

6 A Caching Memory

A memory system consists of a set of processors connected to a memory by some abstract
interface, which we label memInt.

Processor
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In this section we specify what the memory is supposed to do, then we specify a particular
implementation of the memory using caches. We begin by specifying the memory interface,
which is common to both specifications.

6.1 The Memory Interface

The asynchronous interface described in Section 4 uses a handshake protocol. Receipt of a
data value must be acknowledged before the next data value can be sent. In the memory
interface, we abstract away this kind of detail and represent both the sending of a data value
and its receipt as a single step. We call it a Send step if a processor is sending the value to
the memory; it’s a Reply step if the memory is sending to a processor. Processors do not send
values to one another, and the memory sends to only one processor at a time.

We represent the state of the memory interface by the value of the variable memInt . A
Send step changes memInt in some way, but we don’t want to specify exactly how. The way
to leave something unspecified in a specification is to make it a parameter. For example, in the



27

bounded FIFO of Section 5.4, we left the size of the buffer unspecified by making it a parameter
N . We’d therefore like to declare a parameter Send so that Send(p, d) describes how memInt
is changed by a step that represents processor p sending data value d to the memory. However,
TLA+ provides only constant and variable parameters, not action parameters.9 So, we
declare Send to be a constant operator and write Send(p, d ,memInt ,memInt ′) instead of
Send(p, d).

In TLA+, we declare Send to be a constant operator that takes four arguments by writing

constant Send( , , , )

This means that Send(p, d ,miOld ,miNew) is an expression, for any expressions p, d , miOld ,
and miNew , but it says nothing about what the value of that expression is. We want it to be
a Boolean value that is true iff a step in which memInt equals miOld in the first state and
miNew in the second state represents the sending by p of value d to the memory.10 We can
assert that the value is a Boolean by the assumption:

assume ∀ p, d , miOld , miNew : Send(p, d ,miOld ,miNew) ∈ boolean

This asserts that the formula

Send(p, d ,miOld ,miNew) ∈ boolean

is true for all values of p, d , miOld , and miNew . The built-in symbol boolean denotes the
set {true, false}, whose elements are the two Boolean values true and false.

This assume statement asserts formally that the value of

Send(p, d ,miOld ,miNew)

is a Boolean. But the only way to assert formally what that value signifies would be to say
what it actually equals—that is, to define Send rather than making it a parameter. We don’t
want to do that, so we just state informally what the value means. This statement is part
of the intrinsically informal description of the relation between our mathematical abstraction
and a physical memory system.

To allow the reader to understand the specification, we have to describe informally what
Send means. The assume statement asserting that Send(. . .) is a Boolean is then superfluous
as an explanation. However, it could help tools understand the specification, so it’s a good
idea to include it anyway.

A specification that uses the memory interface can use the operators Send and Reply
to specify how the variable memInt changes. The specification must also describe memInt ’s
initial value. We therefore declare a constant parameter InitMemInt that is the set of possible
initial values of memInt .

We also introduce three constant parameters that are needed to describe the interface:

Proc The set of processor identifiers. (We usually shorten processor identifier to processor
when referring to an element of Proc.)

Adr The set of memory addresses.

Val The set of possible memory values that can be assigned to an address.

9Even if TLA+ allowed us to declare an action parameter, we would have no way to specify that a
Send(p, d) action constrains only memInt and not other variables.

10We expect Send(p, d ,miOld ,miNew) to have this meaning only when p is a processor and d a
value that p is allowed to send, but we simplify the specification a bit by requiring it to be a Boolean
for all values of p and d .
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module MemoryInterface

variable memInt

constants Send( , , , ), A Send(p, d ,memInt ,memInt ′) step represents processor
p sending value d to the memory.

Reply( , , , ), A Reply(p, d ,memInt ,memInt ′) step represents the
memory sending value d to processor p.

InitMemInt , The set of possible initial values of memInt .
Proc, The set of of processor identifiers.

Adr , The set of memory addresses.

Val The set memory values.

assume ∀ p, d ,miOld ,miNew : ∧ Send(p, d ,miOld ,miNew) ∈ boolean
∧ Reply(p, d ,miOld ,miNew) ∈ boolean

MReq ∆= [op : {“Rd”}, adr :Adr ] ∪ [op : {“Wr”}, adr :Adr , val :Val ]
The set of all requests; a read specifies an address, a write specifies an address and
a value.

NoVal ∆= choose v : v /∈ Val An arbitrary value not in Val .

Figure 7: The Specification of a Memory Interface

Finally, we define the values that the processors and memory send to one another over the
interface. A processor sends a request to the memory. We represent a request as a record with
an op field that specifies the type of request and additional fields that specify its arguments.
Our simple memory allows just read and write requests. A read request has op field “Rd” and
an adr field specifying the address to be read. The set of all read requests is therefore the set

[op : {“Rd”}, adr :Adr ]

of all records whose op field equals “Rd” (is an element of the set {“Rd”} whose only element
is the string “Rd”) and whose adr field is an element of Adr . A write request must specify the
address to be written and the value to write. It is represented by a record with op field equal
to “Wr”, and with adr and val fields specifying the address and value. We define MReq , the
set of all requests, to equal the union of these two sets. (Set operations, including union, are
described in Section 2.2.)

The memory responds to a read request with the memory value it read. It must also
respond to a write request; and it seems nice to let the response be different from the response
to any read request. We therefore require the memory to respond to a write request by
returning a value NoVal that is different from any memory value. We could declare NoVal to
be a constant parameter and add the assumption NoVal /∈ Val . (The symbol /∈ is typed in
ascii as \notin .) But it’s best, when possible, to avoid introducing parameters. Instead, we
define NoVal by:

NoVal ∆= choose v : v /∈ Val

The expression choose x :F equals an arbitrarily chosen value x that satisfies the formula F .
(If no such x exists, the expression has a completely arbitrary value.) This statement defines
NoVal to be some value that is not an element of Val . We have no idea what the value of
NoVal is; we just know what it isn’t—namely, that it isn’t an element of Val . The choose
operator is discussed in Section 7.6.

The complete memory interface specification is module MemoryInterface in Figure 7.
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6.2 Functions

A memory assigns values to addresses. The state of the memory is therefore an assignment of
elements of Val (memory values) to elements of Adr (memory addresses). In a programming
language, such an assignment is called an array of type Val indexed by Adr . In mathematics,
it’s called a function from Adr to Val . Before writing the memory specification, let’s look at
the mathematics of functions, and how it is described in TLA+.

A function f has a domain, written domain f , and it assigns to each element x of its
domain the value f [x ]. (Mathematicians write this as f (x ), but TLA+uses the array notation
of programming languages, with square brackets.) Two functions f and g are equal iff they
have the same domain and f [x ] = g [x ] for all x in their domain.

The range of a function f is the set of all elements of the form f [x ] with x in domain f .
For any sets S and T , the set of all functions whose domain equals S and whose range is any
subset of T is written [S → T ].

Ordinary mathematics does not have a convenient notation for writing an expression whose
value is a function. TLA+ defines [x ∈ S �→ e] to be the function f with domain S such that
f [x ] = e for every x ∈ S .11 For example,

succ ∆= [n ∈ Nat �→ n + 1]

defines succ to be the successor function on the natural numbers—the function with domain
Nat such that succ[n] = n + 1 for all n ∈ Nat .

A record is a function whose domain is a finite set of strings. For example, a record with
val , ack , and rdy fields is a function whose domain is the set {“val”, “ack”, “rdy”} consisting
of the three strings “val”, “ack”, and “rdy”. The expression r .ack , the ack field of a record r ,
is an abbreviation for r [“ack”]. The record

[val �→ 42, ack �→ 1, rdy �→ 0]

can be written

[i ∈ {“val”, “ack”, “rdy”} �→
if i = “val” then 42 else if i = “ack” then 1 else 0]

The except construct for records, explained in Section 4.2, is a special case of a general
except construct for functions, where !.c is an abbreviation for ![“c”]. For any function f ,
the expression [f except ! [c] = e] is the function f̂ that is the same as f except with f̂ [c] = e.
This function can also be written:

[x ∈ domain f �→ if x = c then e else f [x ] ]

assuming that the symbol x does not occur in any of the expressions f , c, and e. For example,
[succ except ! [42] = 86] is the function g that is the same as succ except that g [42] equals
86 instead of 43.

As in the except construct for records, the expression e in

[f except ! [c] = e]

can contain the symbol @, where it means f [c]. For example,

[succ except ! [42] = 2 ∗@] = [succ except ! [42] = 2 ∗ succ[42] ]

11Computer scientists write λx : S .e to mean something very much like [x ∈ S �→ e]. Such λ ex-
pressions aren’t quite the same as the functions of ordinary mathematics, so TLA+ doesn’t use that
notation for writing functions.
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In general,

[f except ! [c1] = e1, . . . , ! [cn ] = en ]

is the function f̂ that is the same as f except with f̂ [ci ] = e i for each i . More precisely, this
expression equals

[. . . [ [f except ! [c1] = e1] except ! [c2] = e2] . . . except ! [cn ] = en ]

Functions correspond to the arrays of programming languages. The domain of a function
corresponds to the index set of an array. The function [f except ! [c] = e] corresponds to
the array obtained from f by assigning e to f [c]. A function whose range is a set of functions
corresponds to an array of arrays. TLA+ defines [f except ! [c][d ] = e] to be the function
corresponding to the array obtained by assigning e to f [c][d ]. It can be written as

[f except ! [c] = [@ except ! [d ] = e]]

The generalization to [f except ! [c1] . . . [cn ] = e] for any n should be obvious. Since a record
is a function, this notation can be used for records as well. TLA+ uniformly maintains the
notation that σ.c is an abbreviation for σ[“c”]. For example, this implies:

[f except ! [c].d = e] = [f except ! [c] = [@ except ! .d = e]]

The TLA+definition of records as functions makes it possible to manipulate them in ways
that have no counterparts in programming languages. For example, we can define an operator
R such that R(r , s) is the record obtained from r by replacing the value of each field c that
is also a field of the record s with s.c. In other words, for every field c of r , if c is a field of s
then R(r , s).c = s.c; otherwise R(r , s).c = r .c. The definition is:

R(r , s) ∆= [c ∈ domain r �→ if c ∈ domain s then s[c] else r [c] ]

All the TLA+ function constructs have generalizations for functions with multiple argu-
ments. We describe only functions of a single argument here.

6.3 A Linearizable Memory Specification

We specify a very simple memory system in which a processor p issues a memory request and
then waits for a response before issuing the next request. In our specification, the request is
executed by accessing (reading or modifying) a variable mem, which represents the current
state of the memory. Because the memory can receive requests from other processors before
responding to processor p, it matters when mem is accessed. We let the access of mem occur
any time between the request and the response. This specifies what is called a linearizable
memory [4]. (The more commonly specified sequentially consistent memory [9] allows the
access of mem to occur at any time.)

In addition to mem, the specification has the internal variables ctl and buf , where ctl [p]
describes the status of processor p’s request and buf [p] contains either the request or the
response. Consider the request req that equals

[op �→ “Wr”, adr �→ a, val �→ v ]

It is a request to write v to memory address a, and it generates the response NoVal . The
processing of this request is represented by the following three steps:ctl [p] = “rdy”

buf [p] = · · ·
mem[a] = · · ·

 Req(p)
−→

ctl [p] = “busy”
buf [p] = req
mem[a] = · · ·

 Do(p)
−→

ctl [p] = “done”
buf [p] = NoVal
mem[a] = v


Rsp(p)
−→

ctl [p] = “rdy”
buf [p] = NoVal
mem[a] = v
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A Req(p) step represents the issuing of a request by processor p. It is enabled when ctl [p] =
“rdy”; it sets ctl [p] to “busy” and sets buf [p] to the request. A Do(p) step represents the
memory access; it is enabled when ctl [p] = “busy” and it sets ctl [p] to “done” and buf [p]
to the response. A Rsp(p) step represents the memory’s response to p; it is enabled when
ctl [p] = “done” and it sets ctl [p] to “rdy”.

Writing the specification is a straightforward exercise in representing these changes to the
variables in TLA+ notation. The internal specification, with mem, ctl , and buf visible (free
variables), appears in module InternalMemory in Figure 8. The memory specification, which
hides the three internal variables, is module Memory in Figure 9.

6.4 Tuples as Functions

Before writing our caching memory specification, let’s take a closer look at tuples. Recall that
〈a, b, c 〉 is the 3-tuple with components a, b, and c. In TLA+, this 3-tuple is actually the
function with domain {1, 2, 3} that maps 1 to a, 2 to b, and 3 to c. Thus, 〈a, b, c 〉[2] equals b.

TLA+provides the Cartesian product operator × of ordinary mathematics, whereA×B×C
is the set of all 3-tuples 〈a, b, c 〉 such that a ∈ A, b ∈ B , and c ∈ C . Note that A × B × C
is different from A× (B ×C ), which is the set of pairs 〈a, p 〉 with a in A and p in the set of
pairs B × C .

The Sequences module defines finite sequences to be tuples. Hence, a sequence of length n
is a function with domain 1 . . n. In fact, s is a sequence iff it equals [i ∈ 1 . . Len(s) �→ s[i ]] .
Below are a few operator definitions from the Sequences module. (The meanings of the
operators are described in Section 5.1.)

Head(s) ∆= s[1]

Tail(s) ∆= [i ∈ 1 . . (Len(s) − 1) �→ s[i + 1]]

s ◦ t ∆= [i ∈ 1 . . (Len(s) + Len(t)) �→
if i ≤ Len(s) then s[i ] else t [i − Len(s)] ]

6.5 Recursive Function Definitions

We need one more tool to write the caching memory specification: recursive function defini-
tions. Recursively defined functions are familiar to programmers. The classic example is the
factorial function, which I’ll call fact . It’s usually defined by writing:

fact [n] = if n = 0 then 1 else n ∗ fact [n − 1]

for all n ∈ Nat . The TLA+ notation for writing functions suggests trying to define fact by

fact ∆= [n ∈ Nat �→ if n = 0 then 1 else n ∗ fact [n − 1]]

This definition is illegal because the occurrence of fact to the right of the ∆= is undefined—fact
is defined only after its definition.

