
TLA+ Video Course – Lecture 5
Leslie Lamport

TRANSACTION COMMIT

This video should be viewed in conjunction with a Web page.
To find that page, search the Web for TLA+ Video Course .

The TLA+ Video Course
Lecture 5
Transaction Commit

This lecture is about matrimony. Actually, it’s the first of three lectures about a problem
from the domain of databases called transaction commit. Transaction commit is a very
simple problem, but it is about computer systems and not Hollywood action heros. Jim
Gray was a computer scientist who, in the words of his Turing award citation, “made
seminal contributions to database and transaction processing research.” I had the
priviledge of knowing Jim for many years. He used to describe transaction commit in
terms of a wedding. I learned long ago that if Jim did something, it was the right thing
to do. So this lecture begins with a discussion of weddings.

[slide 2]

WEDDINGS

[slide 3]

An Old-Fashioned Wedding

Here’s how an old-fashioned wedding goes.

There’s the bride, let’s call her Anne.

There’s the groom, let’s call him Henry.

And there’s Thomas, the minister.

The minister begins by asking: Henry, wilt thou have this woman to thy
wedded wife?

[slide 4]

An Old-Fashioned Wedding

Anne

Here’s how an old-fashioned wedding goes.

There’s the bride, let’s call her Anne.

There’s the groom, let’s call him Henry.

And there’s Thomas, the minister.

The minister begins by asking: Henry, wilt thou have this woman to thy
wedded wife?

[slide 5]

An Old-Fashioned Wedding

AnneHenry

Here’s how an old-fashioned wedding goes.

There’s the bride, let’s call her Anne.

There’s the groom, let’s call him Henry.

And there’s Thomas, the minister.

The minister begins by asking: Henry, wilt thou have this woman to thy
wedded wife?

[slide 6]

An Old-Fashioned Wedding

AnneHenry

Minister

Here’s how an old-fashioned wedding goes.

There’s the bride, let’s call her Anne.

There’s the groom, let’s call him Henry.

And there’s Thomas, the minister.

The minister begins by asking: Henry, wilt thou have this woman to thy
wedded wife?

[slide 7]

An Old-Fashioned Wedding

AnneHenry

Minister

Henry, wilt thou have this woman
to thy wedded wife?

��
�

Here’s how an old-fashioned wedding goes.

There’s the bride, let’s call her Anne.

There’s the groom, let’s call him Henry.

And there’s Thomas, the minister.

The minister begins by asking: Henry, wilt thou have this woman to thy
wedded wife?

[slide 8]

A More Modern Wedding

AnneHenry

Minister

Let’s make it more modern. A 21st century minister might say: Hank, are
you prepared to commit to this relationship?

To which Henry would reply:

I’m prepared.

The minister then asks:

Anne, are you prepared to commit to this relationship? And Anne replies:

[slide 9]

A More Modern Wedding

AnneHenry

Minister

Hank, are you prepared to commit
to this relationship?

��
�

Let’s make it more modern. A 21st century minister might say: Hank, are
you prepared to commit to this relationship?

To which Henry would reply:

I’m prepared.

The minister then asks:

Anne, are you prepared to commit to this relationship? And Anne replies:

[slide 10]

A More Modern Wedding

AnneHenry

Minister

I’m prepared.

�
�

Let’s make it more modern. A 21st century minister might say: Hank, are
you prepared to commit to this relationship?

To which Henry would reply:

I’m prepared.

The minister then asks:

Anne, are you prepared to commit to this relationship? And Anne replies:

[slide 11]

A More Modern Wedding

AnneHenry

Minister

Anne, are you prepared to commit
to this relationship?

��
�

Let’s make it more modern. A 21st century minister might say: Hank, are
you prepared to commit to this relationship?

To which Henry would reply:

I’m prepared.

The minister then asks:

Anne, are you prepared to commit to this relationship? And Anne replies:

[slide 12]

A More Modern Wedding

AnneHenry

Minister

I’m prepared.

c
cc

I’m prepared.

The minister then says:

You’re now both in a committed relationship.

[slide 13]

A More Modern Wedding

AnneHenry

Minister

You’re now both in a
committed relationship.

��
�

I’m prepared.

The minister then says:

You’re now both in a committed relationship.

[slide 14]

What Can Go Wrong

AnneHenry

Minister

What can go wrong in a wedding?

When the minister asks one of them, say the bride: Are you prepared to
commit to this relationship?

She might answer No!

The minister would then abort the wedding.

[slide 15]

What Can Go Wrong

AnneHenry

Minister

Anne, are you prepared to commit
to this relationship?

��
�

What can go wrong in a wedding?

When the minister asks one of them, say the bride: Are you prepared to
commit to this relationship?

She might answer No!

The minister would then abort the wedding.

