TLA⁺ Operators Not Shown in Video

Leslie Lamport

19 August 2019

Boolean Constants

In addition to the Boolean value `false`, the built-in TLA⁺ constants include the Boolean value `true` and the set `BOOLEAN` that equals the set `{true, false}` of Boolean values.

Functions

The operator `DOMAIN` is defined so that the domain of a function `f` equals `DOMAIN f`. Thus, any function `f` equals `[x ∈ DOMAIN f ↦ f(x)]`.

Quantifiers

There are two useful abbreviations for nesting the quantifiers `∀` (\(\forall\)) and `∃` (\(\exists\)):

\[
∀ x ∈ S, ∀ y ∈ S : \quad \text{can be written} \quad ∀ x, y ∈ S
\]

and

\[
∀ x ∈ S : ∀ y ∈ T : \quad \text{can be written} \quad ∀ x ∈ S, y ∈ T :
\]

if the identifier `x` does not occur in the expression `T`. For example,

\[
∀ x ∈ S : ∀ y ∈ T : ∀ z ∈ T : ∀ p ∈ U : ∀ q ∈ V :
\]

can be written as

\[
∀ x ∈ S, y, z ∈ T, p ∈ U, q ∈ V :
\]

if none of the identifiers `x`, `y`, `z`, `p`, and `q` appear in any of the expressions `S`, `T`, `U`, or `V`.

Sets

The set construction operator \(\{ e : x \in S \} \) can be generalized to expressions like

\[\{ e : x, y \in S, z \in T \} \]

The syntax and restrictions on what can follow the ":" are the same as for what can follow \(\forall \) or \(\exists \) in abbreviations of nested quantifiers.

If \(S \) is a set whose elements are sets, then \(\text{union} \ S \) equals the union of all the sets in \(S \)—in other words, the set of all elements that are in some element of \(S \). For example,

\[\text{union} \ \{1..3, \{0,5\}, 2..7, \{6,8\}\} \]

equals

\[1..3 \cup \{0,5\} \cup 2..7 \cup \{6,8\} \]

which equals 0..8. The \(\text{union} \) and \(\text{subset} \) operators can be confusing; I sometimes get confused when I use them. You should convince yourself that the following relations are true for any set \(S \).

\[\text{union}(\text{subset} \ S) = S \]
\[S \subseteq \text{subset}(\text{union} \ S) \]

The Case Construct

The TLA\(^+\) case construct is almost, but not quite, completely unlike the C \text{switch} statement. It has these two forms:

\[
\begin{align*}
\text{CASE } P_1 & \rightarrow e_1 \\
\Box \quad P_2 & \rightarrow e_2 \\
\vdots & \\
\Box \quad P_n & \rightarrow e_n \\
\Box \quad \text{OTHER } & \rightarrow f
\end{align*}
\]

(As usual, \(\Box \) and \(\rightarrow \) are typed as \(\Box \) and \(\rightarrow \).) If at least one of the \(P_i \) equals \(\text{TRUE} \), then each of these case expressions equals some \(e_i \) such that \(P_i \) equals \(\text{TRUE} \). If \(P_i \) equals \(\text{TRUE} \) for more than one \(i \), then which of

\footnote{Remember that, in TLA\(^+\), every value is a set. Therefore, every element of a set is a set, so every set is a set of sets. For example, each of the three elements of 1..3 is a set; we just don’t know what the elements of any of those three sets are.}
those e_i the case expression equals is unspecified. (Thus, the order of the n clauses $P_i \rightarrow e_i$ makes no difference.) If none of the P_i equals TRUE, then the second case expression equals f, while the value of the first case expression is unspecified. In this case, TLC reports an error if it tries to evaluate the first case expression.

Constant Declarations

Constant operators that take arguments can be declared, as in:

```
CONSTANT Op(_, _) typed as CONSTANT 0p(_, _)
```

If you create a model for running TLC on a spec containing this declaration, you will be able to tell the Toolbox that you want to let Op be an operator such that, for example, $Op(a, b)$ equals $a + 2 * b$ for any values a and b.