TLA+ does allow the apparent circularity of recursive function definitions. We can define
the factorial function fact by:

fact [n ∈ Nat ] ∆= if n = 0 then 1 else n ∗ fact [n − 1]

In general, a definition of the form f [x ∈ S ] ∆= e can be used to define recursively a function
f with domain S . Section 7.3 explains exactly what such a definition means. For now, we will
just write recursive definitions without worrying about their meaning.



32

module InternalMemory

extends MemoryInterface
variables mem, ctl , buf

IInit ∆= The initial predicate

∧ mem ∈ [Adr → Val ]
∧ ctl = [p ∈ Proc �→ “rdy”]
∧ buf = [p ∈ Proc �→ NoVal ]
∧ memInt ∈ InitMemInt

Initially, memory locations have any legal values,

each processor is ready to issue requests,

each buf [p] is arbitrarily initialized to NoVal ,
and memInt is any element of InitMemInt .

TypeInvariant ∆= The type-correctness invariant.

∧ mem ∈ [Adr → Val ]
∧ ctl ∈ [Proc → {“rdy”, “busy”, “done”}]
∧ buf ∈ [Proc → MReq ∪ Val ∪ {NoVal}]

mem is a function from Adr to Val .
ctl [p] equals “rdy”, “busy”, or “done”.
buf [p] is a request or a response.

Req(p) ∆= Processor p issues a request.

∧ ctl [p] = “rdy” Enabled iff p is ready to issue a request.

∧ ∃ req ∈ MReq : For some request req:
∧ Send(p, req , memInt , memInt ′)
∧ buf ′ = [buf except ! [p] = req ]
∧ ctl ′ = [ctl except ! [p] = “busy”]

Send req on the interface.

Set buf [p] to the request.

Set ctl [p] to “busy”.
∧ unchanged mem

Do(p) ∆= Perform p’s request to memory.

∧ ctl [p] = “busy” Enabled iff p’s request is pending.

∧ mem ′ = if buf [p].op = “Wr”
then [mem except Write to memory on a “Wr” request.

Leave mem unchanged on a “Rd” request.

! [buf [p].adr ] = buf [p].val ]
else mem

∧ buf ′ = [buf except ! [p] = if buf [p].op = “Wr” Set buf [p] to the response:
NoVal for a write;

the memory value for a read.

Set ctl [p] to “done”.

then NoVal
else mem[buf [p].adr ] ]

∧ ctl ′ = [ctl except ! [p] = “done”]
∧ unchanged memInt

Rsp(p) ∆= Return the response to p’s request.

∧ ctl [p] = “done”
∧ Reply(p, buf [p], memInt , memInt ′)
∧ ctl ′ = [ctl except ! [p] = “rdy”]
∧ unchanged 〈mem, buf 〉

Enabled iff request is done but response not sent.

Send the response on the interface.

Set ctl [p] to “rdy”.

INext ∆= ∃ p ∈ Proc : Req(p) ∨Do(p) ∨Rsp(p) The next-state action.

ISpec ∆= IInit ∧ ✷[INext ]〈memInt ,mem,ctl ,buf 〉 The specification.

theorem ISpec ⇒ ✷TypeInvariant

Figure 8: The internal memory specification.
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module Memory

extends MemoryInterface
Inner(mem, ctl , buf ) ∆= instance InternalMemory

Spec ∆= ∃∃∃∃∃∃mem, ctl , buf : Inner(mem, ctl , buf )!ISpec

Figure 9: The memory specification.

6.6 A Write-Through Cache

We now specify a simple write-through cache that implements the memory specification. The
system is described by the following picture:

�

�

�

✛cache[p]

✻❄
buf [p]✲✛memInt ✲Processor p

ctl [p]

�

�

�

✲ ✲memQ

mem

✛

bus

Each processor p communicates with a local controller, which maintains three state compo-
nents: buf [p], ctl [p], and cache[p]. The value of cache[p] represents the processor’s cache;
buf [p] and ctl [p] play the same role as in the internal memory specification of module
InternalMemory . (However, as we will see below, ctl [p] can assume an additional value
“waiting”.) These local controllers communicate with the main memory mem,12 and with
one another, over a bus. Requests from the processors to the main memory are in the queue
memQ of maximum length QLen.

A write request by processor p is performed by the action DoWr(p). This is a write-
through cache, meaning that every write request updates main memory. So, the DoWr(p)
action writes the value into cache[p] and adds the write request to the tail of memQ . It also
updates cache[q ] for any other processor q that has a copy of the address in its cache. When
the request reaches the head of memQ , the action MemQWr stores the value in mem.

A read request by processor p is performed by the action DoRd(p), which obtains the
value from the cache. If the value is not in the cache, the action RdMiss(p) adds the request
to the tail of memQ and sets ctl [p] to “waiting”. When the enqueued request reaches the head
of memQ , the action MemQRd reads the value and puts it in cache[p], enabling the DoRd(p)
action.

We might expect the MemQRd action to read the value from mem. However, this could
cause an error if there is a write to that address enqueued in memQ behind the read request.
In that case, reading the value from memory could lead to two processors having different
values for the address in their caches: the one that issued the read request, and the one that
issued the write request that followed the read in memQ . So, the MemQRd action must read

12This main memory does not directly correspond to the memory represented by variable mem in
module InternalMemory.
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the value from the last write to that address in memQ , if there is such a write; otherwise, it
reads the value from mem.

Eviction of an address from processor p’s cache is represented by a separate Evict(p) action.
Since all cached values have been written to memory, eviction does nothing but remove the
address from the cache. There is no reason to evict an address until the space is needed, so
this action would be executed only when a request for an uncached address is received from p
and p’s cache is full. But that’s a performance optimization; it doesn’t affect the correctness
of the algorithm. We allow a cached address to be evicted from p’s cache at any time—except
if the address was just put there by a MemQRd action for the current request. This is the
case when ctl [p] equals “waiting” and buf [p].adr equals the cached address.

The actions WReq(p) and WRsp(p), which represent processor p issuing a request and
the memory issuing a reply to p, are the same as the corresponding actions of the memory
specification, except that they also leave the new variables cache and memQ unchanged.

To specify all these actions, we must decide how the processor caches and the queue of
requests to memory are represented by the variables memQ and cache. We let memQ be a
sequence of pairs of the form 〈p, req 〉, where req is a request and p is the processor that issued
it. For any memory address a, we let cache[p][a] be the value in p’s cache for address a (the
“copy” of a in p’s cache). If p’s cache does not have a copy of a, we let cache[p][a] equal
NoVal .

The specification appears in module WriteThroughCache in Figures 10 and 11. I’ll now
go through this specification, explaining some of the finer points and some notation that we
haven’t encountered before.

The extends, declaration statements, and assume are familiar. We can re-use some of
the definitions from the InternalMemory module, so an instance statement instantiates a
copy of that module. (The parameters of module InternalMemory are instantiated by the
parameters of the same name in module WriteThroughCache.)

The initial predicate Init contains the conjunct M !IInit , which asserts that mem, ctl , and
buf have the same initial values as in the internal memory specification. The write-through
cache allows ctl [p] to have the value “waiting” that it didn’t in the internal memory specifi-
cation, so we can’t re-use the internal memory’s type invariant M !TypeInvariant . Formula
TypeInvariant therefore explicitly describes the types of mem, ctl , and buf . The type of
memQ is the set of sequences of 〈processor, request〉 pairs.

The module next defines the predicate Coherence, which asserts the basic cache coherence
property of the write-through cache: for any processors p and q and any address a, if p and
q each has a copy of address a in its cache, then those copies are equal. Note the trick of
writing x /∈ {y , z} instead of the equivalent but longer formula (x �= y) ∧ (x �= z ).

The state function vmem is used in defining action MemQRd below. It is defined to equal
the value that the main memory mem will have after all the write operations currently in
memQ have been performed. Recall that the value read by MemQRd must be the most
recent one written to that address—a value that may still be in memQ . That value is the
one in vmem. The definition of vmem introduces the TLA+ let/in construct. A let clause
consists of a sequence of definitions, whose scope extends until the end of the in clause. In
the definition of vmem, the let clause defines the function f so that f [i ] is the value mem
will have after the first i operations in memQ have been performed. Note that memQ [i ][2] is
the second component (the request) of memQ [i ], the ith element in the sequence memQ .

The actions Req(p) and Rsp(p), which represent a processor sending a request and receiv-
ing a reply, are essentially the same as the corresponding actions in module InternalMemory .
The only difference is that they must specify that the variables cache and memQ , not present
in module InternalMemory , are left unchanged.

In the definition of RdMiss, the expression Append(memQ , 〈p, buf [p]〉) is the sequence
obtained by appending the element 〈p, buf [p]〉 to the end of memQ .
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module WriteThroughCache

extends Naturals, Sequences, MemoryInterface
variables mem, ctl , buf , cache, memQ
constant QLen
assume (QLen ∈ Nat) ∧ (QLen > 0)
M ∆= instance InternalMemory

Init ∆= The initial predicate

∧ M !IInit
∧ cache =

[p ∈ Proc �→ [a ∈ Adr �→ NoVal ]]
∧ memQ = 〈 〉

mem, buf , and ctl are initialized as in the internal memory spec.

All caches are initially empty (cache[p][a] = NoVal for all p, a).

The queue memQ is initially empty.

TypeInvariant ∆= The type invariant.

∧ mem ∈ [Adr → Val ]
∧ ctl ∈ [Proc → {“rdy”, “busy”, “waiting”, “done”}]
∧ buf ∈ [Proc → MReq ∪ Val ∪ {NoVal}]
∧ cache ∈ [Proc → [Adr → Val ∪ {NoVal}] ]
∧ memQ ∈ Seq(Proc ×MReq) memQ is a sequence of 〈proc., request〉 pairs.

Coherence ∆= Asserts that if two processors’ caches both have copies of an address, then those
copies have equal values.∀ p, q ∈ Proc, a ∈ Adr :

(NoVal /∈ {cache[p][a], cache[q ][a]}) ⇒ (cache[p][a] = cache[q ][a])

vmem ∆= The value mem will have after all the writes in memQ are performed.

let f [i ∈ 0 . . Len(memQ)] ∆= The value mem will have after the first
i writes in memQ are performed.if i = 0 then mem

else if memQ [i ][2].op = “Rd”
then f [i − 1]
else [f [i − 1] except ! [memQ [i ][2].adr ] = memQ [i ][2].val ]

in f [Len(memQ)]

Req(p) ∆= Processor p issues a request.

M !Req(p) ∧ unchanged 〈cache, memQ 〉
Rsp(p) ∆= The system issues a response to processor p.

M !Rsp(p) ∧ unchanged 〈cache, memQ 〉

RdMiss(p) ∆= Enqueue a request to write value from memory to p’s cache.

∧ (ctl [p] = “busy”) ∧ (buf [p].op = “Rd”)
∧ cache[p][buf [p].adr ] = NoVal
∧ Len(memQ) < QLen
∧ memQ ′ = Append(memQ , 〈p, buf [p]〉)
∧ ctl ′ = [ctl except ! [p] = “waiting”]
∧ unchanged 〈memInt , mem, buf , cache 〉

Enabled on a read request when

the address is not in p’s cache
and memQ is not full.

Append 〈p, request〉 to memQ .

Set ctl [p] to “waiting”.

DoRd(p) ∆= Perform a read by p of a value in its cache.

∧ (ctl [p] ∈ {“busy”, “waiting”}) ∧ (buf [p].op = “Rd”)
∧ cache[p][buf [p].adr ] �= NoVal
∧ buf ′ = [buf except ! [p] = cache[p][buf [p].adr ] ]
∧ ctl ′ = [ctl except ! [p] = “done”]
∧ unchanged 〈memInt , mem, cache, memQ 〉

Enabled if a read

request is pending and

address is in cache.

Get result from cache.

Set ctl [p] to “done”.

Figure 10: The write-through cache specification (beginning).
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DoWr(p) ∆= Write to p’s cache, update other caches, and enqueue memory update.

let r ∆= buf [p] Processor p’s request.
in ∧ (ctl [p] = “busy”) ∧ (r .op = “Wr”) Enabled if write request pending

and memQ is not full.∧ Len(memQ) < QLen
∧ cache ′ = Update p’s cache and any other cache that has a copy.

[q ∈ Proc �→ if (p = q) ∨ (cache[q ][r .adr ] �= NoVal)
then [cache[q ] except ! [r .adr ] = r .val ]
else cache[q ]]

∧ memQ ′ = Append(memQ , 〈p, r 〉) Enqueue write at tail of memQ .

Generate response.

Set ctl to indicate request is done.

∧ buf ′ = [buf except ! [p] = NoVal ]
∧ ctl ′ = [ctl except ! [p] = “done”]
∧ unchanged 〈memInt , mem 〉

MemQWr ∆= Perform write at head of memQ to memory.

let r ∆= Head(memQ)[2] The request at the head of memQ .

in ∧ (memQ �= 〈 〉) ∧ (r .op = “Wr”) Enabled if Head(memQ) a write.

Perform the write to memory.

Remove the write from memQ .

∧ mem ′ = [mem except ! [r .adr ] = r .val ]
∧ memQ ′ = Tail(memQ)
∧ unchanged 〈memInt , mem, buf , ctl , cache 〉

MemQRd ∆= Perform an enqueued read to memory.

let p ∆= Head(memQ)[1] The requesting processor.

r ∆= Head(memQ)[2] The request at the head of memQ .

in ∧ (memQ �= 〈 〉) ∧ (r .op = “Rd”) Enabled if Head(memQ) is a read.

Remove the head of memQ .

Put value from memory or memQ
in p’s cache.