[slide 16]

What Can Go Wrong

AnneHenry

Minister

No way!

c
cc

What can go wrong in a wedding?

When the minister asks one of them, say the bride: Are you prepared to
commit to this relationship?

She might answer No!

The minister would then abort the wedding.

[slide 17]

What Can Go Wrong

AnneHenry

Minister

This wedding is aborted.
��
�

What can go wrong in a wedding?

When the minister asks one of them, say the bride: Are you prepared to
commit to this relationship?

She might answer No!

The minister would then abort the wedding.

[slide 18]

What Can Go Wrong

AnneHenry

Minister

Here’s another way the wedding can go amiss.

Both the groom and the bride might say they’re prepared

But someone else at the wedding might object.

The minister could then decide that it was a valid objection and abort the
wedding.

[slide 19]

What Can Go Wrong

AnneHenry

Minister

I’m prepared.

�
�

Here’s another way the wedding can go amiss.

Both the groom and the bride might say they’re prepared

But someone else at the wedding might object.

The minister could then decide that it was a valid objection and abort the
wedding.

[slide 20]

What Can Go Wrong

AnneHenry

Minister

I’m prepared.

c
cc

Here’s another way the wedding can go amiss.

Both the groom and the bride might say they’re prepared

But someone else at the wedding might object.

The minister could then decide that it was a valid objection and abort the
wedding.

[slide 21]

What Can Go Wrong

AnneHenry

Minister

Stop! Anne will regret it.

@
@
@
@
@@

Here’s another way the wedding can go amiss.

Both the groom and the bride might say they’re prepared

But someone else at the wedding might object.

The minister could then decide that it was a valid objection and abort the
wedding.

[slide 22]

What Can Go Wrong

AnneHenry

Minister

This wedding is aborted.
��
�

Here’s another way the wedding can go amiss.

Both the groom and the bride might say they’re prepared

But someone else at the wedding might object.

The minister could then decide that it was a valid objection and abort the
wedding.

[slide 23]

What a Wedding Accomplishes

AnneHenry

Minister

What does a wedding accomplish?

A wedding begins with the bride and groom possibly unsure if they should be
married.

It allows them each to decide if they’re prepared to commit to the relationship
or if they want the wedding aborted.

[slide 24]

What a Wedding Accomplishes

AnneHenry

Minister

unsurep p p p p p unsurep p p p p p

What does a wedding accomplish?

A wedding begins with the bride and groom possibly unsure if they should be
married.

It allows them each to decide if they’re prepared to commit to the relationship
or if they want the wedding aborted.

[slide 25]

What a Wedding Accomplishes

AnneHenry

Minister

preparedp p p p p p

What does a wedding accomplish?

A wedding begins with the bride and groom possibly unsure if they should be
married.

It allows them each to decide if they’re prepared to commit to the relationship
or if they want the wedding aborted.

[slide 26]

What a Wedding Accomplishes

AnneHenry

Minister

abortedp p p p p p

What does a wedding accomplish?

A wedding begins with the bride and groom possibly unsure if they should be
married.

It allows them each to decide if they’re prepared to commit to the relationship
or if they want the wedding aborted.

[slide 27]

What a Wedding Accomplishes

AnneHenry

Minister

committedp p p p p p committedp p p p p p

It should finish with them both believing they are in a committed relationship
Or both believing that the wedding was aborted.

It should be impossible for them to disagree about the outcome.

[slide 28]

What a Wedding Accomplishes

AnneHenry

Minister

abortedp p p p p p abortedp p p p p p

It should finish with them both believing they are in a committed relationship
Or both believing that the wedding was aborted.

It should be impossible for them to disagree about the outcome.

[slide 29]

What a Wedding Accomplishes

AnneHenry

Minister

committedp p p p p p abortedp p p p p p

���
���

���
���

���
���

���
���

��

���
���

���
���

���
���

���
���

��

���
���

���
���

���
���

���
���

��XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXX

It should finish with them both believing they are in a committed relationship
Or both believing that the wedding was aborted.

It should be impossible for them to disagree about the outcome.

[slide 30]

The Minister

AnneHenry

Minister

He implements the wedding.

He’s part of how it works,
not what it does.

What function does the minister perform?

His job is to implement the wedding.

He’s part of how the wedding works, not part of what the wedding is
supposed to accomplish.

[slide 31]

The Minister

AnneHenry

Minister

He implements the wedding.

He’s part of how it works,
not what it does.

What function does the minister perform?

His job is to implement the wedding.

He’s part of how the wedding works, not part of what the wedding is
supposed to accomplish.

[slide 32]

The Minister

AnneHenry

Minister

He implements the wedding.

He’s part of how it works,
not what it does.

What function does the minister perform?

His job is to implement the wedding.

He’s part of how the wedding works, not part of what the wedding is
supposed to accomplish.

[slide 33]

The Minister

AnneHenry

Minister

He implements the wedding.

He’s part of how it works,
not what it does.

What function does the minister perform?

His job is to implement the wedding.

He’s part of how the wedding works, not part of what the wedding is
supposed to accomplish.

[slide 34]

Specifying a Wedding

The specification mentions only the bride and groom,

not the minister.

AnneHenry

We’re going to write a specification of a wedding.

A specification of what a wedding should accomplish, not how it’s actually
performed.

What , not how .

[slide 35]

Specifying a Wedding

The specification mentions only the bride and groom,

not the minister.

AnneHenry

What a wedding accomplishes, not how it’s performed.

We’re going to write a specification of a wedding.

A specification of what a wedding should accomplish, not how it’s actually
performed.

What , not how .

[slide 36]

Specifying a Wedding

The specification mentions only the bride and groom,

not the minister.

AnneHenry

What a wedding accomplishes, not how it’s performed.

We’re going to write a specification of a wedding.

A specification of what a wedding should accomplish, not how it’s actually
performed.

What , not how .

[slide 37]

Specifying a Wedding

The specification mentions only the bride and groom,

not the minister.

AnneHenry

The specification mentions only the bride and groom, not the minister, who’s
part of how , not what .

[slide 38]

Specifying a Wedding

The specification mentions only the bride and groom,

not the minister.

AnneHenry

The specification mentions only the bride and groom, not the minister, who’s
part of how , not what .

[slide 39]

The state/transition diagram of each participant:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

Here’s the state/transition diagram of each of the two participants: the bride
and the groom.

Each participant starts in the state of being unsure about what he or she
wants to do.

From that state, they can go into either the prepared or the aborted state.

[slide 40]

The state/transition diagram of each participant:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

Here’s the state/transition diagram of each of the two participants: the bride
and the groom.

Each participant starts in the state of being unsure about what he or she
wants to do.

From that state, they can go into either the prepared or the aborted state.

[slide 41]

The state/transition diagram of each participant:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

Here’s the state/transition diagram of each of the two participants: the bride
and the groom.

Each participant starts in the state of being unsure about what he or she
wants to do.

From that state, they can go into either the prepared or the aborted state.

[slide 42]

The state/transition diagram of each participant:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

From the prepared state, they can go to either the committed or aborted
state.

They remain forever in either of those two states.

[slide 43]

The state/transition diagram of each participant:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

From the prepared state, they can go to either the committed or aborted
state.

They remain forever in either of those two states.

[slide 44]

The state/transition diagram of each participant:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

From the prepared state, they can go to either the committed or aborted
state.

They remain forever in either of those two states.

[slide 45]

The state/transition diagram of each participant:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

From the prepared state, they can go to either the committed or aborted
state.

They remain forever in either of those two states.

[slide 46]

A Really Modern Wedding

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 47]

A Really Modern Wedding

Not limited to a bride and a groom.

Can have any number of participants.

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 48]

A Really Modern Wedding

Not limited to a bride and a groom.

Can have any number of participants.

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 49]

A Really Modern Wedding

Henry

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 50]

A Really Modern Wedding

Henry Catherine A

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 51]

A Really Modern Wedding

Henry Catherine A Anne B

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 52]

A Really Modern Wedding

Henry Catherine A Anne B Jane

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 53]

A Really Modern Wedding

Henry Catherine A Anne B Jane

Anne C

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 54]

A Really Modern Wedding

Henry Catherine A Anne B Jane

Anne C Catherine H

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 55]

A Really Modern Wedding

Henry Catherine A Anne B Jane

Anne C Catherine H Catherine P

We can generalize all this to a really modern wedding.

One that’s not limited to just one bride and one groom.

We can have any number of participants.

[slide 56]

Each participant has the same states as before.

?

unsure

?

prepared

�
�	

@
@R

committed aborted

Each participant has the same permitted states and state transitions as
before.

We cannot allow one participant to believe the relationship is committed and
another to believe it was aborted.

[slide 57]

Each participant has the same states as before.

Cannot have one participant committed and another aborted.

Each participant has the same permitted states and state transitions as
before.

We cannot allow one participant to believe the relationship is committed and
another to believe it was aborted.

[slide 58]

TRANSACTION COMMIT

In a transaction commit . . .

[slide 59]

A Wedding

Henry Catherine A Anne B Jane

Anne C Catherine H Catherine P

a wedding is replaced by a database transaction.

The transaction is performed by a collection of processes called Resource
Managers.

The transaction can either commit or abort.

[slide 60]

A Database Transaction

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

a wedding is replaced by a database transaction.

The transaction is performed by a collection of processes called Resource
Managers.

The transaction can either commit or abort.

[slide 61]

A Database Transaction

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Is performed by the RMs.

Can either commit or abort.

a wedding is replaced by a database transaction.