∧ memQ ′ = Tail(memQ)
∧ cache ′ =

[cache except ! [p][r .adr ] = vmem[r .adr ]]
∧ unchanged 〈memInt , mem, buf , ctl 〉

Evict(p, a) ∆= Remove address a from p’s cache.

∧ (ctl [p] = “waiting”)⇒ (buf [p].adr �= a) Can’t evict a if it was just read
into cache from memory.∧ cache ′ = [cache except ! [p][a] = NoVal ]

∧ unchanged 〈memInt , mem, buf , ctl , memQ 〉

Next ∆= ∨ ∃ p ∈ Proc : ∨ Req(p) ∨ Rsp(p)
∨ RdMiss(p) ∨DoRd(p) ∨DoWr(p)
∨ ∃ a ∈ Adr : Evict(p, a)

∨ MemQWr ∨MemQRd

Spec ∆= Init ∧✷[Next ]〈memInt , mem, buf , ctl , cache, memQ 〉

theorem Spec ⇒ ✷(TypeInvariant ∧ Coherence)

LM ∆= instance Memory The memory spec. with internal variables hidden.

theorem Spec ⇒ LM !Spec Formula Spec implements the memory spec.

Figure 11: The write-through cache specification (end).
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The DoRd(p) action represents the performing of the read from p’s cache. If ctl [p] =
“busy”, then the address was originally in the cache. If ctl [p] = “waiting”, then the address
was just read into the cache from memory.

The DoWr(p) action writes the value to p’s cache and updates the value in any other
caches that have copies. It also enqueues a write request in memQ . In an implementation,
the request is put on the bus, which transmits it to the other caches and to the memQ queue.
In our high-level view of the system, we represent all this as a single step.

In the definition of DoWr , the let clause defines r to equal buf [p] within the in clause.
Observe that the definition of r contains the parameter p of the definition of DoWr . Hence,
we could not move the definition of r outside the definition of DoWr .

A definition in a let is just like an ordinary definition in a module; in particular, it can
have parameters. These local definitions can be used to shorten an expression by replacing
common subexpressions with an operator. In the definition of DoWr , I replaced five instances
of buf [p] by the single symbol r . This was a silly thing to do, because it makes almost no
difference in the length of the definition and it requires the reader to remember the definition
of the new symbol r . But using a let to eliminate common subexpressions can often greatly
shorten and simplify an expression.

A let can also be used to make an expression easier to read, even if the operators it defines
appear only once in the in expression. We write a specification with a sequence of definitions,
instead of just defining a single monolithic formula, because a formula is easier to understand
when presented in smaller chunks. The let construct allows the process of splitting a formula
into smaller parts to be done hierarchically. A let can appear as a subexpression of an in
expression. Nested lets are common in large, complicated specifications.

Returning to moduleWriteThroughCache, we next come to the two actions MemQWr and
MemQRd . They represent the processing of the request at the head of the memQ queue—
MemQWr for a write request, and MemQRd for a read request. These actions also use a let
to make local definitions. Here, the definitions of p and r could be moved before the definition
of MemQWr . In fact, we could save space by replacing the two local definitions of r with
one global (within the module) definition. However, making the definition of r global in this
way would be somewhat distracting, since r is used only in the definitions of MemQWr and
MemQRd . It might be better instead to combine these two actions into one. Whether you put
a definition into a let or make it more global should depend on what makes the specification
easier to read. Writing specifications is a craft whose mastery requires talent and hard work.

The Evict(p, a) action represents the operation of removing address a from processor p’s
cache. As explained above, we allow an address to be evicted at any time—unless the address
was just written to satisfy a pending read request, which is the case iff ctl [p] = “waiting”
and buf [p].adr = a. Note the use of the “double subscript” in the except expression of the
action’s second conjunct. This conjunct “assigns NoVal to cache[p][a]”. If address a is not in
p’s cache, then cache[p][a] already equals NoVal and an Evict(p, a) step is a stuttering step.

The definitions of the next-state action Next and of the complete specification Spec are
straightforward. The module closes with two theorems that are discussed below.

6.7 Invariance

Module WriteThroughCache contains the theorem

theorem Spec ⇒ ✷(TypeInvariant ∧ Coherence)

which asserts that TypeInvariant ∧Coherence is an invariant of Spec. A state predicate P ∧Q
is always true iff both P and Q are always true, so ✷(P ∧Q) is equivalent to ✷P ∧✷Q . This
implies that the theorem above is equivalent to the two theorems:

theorem Spec ⇒ ✷TypeInvariant
theorem Spec ⇒ ✷Coherence
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The first theorem is the usual type-invariance assertion. The second, which asserts that
Coherence is an invariant of Spec, expresses an important property of the algorithm.

Although TypeInvariant and Coherence are both invariants of the temporal formula Spec,
they differ in a fundamental way. If s is any state satisfying TypeInvariant , then any state t
such that s → t is a Next step also satisfies TypeInvariant . This property is expressed by:

theorem TypeInvariant ∧ Next ⇒ TypeInvariant ′

(Recall that TypeInvariant ′ is the formula obtained by priming all the variables in formula
TypeInvariant .) In general, when P ∧ N ⇒ P ′ holds, we say that predicate P is an invariant
of action N .13 Predicate TypeInvariant is an invariant of Spec because it is an invariant of
Next and it is implied by the initial predicate Init .

Predicate Coherence is not an invariant of the next-state action Next . Suppose s is a state
in which

• cache[p1][a] = 1

• cache[q ][b] = NoVal , for all 〈q , b 〉 different from 〈p1, a 〉
• mem[a] = 2

• memQ contains the single element 〈p2, [op �→ “Rd”, adr �→ a]〉
for two different processors p1 and p2 and some address a. Then Coherence is true in state
s. Let t be the state obtained from s by taking a MemQRd step. In state t , we have
cache[p2][a] = 2 and cache[p1][a] = 1, so Coherence is false. Hence Coherence is not an
invariant of the next-state action.

Coherence is an invariant of formula Spec because states like s cannot occur in a behavior
satisfying Spec. Proving its invariance is not so easy. We must find a predicate Inv that is an
invariant of Next such that Inv implies Coherence and is implied by the initial predicate Init .

Important properties of a specification can often be expressed as invariants. Proving that
a state predicate P is an invariant of a specification means proving a formula of the form

Init ∧✷[Next ]v ⇒ ✷P

This is done by finding an appropriate state predicate Inv and proving

Init ⇒ Inv , Inv ∧ [Next ]v ⇒ Inv ′, Inv ⇒ P

Since our subject is specification, not proof, I won’t discuss how to find Inv .

6.8 Proving Implementation

Module WriteThroughCache ends with the theorem

theorem Spec ⇒ LM !Spec

where LM !Spec is formula Spec of module Memory . By definition of this formula, we can
restate the theorem as

theorem Spec ⇒ ∃∃∃∃∃∃mem, ctl , buf : LM !Inner(mem, ctl , buf )!ISpec

where LM !Inner(mem, ctl , buf )!ISpec is formula ISpec of the InnerMemory module. The
rules of logic tell us that to prove such a theorem, we must find “witnesses” for the quantified

13An invariant of a specification S that is also an invariant of its next-state action is sometimes
called an inductive invariant of S .
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variables mem, ctl , and buf . These witness are state functions (ordinary expressions with no
primes), which I’ll call omem, octl , and obuf , that satisfy:

Spec ⇒ LM !Inner(omem, octl , obuf )!ISpec(5)

The tuple 〈omem, octl , obuf 〉 of witness functions is called a refinement mapping, and we
describe (5) as the assertion that Spec implements formula ISpec (of module InnerMemory)
under this refinement mapping. Intuitively, this means Spec implies that the value of the
tuple of state functions 〈memInt , omem, octl , obuf 〉 changes the way ISpec asserts that the
tuple of variables 〈memInt ,mem, ctl , buf 〉 should change.

I will now briefly describe how we prove (5); for details, see [8]. Let me first intro-
duce a bit of non-TLA+ notation. For any formula F of module InnerMemory , let F equal
LM !Inner(omem, octl , obuf )!F , which is formula F with omem, octl , and obuf substituted
for mem, ctl , and buf . In particular, mem , ctl , and buf equal omem, octl , and obuf , respec-
tively.

Replacing Spec and ISpec by their definitions transforms (5) to

Init ∧✷[Next ]〈memInt , mem, buf , ctl , cache, memQ 〉
⇒ IInit ∧ ✷[INext ]〈memInt , mem, ctl , buf 〉

This is proved by finding an invariant Inv of Spec such that

∧ Init ⇒ IInit
∧ Inv ∧ Next ⇒ ∨ INext

∨ unchanged 〈memInt , mem, ctl , buf 〉
The second conjunct is called step simulation. It asserts that a Next step starting in a
state satisfying the invariant Inv is either an INext step—a step that changes the 4-tuple
〈memInt , omem, octl , obuf 〉 the way an INext step changes 〈memInt ,mem, ctl , buf 〉—or else
it leaves that 4-tuple unchanged.

The mathematics of an implementation proof is simple, so the proof is straightforward—in
theory. For specifications of real systems, such proofs can be quite difficult. Going from the
theory to practice requires turning the mathematics of proofs into an engineering discipline—
a subject that deserves a book to itself. However, when writing specifications, it helps to
understand refinement mappings and step simulation.

We now return to the question posed in Section 4.2: what is the relation between the
specifications of the asynchronous interface in modules AsynchInterface and Channel? Recall
that module AsynchInterface describes the interface in terms of the three variables val , rdy ,
and ack , while module Channel describes it with a single variable chan whose value is a record
with val , rdy , and ack components. In what sense are those two specifications of the interface
equivalent?

One answer that now suggests itself is that each of the specifications should implement
the other under a refinement mapping. We expect formula Spec of module Channel to imply
the formula obtained from Spec of module AsynchInterface by substituting for its variables
val , rdy , and ack the val , rdy , and ack components of the variable chan of module Channel .
This assertion is expressed precisely by the theorem in the following module.

module ChannelImplAsynch

extends Channel
AInt(val , rdy , ack) ∆= instance AsynchInterface
theorem Spec ⇒ AInt(chan.val , chan.rdy , chan.ack)!Spec
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In this example, the refinement mapping substitutes 〈chan.val , chan.rdy , chan.ack 〉 for the
tuple 〈val , rdy , ack 〉 of variables in the formula Spec of module AsynchInterface.

Similarly, formula Spec of moduleAsynchInterface implies formula Spec of module Channel
with chan replaced by the record-valued expression:

[val �→ val , rdy �→ rdy , ack �→ ack ]

(The first val in val �→ val is the field name in the record constructor, while the second val is
the variable of module AsynchInterface.)

7 Some More Math

Our mathematics is built on a small, simple collection of concepts. You’ve already seen most
of what’s needed to describe almost any kind of mathematics. All you lack are a handful of
operators on sets that are described below in Section 7.1. After learning about them, you will
be able to define all the data structures and operations that occur in specifications.

While our mathematics is simple, its foundations are nonobvious—for example, the mean-
ings of recursive function definitions and the choose operator are subtle. This section dis-
cusses some of those foundations. Understanding them will help you use mathematics more
effectively.

7.1 Sets

The simple operations on sets described in Section 2.2 are all you’ll need for writing most sys-
tem specifications. However, you may occasionally have to use more sophisticated operators—
especially if you need to define data structures beyond tuples, records, and simple functions.

Two powerful operators of set theory are the unary operators union and subset, defined
as follows.14

union S The union of the elements of S . In other words, a value e is an element of
union S iff it is an element of an element of S . For example:

union {{1, 2}, {2, 3}, {3, 4}} = {1, 2, 3, 4}
subset S The set of all subsets of S . In other words, T ∈ subset S iff T ⊆ S . For

example:

subset {1, 2} = {{}, {1}, {2}, {1, 2}}
Mathematicians often describe a set as “the set of all . . . such that . . . ”. TLA+ has two
constructs that formalize such a description:

{x ∈ S : P} The subset of S consisting of all elements x satisfying property P . For exam-
ple, the set of odd natural numbers can be written {n ∈ Nat : n % 2 = 1}.
(The modulus operator % is described in Section 3.5.) The identifier x is
bound in P ; it may not occur in S .

{e : x ∈ S} The set of elements of the form e, for all x in the set S . For example,
{2 ∗ n + 1 : n ∈ Nat} is the set of all odd natural numbers. The identifier x
is bound in e; it may not occur in S .

14Mathematicians usually write
⋃

S instead of union S . They often call subsetS the powerset of
S and write it P(S ) or 2S .
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The construct {e : x ∈ S} has the same generalizations as ∃ x ∈ S :F . For example,

{e : x ∈ S , y ∈ T}
is the set of all elements of the form e, for x in S and y in T . In the construct {x ∈ S :P},
we can let x be a tuple. For example, {〈y , z 〉 ∈ S :P} is the set of all pairs 〈y , z 〉 in the set
S that satisfy P .

All the set operators we’ve seen so far are built-in operators of TLA+. There is also a
FiniteSets module that defines two operators:

Cardinality(S ) The number of elements in set S , if S is a finite set.

IsFiniteSet(S ) True iff S is a finite set.

Careless reasoning about sets can lead to problems. The classic example of this is Russell’s
paradox:

Let R be the set of all sets S such that S /∈ S . The definition of R implies that
R is an element of R iff R is not an element of R is true.

Obviously, R can’t both be and not be an element of R. The source of the paradox is that
R isn’t a set. There’s no way to write it in TLA+. Intuitively, R is too big to be a set. A
collection C is too big to be a set if it is as big as the collection of all sets—meaning that we
can assign to every set a different element of C. More precisely, C is too big to be a set if we
can define an operator SMap such that:

• SMap(S ) is in C, for any set S .
• If S and T are two different sets, then SMap(S ) �= SMap(T ).

For example, the collection of all sequences of length 2 is too big to be a set; we can define
the operator SMap by

SMap(S ) ∆= 〈1,S 〉

7.2 Silliness

Most modern programming languages introduce some form of type checking to prevent you
from writing silly expressions like 3/“abc”. TLA+ is based on the usual formalization of
mathematics, which doesn’t have types. In an untyped formalism, every syntactically well-
formed expression has a meaning—even a silly expression like 3/“abc”. Mathematically, the
expression 3/“abc” is no sillier than the expression 3/0, and mathematicians implicitly write
that silly expression all the time. For example, consider the valid formula

∀ x ∈ Real : (x �= 0)⇒ (x ∗ (3/x ) = 3)

where Real is the set of all real numbers. This asserts that (x �= 0) ⇒ (x ∗ (3/x ) = 3) is true
for all real numbers x . Substituting 0 for x yields the valid formula (0 �= 0)⇒ (0 ∗ (3/0) = 3)
that contains the silly expression 3/0. It’s valid because 0 �= 0 equals false, and false ⇒ P
is true for any formula P .

A correct formula can contain silly expressions. However, the validity of a correct formula
cannot depend on the meaning of a silly expression. If an expression is silly, then its meaning
is probably unspecified. The definitions of 0, 3, /, and ∗ (which are in the standard module
Reals) don’t specify the value of 0 ∗ (3/0), so there’s no way of knowing whether that value
equals 3.
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No sensible syntactic rules can prevent you from writing 3/0 without also preventing you
from writing perfectly reasonable expressions. The typing rules of programming languages
introduce complexity and limitations on what you can write that don’t exist in ordinary
mathematics. In a well-designed programming language, the costs of types are balanced by
benefits: types allow a compiler to produce more efficient code, and type checking catches
errors. For programming languages, the benefits seem to outweigh the costs. For writing
specifications, I have found that the costs outweigh the benefits.

If you’re used to the constraints of programming languages, it may be a while before you
start taking advantage of the freedom afforded by mathematics. At first, you won’t think of
defining anything like the operator R defined in Section 6.2, which couldn’t be written in a
typed programming language.

Mathematically, what a specification means is equivalent to what the true assertions about
it are. Assertions are expressed with Boolean operators, so we need to pay specific attention
to silly expressions written with those operators—expressions like 5 ∧ “abc”. What does such
an expression mean? There are several ways of answering this question, but there are two
principle ones that I call the conservative and liberal views.

In the conservative view, the value of an expression like 2 ∧ “abc” is completely unspecified.
It could equal

√
2. It need not equal “abc” ∧ 2. Hence, the ordinary laws of logic, such as the

commutativity of ∧, are valid only for Boolean values.
In the liberal interpretation, the value of 2 ∧ “abc” is a Boolean. It equals either true or

false, but we don’t know which. However, all the ordinary laws of logic, such as the com-
mutativity of ∧, are valid. Hence, 2 ∧ “abc” equals “abc” ∧ 2. More precisely, any tautology
of propositional or predicate logic, such as

(∀ x : p) ≡ ¬(∃ x : ¬p)
is valid, even for nonBoolean values.15

The semantics of TLA+assert that the rules of the conservative view are valid. The liberal
view is neither required nor forbidden. You should write specifications that make sense under
the conservative view. However, you (and the implementer of a tool) are free to use the liberal
interpretation if you wish.

7.3 Recursive Function Definitions Revisited

Section 6.5 introduced recursive function definitions. Let’s now examine what such definitions
mean mathematically. Mathematicians usually define the factorial function fact by writing:

fact [n] = if n = 0 then 1 else n ∗ fact [n − 1], for all n ∈ Nat

This definition can be justified by proving that it defines a unique function fact with domain
Nat . In other words, fact is the unique value satisfying:

fact = [n ∈ Nat �→ if n = 0 then 1 else n ∗ fact [n − 1]](6)

The choose operator, introduced in Section 6.1, allows us to express “the value satisfying
property P” as choose x :P . We can therefore define fact as follows to be the value satisfy-
ing (6):

fact ∆= choose fact : fact = [n ∈ Nat �→ if n = 0 then 1 else n ∗ fact [n − 1] ](7)

(Since the symbol fact is not yet defined in the expression to the right of the ∆=, we can use
it as the bound identifier in the choose expression.) The TLA+ definition

fact [n ∈ Nat ] ∆= if n = 0 then 1 else n ∗ fact [n − 1]

15Equality (=) is not an operator of propositional or predicate logic; this tautology need not be valid
for nonBoolean values if ≡ is replaced by =.
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is simply an abbreviation for (7). In general, f [x ∈ S ] ∆= e is an abbreviation for:

f ∆= choose f : f = [x ∈ S �→ e](8)

TLA+ allows you to write silly definitions. For example, you can write

circ[n ∈ Nat ] ∆= choose y : y �= circ[n](9)

This appears to define circ to be a function such that circ[n] �= circ[n] for any natural number
n. There obviously is no such function, so circ can’t be defined to equal it. A recursive function
definition doesn’t necessarily define a function. If there is no f that equals [x ∈ S �→ e], then
(8) defines f to be some unspecified value. Thus, the nonsensical definition (9) defines circ to
be some unknown value.

If we want to reason about a function f defined by f [x ∈ S ] ∆= e, we need to prove that
there exists an f that equals [x ∈ S �→ e]. The existence of f is obvious if f does not occur
in e. If it does, so this is a recursive definition, then there is something to prove. Since I’m
not discussing proofs, I won’t describe how to prove it. Intuitively, you have to check that, as
in the case of the factorial function, the definition uniquely determines the value of f [x ] for
every x in S .

Recursion is a common programming technique because programs must compute values
using a small repertoire of simple elementary operations. It’s not used so often in mathe-
matical definitions, where we needn’t worry about how to compute the value and can use the
powerful operators of logic and set theory. For example, the operators Head , Tail , and ◦ are
defined in Section 6.4 without recursion, even though computer scientists usually define them
recursively. Still, there are some things that are best defined inductively, using a recursive
function definition.

7.4 Functions versus Operators

Consider these definitions, which we’ve seen before

Tail(s) ∆= [i ∈ 1 . . (Len(s) − 1) �→ s[i + 1]]

fact [n ∈ Nat ] ∆= if n = 0 then 1 else n ∗ fact [n − 1]

They define two very different kinds of objects: fact is a function, and Tail is an operator.
Functions and operators differ in a few basic ways.

Their most obvious difference is that a function like fact by itself is a complete expression
that denotes a value, but an operator like Tail is not. Both fact [n] ∈ S and fact ∈ S are
syntactically correct expressions. But, while Tail(n) ∈ S is syntactically correct, Tail ∈ S is
not. It is gibberish—a meaningless string of symbols, like x+ = 0.

Their second difference is more profound. The definition of Tail defines Tail(s) for all
values of s. For example, it defines Tail(1/2) to equal

[i ∈ 1 . . (Len(1/2) − 1) �→ (1/2)[i + 1]](10)

We have no idea what this expression means, because we don’t know what Len(1/2) or
(1/2)[i + 1] mean. But, whatever (10) means, it equals Tail(1/2).

The definition of fact defines fact [n] only for n ∈ Nat . It tells us nothing about the value
of fact [1/2]. The expression fact [1/2] is syntactically well-formed, so it denotes some value.
But the definition of fact tells us nothing about what that value is.

Unlike an operator, a function must have a domain, which is a set. We cannot define a
function Tail so that Tail [s] is the tail of any nonempty sequence s; the domain of such a
function would have to include all nonempty sequences, and the collection of all such sequences
is too big to be a set. (The operator SMap defined by SMap(S ) ∆= 〈S 〉 maps every set to a
different nonempty sequence.) Hence, we can’t define Tail to be a function.
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Unlike a function, an operator cannot be defined recursively. However, we can usually
transform an illegal recursive operator definition into a nonrecursive one using a recursive
function definition. For example, let’s try to define the Cardinality operator on the set of
finite sets. (Recall that the cardinality of a finite set S is the number of elements in S .) The
collection of all finite sets is too big to be a set. (The operator SMap(S ) ∆= {S} maps every
set S to a different set {S} of cardinality 1.) The Cardinality operator has a simple intuitive
definition:

• Cardinality({}) = 0.

• If S is a nonempty finite set, then

Cardinality(S ) = 1 + Cardinality(S \ {x})

where x is an arbitrary element of S . (The set S \ {x} contains all the elements of S
except x .)

Using the choose operator to describe an arbitrary element of S , we can write this as the
more formal-looking, but still illegal, definition:

Cardinality(S ) ∆= if S = {} then 0
else 1 + Cardinality(S \ {choose x : x ∈ S})

This definition is illegal because it’s circular—only in a recursive function definition can the
symbol being defined appear to the right of the ∆= .

To turn this into a legal definition, observe that, for a given set S , we can define a function
CS such that CS [T ] equals the cardinality of T for every subset T of S . The definition is

CS [T ∈ subset S ] ∆= if T = {} then 0
else 1 + CS [T \ {choose x : x ∈ T}]

Since S is a subset of itself, this defines CS [S ] to equal Cardinality(S ), if S is a finite set. (We
don’t know or care what CS [S ] equals if S is not finite.) So, we can define the Cardinality
operator by:

Cardinality(S ) ∆= let CS [T ∈ subset S ] ∆=
if T = {} then 0

else 1 + CS [T \ {choose x : x ∈ T}]
in CS [S ]

Operators also differ from functions in that an operator can take an operator as an argu-
ment. For example, we can define an operator IsPartialOrder so that IsPartialOrder(R,S )
equals true iff the operator R defines an irreflexive partial order16 on S . The definition is

IsPartialOrder(R( , ), S ) ∆= ∧ ∀ x , y , z ∈ S : R(x , y) ∧ R(y , z ) ⇒ R(x , z )
∧ ∀ x ∈ S : ¬R(x , x )

We could also use an infix-operator symbol like ≺ instead of R as the parameter of the
definition, writing:

IsPartialOrder( ≺ , S ) ∆= ∧ ∀ x , y , z ∈ S : (x ≺ y) ∧ (y ≺ z )⇒ (x ≺ z )
∧ ∀ x ∈ S : ¬(x ≺ x )

16If you don’t know what an irreflexive partial order is, read the following definition of IsPartialOrder
to find out.
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The first argument of IsPartialOrder is an operator that takes two arguments; its second
argument is an expression. Since > is an operator that takes two arguments, the expression
IsPartialOrder(>,Nat) is syntactically correct. In fact, it’s valid—if > is defined to be the
usual operator on numbers. The expression IsPartialOrder(+, 3) is also syntactically correct,
but it’s silly and we have no idea whether or not it’s valid.

The last difference between operators and functions has nothing to do with mathematics
and is an idiosyncrasy of TLA+: the language doesn’t permit you to define infix functions.
So, if we want to define /, we have no choice but to make it an operator.

When defining an object V , you may have to decide whether to make V an operator or a
function. The differences between operators and functions will often determine the decision.
For example, if a variable may have V as its value, then V must be a function. Thus, in
the memory specification of Section 6.3, we had to represent the state of the memory by a
function rather than an operator, since the variable mem couldn’t equal an operator. If these
differences don’t determine whether to use an operator or a function, then it’s a matter of
taste. I usually prefer operators.

7.5 Using Functions

Consider the following two formulas:

f ′ = [i ∈ Nat �→ i + 1](11)
∀ i ∈ Nat : f ′[i ] = i + 1(12)

These formulas both imply that f ′[i ] = i + 1 for every natural number i , but they are not
equivalent. Formula (11) uniquely determines f ′, asserting that it’s a function with domain
Nat . Formula (12) is satisfied by lots of different values of f ′—for example, by the function

[i ∈ Real �→ if i ∈ Nat then i + 1 else
√
i ]

In fact, from (12), we can’t even deduce that f ′ is a function. Formula (11) implies formula
(12), but not vice-versa.

When writing specifications, we almost always want to specify the new value of a variable
f rather than the new values of f [i ] for all i in some set. We therefore usually write (11)
rather than (12),

7.6 Choose

The choose operator17 was introduced in the memory interface of Section 6.1 in the simple
idiom choose v : v /∈ S , which is an expression whose value is not an element of S . In
Section 7.3 above, we saw that it is a powerful tool that can be used in rather subtle ways.

The most common use for the choose operator is to “name” a uniquely specified value.
For example, one possible definition of division on the set Real of real numbers is:

r/s ∆= choose v ∈ Real : (v ∗ s = r)

(The expression choose x ∈ S : e means choose x : (x ∈ S ) ∧ e.) If r is a nonzero real num-
ber, then there is no real number v such that v ∗ 0 = r . Therefore, r/0 has an unspecified
value. We don’t know what a real number times a string equals, so we cannot say whether
or not there is a real number v such that v ∗ “abc” equals r . Hence, we don’t know what the
value of r/“abc” is.

People who do a lot of programming and not much mathematics often think that choose
must be a nondeterministic operator. In mathematics, there is no such thing as a nondeter-
ministic operator or a nondeterministic function. If some expression equals 42 today, then

17The choose operator is known to logicians as Hilbert’s ε [10].
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it will equal 42 tomorrow, and it will still equal 42 a million years from tomorrow. The
specification

(x = choose n : n ∈ Nat) ∧ ✷[x ′ = choose n : n ∈ Nat ]x

allows only a single behavior—one in which x always equals the number choose n : n ∈ Nat ,
some particular, unspecified natural number. It is very different from the specification

(x ∈ Nat) ∧ ✷[x ′ ∈ Nat ]x

that allows all behaviors in which x is always a natural number—possibly a different number
in each state. This specification is highly nondeterministic, allowing lots of different behaviors.

8 Liveness and Fairness

The specifications we have written so far say what a system must not do. The clock must not
advance from 11 to 9; the receiver must not receive a message if the FIFO is empty. They
don’t require that the system ever do anything. The clock need never tick; the sender need
never send any messages. Our specifications have described what are called safety properties.
If a safety property is violated, it is violated at some particular point in the behavior—by a
step that advances the clock from 11 to 9, or that reads the wrong value from memory.