The transaction is performed by a collection of processes called Resource
Managers.

The transaction can either commit or abort.

[slide 62]

A Database Transaction

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Is performed by the RMs.

Can either commit or abort.

a wedding is replaced by a database transaction.

The transaction is performed by a collection of processes called Resource
Managers.

The transaction can either commit or abort.

[slide 63]

A Database Transaction

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Can commit only if all RMs are prepared to commit.

Must abort if any RM wants to abort.

The transaction can commit only if all resource managers are prepared to
commit.

The transaction must abort if any resource manager wants to abort.

All resource managers must agree on whether the transaction committed or
aborted.

[slide 64]

A Database Transaction

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Can commit only if all RMs are prepared to commit.

Must abort if any RM wants to abort.

The transaction can commit only if all resource managers are prepared to
commit.

The transaction must abort if any resource manager wants to abort.

All resource managers must agree on whether the transaction committed or
aborted.

[slide 65]

A Database Transaction

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

All RMs must agree on whether it committed or aborted.

The transaction can commit only if all resource managers are prepared to
commit.

The transaction must abort if any resource manager wants to abort.

All resource managers must agree on whether the transaction committed or
aborted.

[slide 66]

Transaction Commit ←→ Wedding

RM ←→ Participant

The execution of a transaction commit is just like a really modern wedding,
which can have many participants.

A resource manager corresponds to a participant in the wedding.

[slide 67]

Transaction Commit ←→ Wedding

RM ←→ Participant

The execution of a transaction commit is just like a really modern wedding,
which can have many participants.

A resource manager corresponds to a participant in the wedding.

[slide 68]

The state / transition diagram of each RM:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

The state / transition diagram of each resource manager is the same as that
of each participant in a wedding.

Except that the unsure state is traditionally called the working state of a
resource manager.

[slide 69]

The state / transition diagram of each RM:

?

unsure

?

prepared

�
�	

@
@R

committed aborted

The state / transition diagram of each resource manager is the same as that
of each participant in a wedding.

Except that the unsure state is traditionally called the working state of a
resource manager.

[slide 70]

The state / transition diagram of each RM:

?

working

?

prepared

�
�	

@
@R

committed aborted

The state / transition diagram of each resource manager is the same as that
of each participant in a wedding.

Except that the unsure state is traditionally called the working state of a
resource manager.

[slide 71]

The state / transition diagram of each RM:

?

working

?

prepared

�
�	

@
@R

committed aborted

The state / transition diagram of each resource manager is the same as that
of each participant in a wedding.

Except that the unsure state is traditionally called the working state of a
resource manager.

[slide 72]

THE TLA+ SPEC

We now see how transaction commit can be specified in TLA+.

[slide 73]

You will first:

– Open the Toolbox.

– Create a new module named TCommit .

– Copy the body of the spec from the web page
and paste it into the module.

Stop the video and do this now.

So you can view the spec while watching the video, you will first

Open the Toolbox.

Create a new module named TCommit .

And copy the body of the spec from the web page and paste it into the
module.

[slide 74]

You will first:

– Open the Toolbox.

– Create a new module named TCommit .

– Copy the body of the spec from the web page
and paste it into the module.

Stop the video and do this now.

So you can view the spec while watching the video, you will first

Open the Toolbox.

Create a new module named TCommit .

And copy the body of the spec from the web page and paste it into the
module.

[slide 75]

You will first:

– Open the Toolbox.

– Create a new module named TCommit .

– Copy the body of the spec from the web page
and paste it into the module.

Stop the video and do this now.

So you can view the spec while watching the video, you will first

Open the Toolbox.

Create a new module named TCommit .

And copy the body of the spec from the web page and paste it into the
module.

[slide 76]

You will first:

– Open the Toolbox.

– Create a new module named TCommit .

– Copy the body of the spec from the web page
and paste it into the module.

Stop the video and do this now.

So you can view the spec while watching the video, you will first

Open the Toolbox.

Create a new module named TCommit .

And copy the body of the spec from the web page and paste it into the
module.

[slide 77]

You will first:

– Open the Toolbox.

– Create a new module named TCommit .

– Copy the body of the spec from the web page
and paste it into the module.

Stop the video and do this now.

Stop the video and do this now.

[slide 78]

The spec has comments.

I’ll discuss them later.

Now, let’s look at the spec.

You’ll see that the spec has lots of comments.

I’ll discuss comments later.

Now, let’s look at the spec without any comments.

[slide 79]

The spec has comments.

I’ll discuss them later.

Now, let’s look at the spec.

You’ll see that the spec has lots of comments.

I’ll discuss comments later.

Now, let’s look at the spec without any comments.

[slide 80]

The spec has comments.

I’ll discuss them later.

Now, let’s look at the spec.

You’ll see that the spec has lots of comments.

I’ll discuss comments later.