We now learn how to specify that something does happen: the clock keeps ticking; a value
is eventually read from memory. We specify liveness properties, which cannot be violated at
any particular instant. Only by examining an entire infinite behavior can we tell that the
clock has stopped ticking, or that a message is never sent.

8.1 Temporal Formulas

To specify liveness properties we must learn to express them as temporal formulas. We now
take a more rigorous look at what a temporal formula means.

Recall that a state assigns a value to every variable, and a behavior is an infinite sequence
of states. A temporal formula is true or false of a behavior. Let σ |= F be the truth value
of the formula F for the behavior σ, so σ satisfies F iff σ |= F equals true. To define the
meaning of a temporal formula F , we have to explain how to determine the value of σ |= F for
any behavior σ. For now, we consider only temporal formulas that don’t contain the temporal
existential quantifier ∃∃∃∃∃∃ .

It’s easy to define the meaning of a Boolean combination of temporal formulas in terms of
the meanings of those formulas. The formula F ∧G is true of a behavior σ iff both F and G
are true of σ, and ¬F is true of σ iff F is false for σ:

σ |= (F ∧G) ∆= (σ |= F ) ∧ (σ |= G) σ |= ¬F ∆= ¬ (σ |= F )

This defines the meanings of ∧ and ¬ as operators on temporal formulas. The meanings of the
other Boolean operators are similarly defined. In the same way, we can define the ordinary
predicate-logic quantifiers ∀ and ∃ as operators on temporal formulas—for example:

σ |= (∃ r : F ) ∆= ∃ r : (σ |= F )

We will discuss quantifiers in Section 8.6. For now, we ignore quantification in temporal
formulas.

All the temporal formulas not containing ∃∃∃∃∃∃ that we’ve seen have been Boolean combina-
tions of the following three simple kinds of formulas. (Recall the definitions of state function
and state predicate in Section 4.1.)

• A state predicate. It is interpreted as a temporal formula that is true of a behavior iff
it is true in the first state of the behavior.
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• A formula ✷P , where P is a state predicate. It is true of a behavior iff P is true in
every state of the behavior.

• A formula ✷[N ]v , where N is an action and v is a state function. It is true of a behavior
iff every successive pair of steps in the behavior is a [N ]v step.

Since a state predicate is an action that contains no primed variables, we can both combine
and generalize these three kinds of temporal formulas into the two kinds of formulas A and
✷A, where A is an action.

Generalizing from state functions, we interpret an arbitrary action A as a temporal formula
by defining σ |= A to be true iff the first two states of σ are an A step. For any behavior σ,
let σ0, σ1, . . . be the sequence of states that make up σ. Then the meaning of an action A
as a temporal formula is defined by letting σ |= A be true iff the pair 〈σ0, σ1 〉 of states is
an A step. We define σ |= ✷A to be true iff, for all n ∈ Nat , the pair 〈σn , σn+1 〉 of states
is an A step. We now generalize this to the definition of σ |= ✷F for an arbitrary temporal
formula F .

For any behavior σ and natural number n, let σ+n be the suffix of σ obtained by deleting
its first n states:

σ+n ∆= σn , σn+1, σn+2, . . .

The successive pair of states 〈σn , σn+1 〉 of σ is the first pair of states of σ+n , and 〈σn , σn+1 〉
is an A step iff σ+n satisfies A. In other words:

(σ |= ✷A) ≡ ∀ n ∈ Nat : σ+n |= A

So, we can generalize the definition of σ |= ✷A to

σ |= ✷F ∆= ∀ n ∈ Nat : σ+n |= F

for any temporal formula F . In other words, σ satisfies ✷F iff every suffix σ+n of σ satisfies
F . This defines the temporal operator ✷.

We have now defined the meaning of any temporal formula built from actions (including
state predicates), Boolean operators, and the ✷ operator. For example:

σ |= ✷((x = 1)⇒ ✷(y > 0))
≡ ∀ n ∈ Nat : σ+n |= ((x = 1)⇒ ✷(y > 0)) By the meaning of ✷.

≡ ∀ n ∈ Nat : (σ+n |= (x = 1))⇒ (σ+n |= ✷(y > 0)) By the meaning of ⇒.

≡ ∀ n ∈ Nat : (σ+n |= (x = 1))⇒
(∀m ∈ Nat : (σ+n)+m |= (y > 0)) By the meaning of ✷.

Thus, σ |= ✷((x = 1) ⇒ ✷(y > 0)) is true iff, for all n ∈ Nat , if x = 1 is true in state σn ,
then y > 0 is true in all states σn+m with m ≥ 0.

We saw in Section 3.2 that a specification should allow stuttering steps—ones that leave
unchanged all the variables appearing in the formula. A stuttering step represents a change
only to some part of the system not described by the formula; adding it to the behavior should
not affect the truth of the formula. We say that a formula F is invariant under stuttering18

if adding a stuttering step to a behavior σ does not affect whether F is true of σ. (This
implies that removing a stuttering step from σ also does not affect the truth of σ |= F .) A
sensible formula should be invariant under stuttering. There’s no point writing formulas that
aren’t sensible, so TLA+ allows you to write only temporal formulas that are invariant under
stuttering.

18This is a completely new sense of the word invariant ; it has nothing to do with the concept of
invariance discussed already.
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An arbitrary action, viewed as a temporal formula, is not invariant under stuttering. The
action x ′ = x +1 is true for a behavior in which x is incremented by 1 in the first step; adding
an initial stuttering step makes it false. A state predicate is invariant under stuttering, since
its truth depends only on the first state of a behavior, and adding a stuttering step doesn’t
change the first state. The formula ✷[N ]v is also invariant under stuttering, for any action N
and state function v . It’s not hard to see that invariance under stuttering is preserved by ✷ and
by the Boolean operators. So, state predicates, formulas of the form ✷[N ]v , and all formulas
obtainable from them by applying ✷ and Boolean operators are invariant under stuttering.
For now, let’s take these to be our temporal formulas. (Later, we’ll add quantification.)

To understand temporal formulas intuitively, think of σn as the state of the universe at
time instant n during the behavior σ.19 For any state predicate P , the expression σ+n |= P
asserts that P is true at time instant n. Thus, ✷((x = 1)⇒ ✷(y > 0)) asserts that any time
x = 1 is true, y > 0 is true from then on. For an arbitrary temporal formula F , we also
interpret σ+n |= F as the assertion that F is true at time instant n. The formula ✷F then
asserts that F is true at all times. We can therefore read ✷ as always or henceforth or from
then on.

We now examine five especially important classes of formulas that are constructed from
arbitrary temporal formulas F and G . We introduce new operators for expressing the first
three.

✸F is defined to equal ¬✷¬F . It asserts that F is not always false, which means that F is
true at some time:

σ |= ✸F ≡ σ |= ¬✷¬F By definition of ✸.

≡ ¬ (σ |= ✷¬F ) By the meaning of ¬.
≡ ¬ (∀ n ∈ Nat : σ+n |= ¬F ) By the meaning of ✷.

≡ ¬ (∀ n ∈ Nat : ¬ (σ+n |= F )) By the meaning of ¬.
≡ ∃ n ∈ Nat : σ+n |= F Because ¬∀¬ is equivalent to ∃ .

We usually read ✸ as eventually, taking eventually to include now.

F ❀ G is defined to equal ✷(F ⇒ ✸G). The same kind of calculation we’ve done above
shows

σ |= (F ❀ G) ≡ ∀ n ∈ Nat : (σ+n |= F )⇒ (∃m ∈ Nat : (σ+(n+m) |= G))

The formula F ❀ G asserts that whenever F is true, G is eventually true—that is, true
then or at some later time. We read ❀ as leads to.

✸〈A〉v is defined to equal ¬✷[¬A]v , where A is an action and v a state function. It asserts
that not every step is a (¬A) ∨ (v ′ = v) step, so some step is a ¬((¬A) ∨ (v ′ = v))
step. But ¬((¬A) ∨ (v ′ = v)) is equivalent to A ∧ (v ′ �= v), so ✸〈A〉v asserts that some
step is an A ∧ (v ′ �= v) step. We define 〈A〉v to equal A ∧ (v ′ �= v), so ✸〈A〉v asserts
that eventually an 〈A〉v step occurs. We think of ✸〈A〉v as the formula obtained by
applying the operator ✸ to 〈A〉v , although technically it’s not because 〈A〉v isn’t a
temporal formula.

✷✸F asserts that at all times, F is true then or at some later time. For time instant 0, this
implies that F is true at some time instant n0 ≥ 0. For time instant n0 + 1, it implies
that F is true at some time instant n1 ≥ n0 + 1. For time instant n1 + 1, it implies

19It is because we think of σn as the state at time n, and because we usually measure time starting
from 0, that I start numbering the states of a behavior with 0 rather than 1.
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that F is true at some time instant n2 ≥ n1 +1. Continuing the process, we see that F
is true at an infinite sequence of time instants n0,n1,n2, . . . . So, ✷✸F asserts that F
is infinitely often true. In particular, ✷✸〈A〉v asserts that infinitely many 〈A〉v steps
occur.

✸✷F asserts that eventually (at some time), F becomes true and remains true thereafter.
In other words, ✸✷F asserts that F is eventually always true. In particular, ✸✷[N ]v
asserts that eventually, every step is a [N ]v step.

The operators ✷ and ✸ have higher precedence (bind more tightly) than the Boolean opera-
tors, so ✸F ∨ ✷G means (✸F ) ∨ (✷G). The operator ❀ has the same precedence as ⇒.

8.2 Weak Fairness

Using the temporal operators ✷ and ✸, it’s easy to specify liveness properties. For example,
consider the hour-clock specification of module HourClock in Figure 1. We can require that
the clock never stops by asserting that there must be infinitely many HCnxt steps. This is
expressed by the formula ✷✸〈HCnxt 〉hr . (The 〈 〉hr is needed to satisfy the syntax rules for
temporal formulas; it’s discussed in the next paragraph.) So, formula HC ∧ ✷✸〈HCnxt 〉hr
specifies a clock that never stops.

The syntax rules of TLA require us to write ✷✸〈HCnxt 〉hr instead of the more obvious
formula ✷✸HCnxt . These rules are needed to guarantee that all TLA formulas are invariant
under stuttering. In a behavior satisfying HC , an HCnxt step necessarily changes hr , so it
is necessarily an 〈HCnxt 〉hr step. Hence, HC ∧ ✷✸〈HCnxt 〉hr is equivalent to the (illegal)
formula HC ∧ ✷✸HCnxt .

In a similar fashion, most of the actions we define do not allow stuttering steps. When
we write 〈A〉v for some action A, the 〈 〉v is usually needed only to satisfy the syntax rules.
To avoid having to think about which variables A actually changes, we generally take the
subscript v to be the tuple of all variables, which is changed if any variable changes. I will
usually ignore the angle brackets and subscripts in informal discussions, and will describe
✷✸〈HCnxt 〉hr as the assertion that there are infinitely many HCnxt steps.

Let’s now modify specification Spec of module Channel (Figure 3) to require that every
value sent is eventually received. We do this by conjoining a liveness condition to Spec. The
analog of the liveness condition for the clock would be ✷✸〈Rcv 〉chan , which asserts that there
are infinitely many Rcv steps. However, this would also require that infinitely many values
are sent, and we don’t want to make that requirement. In fact, we want to permit behaviors
in which no value is ever sent, so no value is ever received. We just want to require that, if a
value is ever sent, then it is eventually received.

It’s enough to require only that the next value to be received always is eventually received,
since this implies that all values sent are eventually received. More precisely, we require that
it’s always the case that, if there is a value to be received, then the next value to be received
eventually is received. The next value is received by a Rcv step, so the requirement is:20

✷(There is an unreceived value ⇒ ✸〈Rcv 〉chan )
There is an unreceived value iff action Rcv is enabled. (Recall that Rcv is enabled in a state
iff it is possible to take a Rcv step from that state.) TLA+ defines EnabledA to be the
predicate that is true iff action A is enabled. The liveness condition can then be written as:

✷(Enabled 〈Rcv 〉chan ⇒ ✸〈Rcv 〉chan )(13)

20✷(F ⇒ ✸G) equals F ❀ G, so we could write this formula more compactly with ❀. However, it
is more convenient to keep it in the form ✷(F ⇒ ✸G)
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In the Enabled formula, it doesn’t matter if we write Rcv or 〈Rcv 〉chan . We add the angle
brackets so the two actions appearing in the formula are the same.

Because 〈HCnxt 〉hr is always enabled during any behavior satisfying HC , we can rewrite
the liveness condition ✷✸〈HCnxt 〉hr for the hour clock as:

✷(Enabled 〈HCnxt 〉hr ⇒ ✸〈HCnxt 〉hr )
This suggests a general liveness condition on an action A:

✷(Enabled 〈A〉v ⇒ ✸〈A〉v)
This formula asserts that if A ever becomes enabled, then an A step will eventually occur—
even if A remains enabled for only a fraction of a nanosecond, and is never again enabled.
The obvious difficulty of physically implementing such a requirement suggests that it’s too
strong. Instead, we define the weaker formula WFv (A) to equal:

✷(✷Enabled 〈A〉v ⇒ ✸〈A〉v)(14)

This formula asserts that if A ever becomes forever enabled, then an A step must eventually
occur. WF stands for W eak Fairness, and the condition WFv (A) is called weak fairness on
A. Here are two formulas that are each equivalent to (14):

✷✸(¬Enabled 〈A〉v ) ∨ ✷✸〈A〉v(15)

✸✷(Enabled 〈A〉v)⇒ ✷✸〈A〉v(16)

These three formulas can be expressed in English as:

14. It’s always the case that, if A is enabled forever, then an A step eventually occurs.

15. A is infinitely often disabled, or infinitely many A steps occur.

16. If A is eventually enabled forever, then infinitely many A steps occur.

The equivalence of these three formulas isn’t obvious. Here’s a proof that (14) is equivalent
to (15), using some simple tautologies. Studying this proof, and these tautologies, will help
you understand how to write liveness conditions.

✷(✷Enabled 〈A〉v ⇒ ✸〈A〉v)
≡ ✷(¬✷Enabled 〈A〉v ∨ ✸〈A〉v) Because (F ⇒ G) ≡ (¬F ∨G).

≡ ✷(✸¬Enabled 〈A〉v ∨ ✸〈A〉v) Because ¬✷F ≡ ✸¬F .

≡ ✷✸(¬Enabled 〈A〉v ∨ 〈A〉v ) Because ✸(F ∨G) ≡ ✸F ∨ ✸G.

≡ ✷✸(¬Enabled 〈A〉v ) ∨✷✸〈A〉v Because ✷✸(F ∨G) ≡ ✷✸F ∨ ✷✸G.

The equivalence of (15) and (16) is proved as follows

✷✸(¬Enabled 〈A〉v ) ∨ ✷✸〈A〉v
≡ ¬✸✷Enabled 〈A〉v ∨ ✷✸〈A〉v Because ✷✸¬F ≡ ✷¬✷F ≡ ¬✸✷F .

≡ ✸✷Enabled 〈A〉v ⇒ ✷✸〈A〉v Because (F ⇒ G) ≡ (¬F ∨G).

We now show that the liveness conditions for the hour clock and the channel can be written
as weak fairness conditions.

First, consider the hour clock. In any behavior satisfying its safety specification HC , an
〈HCnxt 〉hr step is always enabled, so ✷✸(Enabled 〈HCnxt 〉hr ) equals true. Hence, HC
implies that WFhr (HCnxt) is equivalent to ✷✸〈HCnxt 〉hr , our liveness condition for the hour
clock.
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Now, consider the liveness condition (13) for the channel. By (15), weak fairness on Rcv
asserts that either (a) Rcv is disabled infinitely often, or (b) infinitely many Rcv steps occur
(or both). Suppose Rcv becomes enabled at some instant. In case (a), Rcv must subsequently
be disabled, which can occur only by a Rcv step. Case (b) also implies that there is a
subsequent Rcv step. Weak fairness therefore implies that it’s always the case that if Rcv is
enabled, then a Rcv step eventually occurs. A closer look at this reasoning reveals that it is
an informal proof of:

Spec ⇒ (WFchan(Rcv) ⇒ ✷(Enabled 〈Rcv 〉chan ⇒ ✸〈Rcv 〉chan ))
Because ✷F implies F , for any formula F , it’s not hard to check the truth of:

✷(Enabled 〈Rcv 〉chan ⇒ ✸〈Rcv 〉chan )) ⇒ WFchan(Rcv)

Therefore, Spec ∧WFchan (Rcv) is equivalent to the conjunction of Spec and (13), so weak
fairness of Rcv specifies the same liveness condition as (13) for the channel.

8.3 Liveness for the Memory Specification

Let’s now strengthen the memory specification with the liveness requirement that every re-
quest must receive a response. (We don’t require that a request is ever issued.) The live-
ness requirement is conjoined to the internal memory specification, formula ISpec of module
InternalMemory (Figure 8).

We will express the liveness requirement in terms of weak fairness. This requires under-
standing when actions are enabled. The action Rsp(p) is enabled only if the action

Reply(p, buf [p], memInt , memInt ′)(17)

is enabled. Recall that the operator Reply is a constant parameter, declared in module
MemoryInterface (Figure 7). Without knowing more about this operator, we can’t say when
action (17) is enabled.

We assume that Reply actions are always enabled. That is, for any processor p and reply
r , and any old value miOld of memInt , there is a new value miNew of memInt such that
Repl(p, r ,miOld ,miNew) is true. For simplicity, we can just assume that this is true for all
p and r , and add the following assumption to the MemoryInterface module:

assume ∀ p, r ,miOld : ∃miNew : Repl(p, r ,miOld ,miNew)

We should also make a similar assumption for Send , but we don’t need it here.
We will subscript our weak-fairness formulas with the tuple of all variables, so let’s add

the following definition to the InternalMemory module:

vars ∆= 〈memInt , mem, ctl , buf 〉
When processor p issues a request, it enables the Do(p) action, which remains enabled until

a Do(p) step occurs. The weak-fairness condition WFvars(Do(p)) implies that this Do(p) step
must eventually occur. A Do(p) step enables the Rsp(p) action, which remains enabled until
an Rsp(p) step occurs. The weak-fairness condition WFvars(Rsp(p)) implies that this Rsp(p)
step, which produces the desired response, must eventually occur. Hence, the requirement

WFvars(Do(p)) ∧WFvars(Rsp(p))(18)

assures that every request issued by processor p must eventually receive a reply.
We can rewrite condition (18) in the slightly simpler form of weak fairness on the action

Do(p)∨Rsp(p). The disjunction of two actions is enabled iff one or both of them are enabled.
A Req(p) step enables Do(p), thereby enabling Do(p) ∨ Rsp(p). The only Do(p) ∨ Rsp(p)
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step then possible is a Do(p) step, which enables Rsp(p) and hence Do(p) ∨ Rsp(p). At this
point, the only Do(p) ∨ Rsp(p) step possible is a Rsp(p) step, which disables Rsp(p) and
leaves Do(p) disabled, hence disabling Do(p)∨Rsp(p). This all shows that (18) is equivalent
to WFvars(Do(p) ∨ Rsp(p)), weak fairness on the single action Do(p) ∨ Rsp(p).

Weak fairness of Do(p) ∨ Rsp(p) guarantees that every request by processor p receives a
response. We want every request from every processor to receive a response. So, the liveness
condition for the memory specification asserts weak fairness of Do(p) ∨ Rsp(p) for every
processor p:21

Liveness ∆= ∀ p ∈ Proc : WFvars(Do(p) ∨ Rsp(p))

The example of actions Do(p) and Rsp(p) raises the general question: when is the con-
junction of weak fairness on actions A1, . . . , An equivalent to weak fairness of their disjunction
A1 ∨ . . . ∨An? The general answer is complicated, but here’s a sufficient condition:

WF Conjunction Rule If A1, . . . , An are actions such that, for any distinct i and
j , whenever action Ai is enabled, action Aj cannot become enabled until an Ai step
occurs, then WFv (A1) ∧ . . . ∧WFv (An) is equivalent to WFv (A1 ∨ . . . ∨An).

This rule is stated rather informally. It can be interpreted as an assertion about a particular
behavior σ, in which case its conclusion is

σ |= (WFv (A1) ∧ . . . ∧WFv (An)) ≡ WFv (A1 ∨ . . . ∨ An)

Alternatively, it can be formalized as the assertion that if a formula F implies the hypothesis,
then F implies the equivalence of WFv (A1) ∧ . . . ∧WFv (An) and WFv (A1 ∨ . . . ∨An).

Conjunction and disjunction are special cases of universal and existential quantification,
respectively. For example, A1 ∨ . . . ∨ An is equivalent to ∃ i ∈ 1 . . n :Ai . So, we can trivially
restate the WF Conjunction Rule as a condition on when formulas ∀ i ∈ S :WFv (Ai ) and
WFv (∃ i ∈ S :Ai) are equivalent, for a finite set S . The resulting rule is actually valid for any
set S :

WF Quantifier Rule If the Ai are actions, for all i ∈ S , such that, for any distinct
i and j in S , whenever action Ai is enabled, action Aj cannot become enabled until an
Ai step occurs, then ∀ i ∈ S :WFv (Ai) and WFv (∃ i ∈ S :Ai) are equivalent.

8.4 Strong Fairness

Formulations (15) and (16) of WFv (A) contain the operators infinitely often (✷✸) and even-
tually always (✸✷). Eventually always is stronger than (implies) infinitely often. We define
SFv (A), strong fairness of action A, to be either of the following equivalent formulas:

✸✷(¬Enabled 〈A〉v ) ∨ ✷✸〈A〉v(19)

✷✸Enabled 〈A〉v ⇒ ✷✸〈A〉v(20)

Intuitively, these two formulas assert:

(19) A is eventually disabled forever, or infinitely many A steps occur.

(20) If A is infinitely often enabled, then infinitely many A steps occur.

21Although we haven’t yet discussed quantification in temporal formulas, the meaning of the formula
∀ p ∈ Proc : . . . should be clear.
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The proof that these two formulas are equivalent is similar to the proof of equivalence of (15)
and (16).

The analogs of the WF Conjunction and WF Quantifier Rules hold for strong fairness—for
example:

SF Conjunction Rule If A1, . . . , An are actions such that, for any distinct i and
j , whenever action Ai is enabled, action Aj cannot become enabled until an Ai step
occurs, then SFv (A1) ∧ . . . ∧ SFv (An) is equivalent to SFv (A1 ∨ . . . ∨ An).

It’s not hard to see that strong fairness is stronger than weak fairness—that is, SFv (A)
implies WFv (A), for any v and A. We can express weak and strong fairness as follows.

• Weak fairness of A asserts that an A step must eventually occur if A is continuously
enabled.

• Strong fairness of A asserts that an A step must eventually occur if A is continually
enabled.

Continuously means without interruption. Continually means repeatedly, possibly with in-
terruptions.

Strong fairness need not be strictly stronger than weak fairness. Weak and strong fairness
of an action A are equivalent iff A infinitely often disabled implies that either A is eventually
always disabled, or infinitely many A steps occur. This is expressed formally by the tautology:

(WFv (A) ≡ SFv (A)) ≡ (✷✸(¬Enabled 〈A〉v)⇒ ✸✷(¬Enabled 〈A〉v ) ∨ ✷✸〈A〉v)
In the channel example, weak and strong fairness of Rcv are equivalent because Spec implies
that, once enabled, Rcv can be disabled only by a Rcv step; so if it is disabled infinitely often,
then it either eventually remains disabled forever, or else it is disabled infinitely often by Rcv
steps.

Strong fairness can be more difficult to implement than weak fairness, and it is a less
common requirement. A strong fairness condition should be used in a specification only if
it is needed. When strong and weak fairness are equivalent, the fairness property should be
written as weak fairness.

Liveness properties can be subtle. Expressing them with ad hoc temporal formulas can
lead to errors. We will specify liveness as the conjunction of fairness properties whenever
possible—and it almost always is possible. Having a uniform way of expressing liveness makes
specifications easier to understand. Section 8.7.2 discusses an even more compelling reason
for using fairness to specify liveness.

8.5 Liveness for the Write-Through Cache

Let’s now add liveness to the write-through cache, specified in Figures 10 and 11. We want our
specification to guarantee that every request eventually receives a response, without requiring
that any requests are issued. This requires fairness on all the actions that make up the next-
state action Next except the Req(p) action (which issues a request) and the Evict(p, a) action
(which evicts an address from the cache). If any other action were ever enabled without
being executed, then some request might not generate a response—except for one special
case. If the memQ queue contains only write requests, and memQ is not full (has fewer than
QLen elements), then not executing a MemQWr action would not prevent any responses.
(Remember that a response to a write request can be issued before the value is written to
memory.) We’ll return to this exception later. For simplicity, let’s require fairness for the
MemQWr action too.

Our liveness condition has to assert fairness of the following actions:

MemQWr MemQRd Rsp(p) RdMiss(p) DoRd(p) DoWr(p)
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for all p in Proc. We now must decide whether to assert weak or strong fairness for these
actions. Weak and strong fairness are equivalent for an action that, once enabled, remains
enabled until it is executed. This is the case for all of these actions except RdMiss(p) and
DoWr(p). These two actions append a request to the memQ queue, and are disabled if that
queue is full. A RdMiss(p) or DoWr(p) could be enabled, and then become disabled because a
RdMiss(q) or DoWr(q), for a different processor q , appends a request to memQ . We therefore
need strong fairness for the RdMiss(p) and DoWr(p) actions. So, the fairness conditions we
need are:

Weak Fairness Rsp(p), DoRd(p), MemQWr , and MemQRd

Strong Fairness RdMiss(p) and DoWr(p)

As before, let’s define vars to be the tuple of all variables.

vars ∆= 〈memInt , mem, buf , ctl , cache, memQ 〉
We could just write the liveness condition as

∧ ∀ p ∈ Proc : ∧ WFvars(Rsp(p)) ∧ WFvars(DoRd(p))
∧ SFvars(RdMiss(p)) ∧ SFvars(DoWr(p))

∧ WFvars(MemQWr) ∧ WFvars(MemQRd)

(21)

However, I prefer replacing the conjunction of fairness conditions by a single fairness condition
on a disjunction, as we did in Section 8.3 for the memory specification. The WF and SF
Conjunction Rules (page 8.3 and 8.4) easily imply that the liveness condition (21) can be
rewritten as

∧ ∀ p ∈ Proc : ∧ WFvars(Rsp(p) ∨DoRd(p))
∧ SFvars(RdMiss(p) ∨DoWr(p))

∧ WFvars(MemQWr ∨MemQRd)

(22)

We can now try to simplify (22) by applying the WF Quantifier Rule (Section 8.3) to replace
∀ p ∈ Proc :WFvars(. . .) with WFvars(∃ p ∈ Proc : . . .). However, that rule doesn’t apply; it’s
possible for Rsp(p) ∨DoRd(p) to be enabled for two different processors p at the same time.
In fact, the two formulas are not equivalent. Similarly, the analogous rule for strong fairness
doesn’t apply. Formula (22) is as simple as we can make it.