Now, let’s look at the spec without any comments.

[slide 81]

The spec is in module TCommit .

It begins by declaring RM to be a constant which means that its value is the
same throughout every behavior.

The constant RM represents the set of resource managers.

What tells us RM is a set?

[slide 82]

The spec is in module TCommit .

It begins by declaring RM to be a constant which means that its value is the
same throughout every behavior.

The constant RM represents the set of resource managers.

What tells us RM is a set?

[slide 83]

The spec is in module TCommit .

It begins by declaring RM to be a constant which means that its value is the
same throughout every behavior.

The constant RM represents the set of resource managers.

What tells us RM is a set?

[slide 84]

The set of all RMs.

The spec is in module TCommit .

It begins by declaring RM to be a constant which means that its value is the
same throughout every behavior.

The constant RM represents the set of resource managers.

What tells us RM is a set?

[slide 85]

The set of all RMs.

Why is RM a set?

In TLA+, every value is a set.

Even 42 and “abc” are sets.

But TLA+ doesn’t say what their elements are.

TLC can’t evaluate 42 ∈ “abc” .

The spec is in module TCommit .

It begins by declaring RM to be a constant which means that its value is the
same throughout every behavior.

The constant RM represents the set of resource managers.

What tells us RM is a set?

[slide 86]

The set of all RMs.

Why is RM a set?

In TLA+, every value is a set.

Even 42 and “abc” are sets.

But TLA+ doesn’t say what their elements are.

TLC can’t evaluate 42 ∈ “abc” .

In TLA+, every value is a set.

Even values like 42 and the string abc are sets.

But the semantics of TLA+ don’t say what the elements of the sets 42 and
abc are.

So the TLC model checker will report an error if it tries to evaluate an
expression like 42 is an element of abc.

[slide 87]

The set of all RMs.

Why is RM a set?

In TLA+, every value is a set.

Even 42 and “abc” are sets.

But TLA+ doesn’t say what their elements are.

TLC can’t evaluate 42 ∈ “abc” .

In TLA+, every value is a set.

Even values like 42 and the string abc are sets.

But the semantics of TLA+ don’t say what the elements of the sets 42 and
abc are.

So the TLC model checker will report an error if it tries to evaluate an
expression like 42 is an element of abc.

[slide 88]

The set of all RMs.

Why is RM a set?

In TLA+, every value is a set.

Even 42 and “abc” are sets.

But TLA+ doesn’t say what their elements are.

TLC can’t evaluate 42 ∈ “abc” .

In TLA+, every value is a set.

Even values like 42 and the string abc are sets.

But the semantics of TLA+ don’t say what the elements of the sets 42 and
abc are.

So the TLC model checker will report an error if it tries to evaluate an
expression like 42 is an element of abc.

[slide 89]

The set of all RMs.

Why is RM a set?

In TLA+, every value is a set.

Even 42 and “abc” are sets.

But TLA+ doesn’t say what their elements are.

TLC can’t evaluate 42 ∈ “abc” .

In TLA+, every value is a set.

Even values like 42 and the string abc are sets.

But the semantics of TLA+ don’t say what the elements of the sets 42 and
abc are.

So the TLC model checker will report an error if it tries to evaluate an
expression like 42 is an element of abc.

[slide 90]

Next comes the declaration of the spec’s single variable rmState.

followed by the type invariant that describes what values we expect rmState
to be able to assume.

We prefix standard names like TypeOK by TC because in a later video we’ll
be talking about two separate specs.

[slide 91]

Next comes the declaration of the spec’s single variable rmState.

followed by the type invariant that describes what values we expect rmState
to be able to assume.

We prefix standard names like TypeOK by TC because in a later video we’ll
be talking about two separate specs.

[slide 92]

Next comes the declaration of the spec’s single variable rmState.

followed by the type invariant that describes what values we expect rmState
to be able to assume.

We prefix standard names like TypeOK by TC because in a later video we’ll
be talking about two separate specs.

[slide 93]

An array indexed by RMs.

rmState[r] is the state of RM r .

Next comes the declaration of the spec’s single variable rmState.

followed by the type invariant that describes what values we expect rmState
to be able to assume.

We prefix standard names like TypeOK by TC because in a later video we’ll
be talking about two separate specs.

[slide 94]

· · ·

An array indexed by RMs.

rmState[r] is the state of RM r .

The value of rmState will be an array indexed by the set of resource
managers.

where rmState[r] describes the state of resource manager r .

[slide 95]

· · ·

An array indexed by RMs.

rmState[r] is the state of RM r .

The value of rmState will be an array indexed by the set of resource
managers.

where rmState[r] describes the state of resource manager r .

[slide 96]

· · ·

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 97]

· · ·
The set of all arrays indexed by elements of RM

with values in · · · .

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 98]

· · ·
The set of all arrays indexed by elements of RM

with values in · · · .

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 99]

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 100]

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 101]

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 102]

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 103]

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 104]

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 105]

?

working

?
prepared

��	 @@R

committed aborted

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 106]

This is the TLA+ notation for the set of all arrays indexed by elements of RM

with values in the set given by dot dot dot.

where dot dot dot is this set whose elements are the four strings working,
prepared, committed, and aborted. which represent the four possible states
of a resource manager.

[slide 107]

->

The right arrow is typed dash greater than in ASCII.

[slide 108]

The initial predicate TCInit asserts that rmState equals

this expression, which is TLA+ notation for

The array with index set equal to the set of resource managers
such that the array applied to little rm equals the string “working”,
for every resource manager little rm.

[slide 109]

The initial predicate TCInit asserts that rmState equals

this expression, which is TLA+ notation for

The array with index set equal to the set of resource managers
such that the array applied to little rm equals the string “working”,
for every resource manager little rm.

[slide 110]

The array with index set RM such that

for all rm in RM

The initial predicate TCInit asserts that rmState equals

this expression, which is TLA+ notation for

The array with index set equal to the set of resource managers
such that the array applied to little rm equals the string “working”,
for every resource manager little rm.

[slide 111]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 112]

The TLA+ syntax for an array expression:

[variable ∈ set

|->

7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 113]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 114]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 115]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 116]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 117]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 118]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

This is the TLA+ syntax for an array-valued expression.

Where this maps to symbol is typed bar dash greater -than in ASCII.

For example, inside square brackets
We put the variable i element of The set of integers from one through 42
maps to symbol the expression i squared.

[slide 119]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

So this definition defines s-q-r to be an array with index set the set of
integers from one through 42
such that s-q-r of i equals i squared for all i in that set.

[slide 120]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

So this definition defines s-q-r to be an array with index set the set of
integers from one through 42
such that s-q-r of i equals i squared for all i in that set.

[slide 121]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

So this definition defines s-q-r to be an array with index set the set of
integers from one through 42
such that s-q-r of i equals i squared for all i in that set.

[slide 122]

The TLA+ syntax for an array expression:

[variable ∈ set 7→ expression]

sqr
∆
= [i ∈ 1 . .42 7→ i2]

Defines sqr to be an array with index set 1 . .42
such that sqr [i] = i2 for all i in 1 . .42 .

So this definition defines s-q-r to be an array with index set the set of
integers from one through 42
such that s-q-r of i equals i squared for all i in that set.

[slide 123]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Let’s look at some different terminology used in programming and math for
the same things.

What programmers call an array mathematicians call a function.

What programmers call the index set of an array mathematicians call the
domain of a function.

[slide 124]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Let’s look at some different terminology used in programming and math for
the same things.

What programmers call an array mathematicians call a function.

What programmers call the index set of an array mathematicians call the
domain of a function.

[slide 125]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Let’s look at some different terminology used in programming and math for
the same things.

What programmers call an array mathematicians call a function.

What programmers call the index set of an array mathematicians call the
domain of a function.

[slide 126]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Let’s look at some different terminology used in programming and math for
the same things.

What programmers call an array mathematicians call a function.

What programmers call the index set of an array mathematicians call the
domain of a function.

[slide 127]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Let’s look at some different terminology used in programming and math for
the same things.

What programmers call an array mathematicians call a function.

What programmers call the index set of an array mathematicians call the
domain of a function.

[slide 128]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Let’s look at some different terminology used in programming and math for
the same things.

What programmers call an array mathematicians call a function.

What programmers call the index set of an array mathematicians call the
domain of a function.

[slide 129]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Programmers use square brackets for array application.
Mathematicians use parentheses for function application.

In TLA+ we write formulas not programs, so we use the mathematical
terminlogy for functions and their domains.

However, TLA+ uses square brackets for function application to avoid
confusing it with another way mathematics uses parentheses.

[slide 130]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Programmers use square brackets for array application.
Mathematicians use parentheses for function application.

In TLA+ we write formulas not programs, so we use the mathematical
terminlogy for functions and their domains.

However, TLA+ uses square brackets for function application to avoid
confusing it with another way mathematics uses parentheses.

[slide 131]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Programmers use square brackets for array application.
Mathematicians use parentheses for function application.

In TLA+ we write formulas not programs, so we use the mathematical
terminlogy for functions and their domains.

However, TLA+ uses square brackets for function application to avoid
confusing it with another way mathematics uses parentheses.

[slide 132]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Programmers use square brackets for array application.
Mathematicians use parentheses for function application.

In TLA+ we write formulas not programs, so we use the mathematical
terminlogy for functions and their domains.

However, TLA+ uses square brackets for function application to avoid
confusing it with another way mathematics uses parentheses.