Let’s return to the observation that we don’t have to execute MemQWr if the memQ
queue is not full and contains only write requests. Let’s define QCond to be the assertion
that memQ is not full and contains only write requests:

QCond ∆= ∧ Len(memQ) < QLen
∧ ∀ i ∈ 1..Len(memQ) : memQ [i ][2].op = “Wr”

We have to eventually execute a MemQWr action only when it’s enabled and QCond is true,
which is the case iff the action QCond ∧ MemQWr is enabled. In this case, a MemQWr
step is a QCond ∧ MemQWr step. Hence, it suffices to require weak fairness of the action
QCond ∧MemQWr . We can therefore replace the second conjunct of (22) with

WFvars((QCond ∧MemQWr) ∨ MemQRd)

We would do this if we wanted the specification to describe the weakest liveness condition that
implements the memory specification’s liveness condition. However, if the specification were
a description of an actual device, then that device would probably implement weak fairness
on all MemQWr actions, so we would take (22) as the liveness condition.
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8.6 Quantification

I’ve already mentioned, in Section 8.1, that the ordinary quantifiers of predicate logic can
be applied to temporal formulas. For example, the meaning of the formula ∃ r :F , for any
temporal formula F , is given by

σ |= (∃ r : F ) ∆= ∃ r : (σ |= F )

where σ is any behavior. The meaning of ∀ r :F is similarly defined.
The symbol r in ∃ r :F is usually called a bound variable. But we’ve been using the term

variable to mean something else—something that’s declared by a variable statement in a
module. The bound “variable” r is actually a constant in these formulas—a value that is the
same in every state of the behavior.22 For example, the formula ∃ r :✷(x = r) asserts that x
always has the same value.

The bounded quantifiers are defined in a similar way—for example,

σ |= (∃ r ∈ S : F ) ∆= ∃ r ∈ S : (σ |= F )

For this formula to make sense, S must be a constant.23 The symbol r is declared to be a
constant in formula F . The expression S lies outside the scope of the declaration of r , so the
symbol r cannot occur in S .

One can, in a similar way, define choose to be a temporal operator. However, it’s not
needed for writing specifications, so we won’t.

We have been using the operator ∃∃∃∃∃∃ as a hiding operator. Intuitively, ∃∃∃∃∃∃ x :F means F with
variable x hidden. In this formula, x is declared to be a variable in formula F . Unlike ∃ r :F ,
which asserts the existence of a single value r , the formula ∃∃∃∃∃∃ x :F asserts the existence of a
value for x in each state of a behavior.

The precise definition of ∃∃∃∃∃∃ is a bit tricky because, as discussed in Section 8.1, the formula
∃∃∃∃∃∃ x :F should be invariant under stuttering. To define it, we first define σ∼x τ to be true
iff σ can be obtained from τ (or vice-versa) by adding and/or removing stuttering steps and
changing the values assigned to x by its states. To define ∼x precisely, we define two behaviors
σ and τ to be stuttering-equivalent iff removing all stuttering steps from each of them produces
the same sequence of states. Next, let σx←0 be the behavior that is the same as σ except that,
in each state, x is assigned the value 0.24 We can then define σ∼x τ to be true iff σx←0 and
τ x←0 are stuttering equivalent. Finally, the meaning of ∃∃∃∃∃∃ is defined by letting σ |= (∃∃∃∃∃∃ x : F )
be true iff there exists some behavior τ such that τ ∼x σ and τ |= F are true. If you find
this too confusing, don’t worry about it. For writing specifications, it suffices to just think of
∃∃∃∃∃∃ x :F as F with x hidden.

TLA also has a temporal universal quantifier ∀∀∀∀∀∀ , defined by:
∀∀∀∀∀∀ x : F ∆= ¬∃∃∃∃∃∃ x : ¬F

This operator is hardly ever used.
TLA+does not allow bounded versions of the operators ∃∃∃∃∃∃ and ∀∀∀∀∀∀ . If, for some reason, you

want to write ∃∃∃∃∃∃ x ∈ S : F , you can simply write ∃∃∃∃∃∃ x : (x ∈ S ) ∧ F instead. However, I don’t
know why anyone would want to write such a formula.

22Logicians use the term flexible variable for a TLA variable, and the term rigid variable for a symbol
like r that represents a constant.

23We can let ∃ r ∈ S : F equal ∃ r : (r ∈ S ) ∧ F , which makes sense if S is a state function, not just
a constant. However, TLA+ requires S to be a constant in ∃ r ∈ S :F . If you want it to be a state
function, you have to write ∃ r : (r ∈ S ) ∧ F .

24The use of 0 is arbitrary; any fixed value would do.



56

8.7 Temporal Logic Examined

8.7.1 A Review

Let’s look at the shapes of the specifications that we’ve written so far. We started with the
simple form

Init ∧✷[Next ]vars(23)

where Init is the initial predicate, Next the next-state action, and vars the tuple of all vari-
ables. This kind of specification is, in principle, quite straightforward.

We then introduced hiding: using ∃∃∃∃∃∃ to bind variables that should not appear in the
specification. Those bound variables, also called hidden or internal variables, serve only to
help describe how the values of the free variables (also called visible variables) change.

Hiding variables is easy enough, and it is mathematically elegant and philosophically sat-
isfying. However, in practice, it doesn’t make much difference to a specification. A comment
can also tell a reader that a variable should be regarded as internal. Explicit hiding allows
implementation to mean implication. A lower-level specification that describes an implemen-
tation can be expected to imply a specification only if the specification’s internal variables,
whose values don’t really matter, are explicitly hidden. Otherwise, implementation means
implementation under a refinement mapping. (See Section 6.8.)

To express liveness, the specification (23) is strengthened to the form

Init ∧✷[Next ]vars ∧ Liveness(24)

where Liveness is the conjunction of formulas of the form WFvars(A) and/or SFvars(A), for
actions A. (I’m considering universal quantification to be a form of conjunction.)

8.7.2 Machine Closure

In the specifications of the form (24) we’ve written so far, the actions A whose fairness
properties appear in formula Liveness have one thing in common: they are all subactions of
the next-state action Next . An action A is a subaction of Next iff every A step is a Next
step. Equivalently, A is a subaction of Next iff A implies Next . In almost all specifications
of the form (24), formula Liveness should be the conjunction of weak and/or strong fairness
formulas for subactions of Next . I’ll now briefly explain why.

When we look at the specification (24), we expect Init to constrain the initial state, Next to
constrain what steps may occur, and Liveness to describe only what must eventually happen.
However, consider the following formula

(x = 0) ∧ ✷[x ′ = x + 1]x ∧ WFx ((x > 99) ∧ (x ′ = x − 1))(25)

The first two conjuncts of (25) assert that x is initially 0 and that any step either increments
x by 1 or leaves it unchanged. Hence, they imply that if x ever exceeds 99, then it forever
remains greater than 99. The weak fairness property asserts that, if this happens, then x must
eventually be decremented by 1—contradicting the second conjunct. Hence, (25) implies that
x can never exceed 99, so that formula is equivalent to

(x = 0) ∧ ✷[(x < 99) ∧ (x ′ = x + 1)]x

Conjoining the weak fairness property to the first two conjuncts of (25) forbids an x ′ = x +1
step when x = 99.

A specification of the form (24) is called machine closed iff the conjunct Liveness does
not constrain the initial state or what steps may occur. We almost never want to write a
specification that isn’t machine closed. If we do write one, it’s almost always by mistake.
Specification (24) is guaranteed to be machine closed if Liveness is the conjunction of weak
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and/or strong fairness properties for subactions of Next .25 This condition doesn’t apply
to specification (25), which is not machine closed, because (x > 99) ∧ (x ′ = x − 1) is not a
subaction of x ′ = x + 1.

Liveness requirements are philosophically satisfying. A specification of the form (23),
which specifies only a safety property, allows behaviors in which the system does nothing.
Therefore, the specification is satisfied by a system that does nothing. Expressing liveness
requirements with fairness properties is less satisfying. These properties are subtle and it’s
easy to get them wrong. It requires some thought to determine that the liveness condition
for the write-through cache, formula (22), does imply that every request receives a reply.

It’s tempting to express liveness properties more directly, without using fairness properties.
For example, it’s easy to write a temporal formula asserting for the write-through cache that
every request receives a response. When processor p issues a request, it sets ctl [p] to “rdy”.
We just have to assert that a state in which ctl [p] = “rdy” is true leads to a Rsp(p) step—for
every processor p:

∀ p ∈ Proc : (ctl [p] = “rdy”) ❀ 〈Rsp(p)〉vars(26)

(The operator ❀ is defined in Section 8.1.) While such formulas are appealing, they are
dangerous. It’s very easy to make a mistake and write a specification that isn’t machine
closed.

Except in unusual circumstances, you should express liveness with fairness properties for
subactions of the next-state action. These are the most straightforward specifications, and
hence the easiest to write and to understand. Most system specifications, even if very detailed
and complicated, can be written in this straightforward manner. The exceptions are usually
in the realm of subtle, high-level specifications that attempt to be very general. An example
is the specification of sequential consistency in [6].

8.7.3 The Unimportance of Liveness

While philosophically important, in practice the liveness property of (24) is not as important
as the safety part, Init ∧ ✷[Next ]vars . The ultimate purpose of writing a specification is to
avoid errors. Experience shows that most of the benefit from writing and using a specification
comes from the safety part. On the other hand, the liveness property is usually easy enough
to write. It typically constitutes less than five percent of a specification. So, you might as well
write the liveness part. However, when verifying the correctness of the specification, most of
your effort should be devoted to the safety part.

8.7.4 Temporal Logic Considered Confusing

The most general type of specification I’ve discussed so far has the form

∃∃∃∃∃∃ v1, . . . , vn : Init ∧✷[Next ]vars ∧ Liveness(27)

where Liveness is the conjunction of fairness properties of subactions of Next . This is a very
restricted class of temporal-logic formulas. Temporal logic is quite expressive, and one can
combine its operators in all sorts of ways to express a wide variety of properties. This suggests
the following approach to writing a specification: express each property that the system must
satisfy with a temporal formula, and then conjoin all these formulas. For example, formula
(26) above expresses the property of the write-through cache that every request eventually
receives a response.

This approach is philosophically appealing. It has just one problem: it’s practical for only
the very simplest of specifications—and even for them, it seldom works well. The unbridled

25More precisely, this is the case for a finite or countably infinite conjunction of properties.
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use of temporal logic produces formulas that are hard to understand. Conjoining several of
these formulas produces a specification that is impossible to understand.

The basic form of a TLA specification is (27). Most specifications should have this form.
We can also use such specifications as building blocks, combining them to form larger speci-
fications, as described in [1]. However, such specifications are of limited practical use. Most
engineers need know only how to write specifications of the form (27). Indeed, they can get
along quite well with specifications of the form (23).

9 Writing a Specification—Some Advice

You have now learned all you need to know about TLA+ to write your own specifications.
Here are a few additional hints to help you get started.

Why to Specify

Specifications are written to help eliminate errors. Writing a specification requires effort; the
benefits it provides must be worth that effort. There are several benefits:

• Writing a TLA+ specification can help the design process. Having to describe a design
precisely often reveals problems—subtle interactions and “corner cases” that are easily
overlooked. These problems are easier to correct when discovered in the design phase
rather than after implementation has begun.

• A TLA+ specification can provide a clear, concise way of communicating a design. It
helps ensure that the designers agree on what they have designed, and it provides a
valuable guide to the engineers who implement and test the system. It may also help
users understand the system.

• A TLA+ specification is a formal description to which tools can be applied to help find
errors in the design and to help in testing the system. Some tools for TLA+ specifications
are being built.

Whether these benefits justify the effort of writing the specification depends on the nature of
the project. Specification is not an end in itself; it is just one of many tools that an engineer
should be able to use when appropriate.

What to Specify

Although we talk about specifying a system, that’s not what we do. A specification is a
mathematical model of a particular view of some part of a system. When writing a spec-
ification, the first thing you must choose is exactly what part of the system you want to
describe. Sometimes the choice is obvious; often it isn’t. The cache-coherence protocol of a
real multiprocessor computer may be intimately connected with how the processors execute
instructions. Finding an abstraction that describes the coherence protocol while suppressing
the details of instruction execution may be difficult. It may require defining an interface
between the processor and the memory that doesn’t exist in the actual system design.

Remember that the purpose of a specification is to help avoid errors. You should specify
those parts of the system for which a specification is most likely to reveal errors. TLA+ is
particularly effective at revealing concurrency errors—ones that arise through the interaction
of asynchronous components. So, you should concentrate your efforts on the parts of the
system that are most likely to have such errors.
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The Grain of Atomicity

After choosing what part of the system to specify, you must choose the specification’s level of
abstraction. The most important aspect of the level of abstraction is the grain of atomicity,
the choice of what system changes are represented as a single step of a behavior. Sending
a message in an actual system involves multiple suboperations, but we usually represent it
as a single step. On the other hand, the sending of a message and its receipt are usually
represented as separate steps when specifying a distributed system.

The same sequence of system operations is represented by a shorter sequence of steps in
a coarser-grained representation than in a finer-grained one. This almost always makes the
coarser-grained specification simpler than the finer-grained one. However, the finer-grained
specification more accurately describes the behavior of the actual system. A coarser-grained
specification may fail to reveal important details of the system.

There is no simple rule for deciding on the grain of atomicity. However, there is one way
of thinking about the granularity that can help. To describe it, we need the TLA+ action-
composition operator “·”. If A and B are actions, then the action A·B is executed by first
executing A then B in a single step. More precisely, A · B is the action defined by letting
s → t be an A · B step iff there exists a state u such that s → u is an A step and u → t is a
B step.

When determining the grain of atomicity, we must decide whether to represent the exe-
cution of an operation as a single step or as a sequence of steps, each corresponding to the
execution of a suboperation. Let’s consider the simple case of an operation consisting of two
suboperations that are executed sequentially, where those suboperations are described by the
two actions R and L. (Executing R enables L and disables R.) When the operation’s execu-
tion is represented by two steps, each of those steps is an R step or an L step. The operation
is then described with the action R ∨ L. When its execution is represented by a single step,
the operation is described with the action R·L.26 Let S2 be the finer-grained specification in
which the operation is executed in two steps, and let S1 be the coarser-grained specification
in which it is executed as a single R ·L step. To choose the grain of atomicity, we must choose
whether to take S1 or S2 as the specification. Let’s examine the relation between the two
specifications.

We can transform any behavior σ satisfying S1 into a behavior σ̂ satisfying S2 by replacing
each step s R·L→ t with the pair of steps s R→ u L→ t , for some state u. If we regard σ as being
equivalent to σ̂, then we can regard S1 as being a strengthened version of S2—one that allows
fewer behaviors. Specification S1 requires that each R step be followed immediately by an
L step, while S2 allows behaviors in which other steps come between the R and L steps. To
choose the appropriate grain of atomicity, we must decide whether those additional behaviors
allowed by S2 are important.

The additional behaviors allowed by S2 are not important if the actual system executions
they describe are also described by behaviors allowed by S1. So, we can ask whether each
behavior τ satisfying S2 has a corresponding behavior τ̃ satisfying S1 that is, in some sense,
equivalent to τ . One way to construct τ̃ from τ is to transform a sequence of steps

s R→ u1
A1→ u2

A2→ u3 . . . un
An→ un+1

L→ t(28)

into the sequence

s A1→ v1 . . . v k−2
Ak→ v k−1

R→ v k
L→ v k+1

Ak+1→ v k+2 . . . vn+1
An→ t(29)

where the Ai are other system actions that can be executed between the R and L steps. Both
sequences start in state s and end in state t , but the intermediate states may be different.

26We actually describe the operation with an ordinary action, like the ones we’ve been writing, that
is equivalent to R·L. The operator “·” rarely appears in an actual specification. If you’re ever tempted
to use it, look for a better way to write the specification; you can probably find one.
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When is such a transformation possible? An answer can be given in terms of commutativity
relations. We say that actions A and B commute if performing them in either order produces
the same result. Formally, A and B commute iff A ·B is equivalent to B ·A. A simple sufficient
condition for commutativity is that two actions commute if they change the values of different
variables and neither enables or disables the other. It’s not hard to see that we can transform
(28) to (29) in the following two cases:

• R commutes with each Ai . (In this case, k = n.)

• L commutes with each Ai . (In this case, k = 0.)

In general, if an operation consists of a sequence of m subactions, we must decide whether to
choose the finer-grained representation O1 ∨ O2 ∨ . . . ∨ Om or the coarser-grained one O1 ·
O2 · · ·Om . The generalization of the transformation from (28) to (29) is one that transforms
an arbitrary behavior satisfying the finer-grained specification into one in which the sequence
of O1, O2, . . . , Om steps come one right after the other. Such a transformation is possible if
all but one of the actions O i commute with every other system action. Commutativity can
be replaced by weaker conditions [2, 3, 11]. However, it is the most common case.

By commuting actions and replacing a sequence s O1→ · · · Om→ t of steps by a single O1 · · ·Om

step, you may be able to transform any behavior of a finer-grained specification into a corre-
sponding behavior of a coarser-grained one. But that doesn’t mean that the coarser-grained
specification is just as good as the finer-grained one. The sequences (28) and (29) are not
the same, and a sequence of O i steps is not the same as a single O1 · · ·Om step. Whether
you can consider the transformed behavior to be equivalent to the original one, and use the
coarser-grained specification, depends on the particular system you are specifying and on the
purpose of the specification. Understanding the relation between finer- and coarser-grained
specifications can help you choose between them; it won’t make the choice for you.

The Data Structures

Another aspect of a specification’s level of abstraction is the accuracy with which it describes
the system’s data structures. For example, should the specification of a programming interface
describe the actual layout of a procedure’s arguments in memory, or should the arguments be
represented more abstractly?

To answer such a question, you must remember that the purpose of the specification is to
help catch errors. A precise description of the layout of procedure arguments will help prevent
errors caused by misunderstandings about that layout, but at the cost of complicating the
programming interface’s specification. The cost is justified only if such errors are likely to be
a real problem and the TLA+ specification provides the best way to avoid them.

If the purpose of the specification is to catch errors caused by the asynchronous interaction
of concurrently executing components, then detailed descriptions of data structures will be a
needless complication. So, you will probably want to use high-level, abstract descriptions of
the system’s data structures in the specification. For example, to specify a program interface,
you might introduce constant parameters to represent the actions of calling and returning from
a procedure—parameters analogous to Send and Reply of the memory interface described in
Section 6.1.

Writing the Specification

Once you’ve chosen the part of the system to specify and the level of abstraction, you’re ready
to start writing the TLA+ specification. We’ve already seen how this is done; let’s review the
steps.
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First, pick the variables and define the type invariant and initial predicate. In the course
of doing this, you will determine the constant parameters and assumptions about them that
you need. You may also have to define some additional constants.

Next, write the next-state action, which forms the bulk of the specification. Sketching a few
sample behaviors may help you get started. You must first decide how to decompose the next-
state action as the disjunction of actions describing the different kinds of system operations.
You then define those actions. The goal is to make the action definitions as compact and
easy to read as possible. This requires carefully structuring them. One way to reduce the
size of a specification is to define state predicates and state functions that are used in several
different action definitions. When writing the action definitions, you will determine which of
the standard modules you will need to use and add the appropriate extends statement. You
may also have to define some constant operators for the data structures that you are using.

You must now write the temporal part of the specification. If you want to specify liveness
properties, you have to choose the fairness conditions. You then combine the initial predicate,
next-state action, and any fairness conditions you’ve chosen into the definition of a single
temporal formula that is the specification.

Finally, you can assert theorems about the specification. If nothing else, you may want to
add a type-correctness theorem.

Some Further Hints

Here are a few miscellaneous suggestions that may help you write better specifications.
Don’t be too clever. Cleverness can make a specification hard to read—and even wrong.

The formula q = 〈h ′ 〉 ◦ q ′ may look like a nice, short way of writing:

(h ′ = Head(q)) ∧ (q ′ = Tail(q))(30)

But not only is q = 〈h ′ 〉 ◦ q ′ harder to understand than (30), it’s also wrong. We don’t know
what a ◦ b equals if a and b are not both sequences, so we don’t know whether h ′ = Head(q)
and q ′ = Tail(q) are the only values of h ′ and q ′ that satisfy q = 〈h ′ 〉 ◦ q ′. There could be
other values of h ′ and q ′, which are not sequences, that satisfy the formula q = 〈h ′ 〉 ◦ q ′.

Don’t assume that values are unequal just because they look different. The rules of TLA+

do not imply that 1 �= “a”. If the system can send a message that is either a string or a
number, represent the message as a record with a type and value field—for example,

[type �→ “String”, value �→ “a”] or [type �→ “Nat”, value �→ 1]

Write comments as comments; don’t put them into the specification itself. I have seen
people write things like the following action definition:

A ∆= ∨ ∧ x ≥ 0
∧ . . .

∨ ∧ x < 0
∧ false

The second disjunct is meant to indicate that the writer intended A not to be enabled when
x < 0. But that disjunct is completely redundant and serves only as a form of comment. It’s
better to write:

A ∆= ∧ x ≥ 0
∧ . . .

A is not enabled if x < 0
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When and How to Specify

Specifications are often written later than they should be. Engineers are usually under severe
time constraints, and they may feel that writing a specification will slow them down. Only
after a design has become so complex that they need help understanding it do engineers think
about writing a precise specification.

Writing a specification helps you think clearly. Thinking clearly is hard; we can use all
the help we can get. Making specification part of the design process can improve the design.

I have described how to write a specification assuming that the system design already ex-
ists. But it’s better to write the specification as the system is being designed. The specification
will start out being incomplete and probably incorrect. For example, an initial specification
of the write-through cache of Section 6.6 might include the definition:

RdMiss(p) ∆= Enqueue a request to write value from memory to p’s cache.
Some enabling condition must be conjoined here.

∧ memQ ′ = Append(memQ , buf [p])
∧ ctl ′ = [ctl except ! [p] = “?”]
∧ unchanged 〈memInt , mem, buf , cache 〉

Append request to memQ .

Set ctl [p] to value to be determined later.

Some system functionality will at first be omitted; it can be included later by adding new
disjuncts to the next-state action. Tools can be applied to these preliminary specifications to
help find design errors.
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Logic
∧ ∨ ¬ ⇒ ≡
true false boolean [the set {true, false}]
∀ x : p ∃ x : p ∀ x ∈ S : p (1) ∃ x ∈ S : p (1)

choose x : p [An x satisfying p] choose x ∈ S : p [An x ∈ S satisfying p]

Sets
= �= ∈ /∈ ∪ ∩ ⊆ \ [set difference]
{e1, . . . , en} [Set consisting of elements e i ]
{x ∈ S : p} (2) [Set of elements x in S satisfying p]
{e : x ∈ S} (1) [Set of elements e such that x in S ]
subset S [Set of subsets of S ]
union S [Union of all elements of S ]

Functions (3)

f [e] [Function application]
domain f [Domain of function f ]
[x ∈ S �→ e] (1) [Function f such that f [x ] = e for x ∈ S ]
[S → T ] [Set of functions f with f [x ] ∈ T for x ∈ S ]
[f except ! [e1] = e2] (4) [Function f̂ equal to f except f̂ [e1] = e2]

Records
e.h [The h-component of record e]
[h1 �→ e1, . . . , hn �→ en ] [The record whose hi component is e i ]
[h1 : S 1, . . . , hn : Sn ] [Set of all records with hi component in S i ]
[r except ! .h = e] (4) [Record r̂ equal to r except r̂ .h = e]

Tuples
e[i ] [The i th component of tuple e]
〈e1, . . . , en 〉 [The n-tuple whose i th component is e i ]
S 1 × . . . × Sn [The set of all n-tuples with i th component in S i ]

Strings and Numbers
“c1 . . . cn” [A literal string of n characters]
String [The set of all strings]
d1 . . . dn d1 . . . dn .dn+1 . . . dm [Numbers]

Miscellaneous Constructs
if p then e1 else e2 [e1 if p true, else e2]
case p1 → e1 ✷ . . . ✷ pn → en [Some e i such that pi true]
case p1 → e1 ✷ . . . ✷ pn → en ✷ other → e [Some e i such that pi true,

or e if all pi are false]

let d1
∆= e1 . . . dn

∆= en in e [e in the context of the definitions]

∧ p1
...

∧ pn

[the conjunction p1 ∧ . . . ∧ pn ] ∨ p1
...

∨ pn

[the disjunction p1 ∨ . . . ∨ pn ]

(1) x ∈ S may be replaced by a comma-separated list of items v ∈ S , where v is either a comma-
separated list or tuple of identifiers.

(2) x may be an identifier or tuple of identifiers.
(3) We describe only functions of a single argument; TLA+ also allows functions with multiple

arguments.
(4) ![e1] or !.h may be replaced by a comma separated list of items !a1 · · · an , where each ai is [ei ]

or .hi .

Figure 12: The constant operators.
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Predicate and Action Operators
e ′ [The value of e in the final state of a step]
[A]e [A ∨ (e ′ = e)]
〈A〉e [A ∧ (e ′ �= e)]
Enabled A [An A step is possible]
unchanged e [e ′ = e]
A · B [Composition of actions]

Temporal Operators
✷F [F is always true]
✸F [F is eventually true]
WFe(A) [Weak fairness for action A]
SFe(A) [Strong fairness for action A]
F ❀ G [F leads to G ]
F +−� G [F guarantees G (see [1])]
∃∃∃∃∃∃ x : F [Temporal existential quantification (hiding).]
∀∀∀∀∀∀ x : F [Temporal universal quantification.]

Figure 13: The nonconstant operators of TLA+.

Infix Operators

+ (1) − (1) ∗ (1) / (2) ◦ (3) ++
÷ (1) % (1) ^ (1,4) . . (1) . . . −−
⊕ (5) & (5) ⊗ ( ) ∗∗
< (1) > (1) ≤ (1) ≥ (1) * //

≺ + , - . ^^

/ 0 < : :> & &&
❁ ❂ 1 (5) 2 | ||
⊂ ⊃ ⊇ � %%

6 7 |= =| • ##
∼ 8 ≈ ∼= $ $$
:= ::= : .= ? ??
∝ < = © ! ! @@

Postfix Operators (6)

^+ ^∗ ^#

Prefix Operator

−

(1) Defined by the Naturals , Integers , and Reals modules.
(2) Defined by the Reals module.
(3) Defined by the Sequences module.
(4) x^y is printed as x y .
(5) Defined by the Bags module.
(6) e^+ is printed as e+, and similarly for ^∗ and ^#.

Figure 14: User-definable operator symbols.
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∧ /\ or \land
¬ ~ or \lnot or \neg
∈ \in
〈 <<
< <
≤ \leq or =<
/ \ll
≺ \prec
, \preceq
⊆ \subseteq
⊂ \subset
❁ \sqsubset
1 \sqsubseteq
6 |-
|= |=
→ ->
∩ \cap or \intersect
* \sqcap
⊕ (+) or \oplus
& (-) or \ominus
) (.) or \odot
⊗ \otimes
( (/) or \oslash

∨ \/ or \lor
≡ <=> or \equiv
�= # or /=
〉 >>
> >
≥ \geq or >=
0 \gg
+ \succ
- \succeq
⊇ \supseteq
⊃ \supset
❂ \sqsupset
2 \sqsupseteq
7 -|
=| =|
← <-
∪ \cup or \union
. \sqcup
= \uplus
× \X or \times
· \cdot
◦ \o or \circ
“s” "s" (1)

⇒ =>
∆= ==
′ ’
✷ []
✸ <>
❀ ~>
+−� -+->
�→ |->
÷ \div
< \wr
• \bullet
� \star
∼ \sim
8 \simeq
: \asymp
≈ \approx
∼= \cong
.= \doteq
∝ \propto
x y x^y (2)

x+ x^+ (2)

x ∗ x^* (2)

x# x^# (2)

-------- (3) -------- (3)

-------- (3) ======== (3)

(1) s is any sequence of characters, not including ".
(2) x and y are any expressions.
(3) a sequence of four or more - or = characters.

Figure 15: The ascii representations of typeset symbols.