[slide 133]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Programmers use square brackets for array application.
Mathematicians use parentheses for function application.

In TLA+ we write formulas not programs, so we use the mathematical
terminlogy for functions and their domains.

However, TLA+ uses square brackets for function application to avoid
confusing it with another way mathematics uses parentheses.

[slide 134]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Programmers use square brackets for array application.
Mathematicians use parentheses for function application.

In TLA+ we write formulas not programs, so we use the mathematical
terminlogy for functions and their domains.

However, TLA+ uses square brackets for function application to avoid
confusing it with another way mathematics uses parentheses.

[slide 135]

Terminology
Programming Math

array function

index set domain

f [e] f (e)

Has another use.

Programmers use square brackets for array application.
Mathematicians use parentheses for function application.

In TLA+ we write formulas not programs, so we use the mathematical
terminlogy for functions and their domains.

However, TLA+ uses square brackets for function application to avoid
confusing it with another way mathematics uses parentheses.

[slide 136]

Many popular programming languages allow
only index sets 0 . .n .

Math and TLA+ allow a function to have any set
as its domain — for example, the set of all integers.

Many popular programming languages allow arrays only whose index sets
consist of the set of integers from 0 to some n.

Math, and therefore TLA+, allows a function to have any set as its domain.

Even infinite sets, such as the set of all integers.

[slide 137]

Many popular programming languages allow
only index sets 0 . .n .

Math and TLA+ allow a function to have any set
as its domain — for example, the set of all integers.

Many popular programming languages allow arrays only whose index sets
consist of the set of integers from 0 to some n.

Math, and therefore TLA+, allows a function to have any set as its domain.

Even infinite sets, such as the set of all integers.

[slide 138]

Many popular programming languages allow
only index sets 0 . .n .

Math and TLA+ allow a function to have any set
as its domain — for example, the set of all integers.

Many popular programming languages allow arrays only whose index sets
consist of the set of integers from 0 to some n.

Math, and therefore TLA+, allows a function to have any set as its domain.

Even infinite sets, such as the set of all integers.

[slide 139]

Let’s return to the spec and jump down to the definition of the next-state
formula TCNext

This formula is true if and only if

there exists

Typed backslash E in ASCII.

[slide 140]

qqq

Let’s return to the spec and jump down to the definition of the next-state
formula TCNext

This formula is true if and only if

there exists

Typed backslash E in ASCII.

[slide 141]

Let’s return to the spec and jump down to the definition of the next-state
formula TCNext

This formula is true if and only if

there exists

Typed backslash E in ASCII.

[slide 142]

Let’s return to the spec and jump down to the definition of the next-state
formula TCNext

This formula is true if and only if

there exists

Typed backslash E in ASCII.

[slide 143]

Let’s return to the spec and jump down to the definition of the next-state
formula TCNext

This formula is true if and only if

there exists

Typed backslash E in ASCII.

[slide 144]

There exists r in RM for which this subformula is true.

Let’s return to the spec and jump down to the definition of the next-state
formula TCNext

This formula is true if and only if

there exists

Typed backslash E in ASCII.

[slide 145]

There exists r in RM for which this subformula is true.
\E

Let’s return to the spec and jump down to the definition of the next-state
formula TCNext

This formula is true if and only if

there exists

Typed backslash E in ASCII.

[slide 146]

There exists r in RM for which this subformula is true.

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 147]

There exists r in RM for which this subformula is true.

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 148]

If RM = { “r1”, “r2”, “r3”, “r4” }

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 149]

If RM = { “r1”, “r2”, “r3”, “r4” }

then this formula equals

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 150]

If RM = { “r1”, “r2”, “r3”, “r4” }

then this formula equals

∨
∨
∨
∨

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 151]

If RM = { “r1”, “r2”, “r3”, “r4” }

then this formula equals

∨
∨
∨
∨

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 152]

If RM = { “r1”, “r2”, “r3”, “r4” }

then this formula equals

∨ Prepare(“r1”) ∨Decide(“r1”)
∨
∨
∨

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 153]

If RM = { “r1”, “r2”, “r3”, “r4” }

then this formula equals

∨ Prepare(“r1”) ∨Decide(“r1”)
∨ Prepare(“r2”) ∨Decide(“r2”)
∨
∨

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 154]

If RM = { “r1”, “r2”, “r3”, “r4” }

then this formula equals

∨ Prepare(“r1”) ∨Decide(“r1”)
∨ Prepare(“r2”) ∨Decide(“r2”)
∨ Prepare(“r3”) ∨Decide(“r3”)
∨

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 155]

If RM = { “r1”, “r2”, “r3”, “r4” }

then this formula equals

∨ Prepare(“r1”) ∨Decide(“r1”)
∨ Prepare(“r2”) ∨Decide(“r2”)
∨ Prepare(“r3”) ∨Decide(“r3”)
∨ Prepare(“r4”) ∨Decide(“r4”)

There exists some r in the set RM for which this subformula is true.

Suppose RM is a set whose elements are the four strings r1, r2, r3, and r4.

Then this formula equals the disjunction of the four formulas we get by
substituting in the subformula each of those four elements of RM

[slide 156]

∃ r ∈ RM : Prepare(r) ∨Decide(r)

∃ declares r local to formula.

r ← xyz doesn’t change meaning if xyz

not declared or defined.

The exists declares the identifier r to be local to this formula. We can replace
r by any other identifier

For example xyz , without changing the meaning of the formula.

But xyz must not already be declared or defined at this point in the spec.
TLA+ does not allow defining or declaring a symbol that already has a
meaning.

[slide 157]

∃ xyz ∈ RM : Prepare(xyz) ∨Decide(xyz)

∃ declares r local to formula.

r ← xyz doesn’t change meaning if xyz

not declared or defined.

The exists declares the identifier r to be local to this formula. We can replace
r by any other identifier

For example xyz , without changing the meaning of the formula.

But xyz must not already be declared or defined at this point in the spec.
TLA+ does not allow defining or declaring a symbol that already has a
meaning.

[slide 158]

∃ xyz ∈ RM : Prepare(xyz) ∨Decide(xyz)

∃ declares r local to formula.

r ← xyz doesn’t change meaning if xyz

not declared or defined.

The exists declares the identifier r to be local to this formula. We can replace
r by any other identifier

For example xyz , without changing the meaning of the formula.

But xyz must not already be declared or defined at this point in the spec.
TLA+ does not allow defining or declaring a symbol that already has a
meaning.

[slide 159]

Let’s now return to the spec and move back up to the definitions of Prepare
and Decide, starting with Prepare

Recall the state / transition graph of a resource manager.

Prepare of r describes the working to prepared step of resource manager r .

[slide 160]

Let’s now return to the spec and move back up to the definitions of Prepare
and Decide, starting with Prepare

Recall the state / transition graph of a resource manager.

Prepare of r describes the working to prepared step of resource manager r .

[slide 161]

Let’s now return to the spec and move back up to the definitions of Prepare
and Decide, starting with Prepare

Recall the state / transition graph of a resource manager.

Prepare of r describes the working to prepared step of resource manager r .

[slide 162]

?

working

?

prepared

��	 @@R

committed aborted

Let’s now return to the spec and move back up to the definitions of Prepare
and Decide, starting with Prepare

Recall the state / transition graph of a resource manager.

Prepare of r describes the working to prepared step of resource manager r .

[slide 163]

?

working

?

prepared

��	 @@R

committed aborted

Let’s now return to the spec and move back up to the definitions of Prepare
and Decide, starting with Prepare

Recall the state / transition graph of a resource manager.

Prepare of r describes the working to prepared step of resource manager r .

[slide 164]

?

working

?

prepared

��	 @@R

committed aborted

This step can be taken only when the current state of resource manager r is
working , so rmState of r equal to the string working must be true.

The step must change the value of rmState of r to the string prepared .

Most people think that condition is expressed like this.

Stop the video and figure out why this is wrong.
[slide 165]

?

working

?

prepared

��	 @@R

committed aborted

This step can be taken only when the current state of resource manager r is
working , so rmState of r equal to the string working must be true.

The step must change the value of rmState of r to the string prepared .

Most people think that condition is expressed like this.

Stop the video and figure out why this is wrong.
[slide 166]

?

working

?

prepared

��	 @@R

committed aborted

This step can be taken only when the current state of resource manager r is
working , so rmState of r equal to the string working must be true.

The step must change the value of rmState of r to the string prepared .

Most people think that condition is expressed like this.

Stop the video and figure out why this is wrong.
[slide 167]

What’s wrong with this?

This step can be taken only when the current state of resource manager r is
working , so rmState of r equal to the string working must be true.

The step must change the value of rmState of r to the string prepared .

Most people think that condition is expressed like this.

Stop the video and figure out why this is wrong.
[slide 168]

rmState ′[r] = “prepared ”

What does this formula say?

The value of rmState[r] in the new state
is “prepared ”.

What does it say about the value of rmState[s] in the new state
for an RM s with s 6= r?

Nothing!

You have to learn to see what a formula says, not what you think it should
say.

What does this formula actually say?

It says that the value of rmState of r in the new state is the string “prepared ”.

[slide 169]

rmState ′[r] = “prepared ”

What does this formula say?

The value of rmState[r] in the new state
is “prepared ”.

What does it say about the value of rmState[s] in the new state
for an RM s with s 6= r?

Nothing!

You have to learn to see what a formula says, not what you think it should
say.

What does this formula actually say?

It says that the value of rmState of r in the new state is the string “prepared ”.

[slide 170]

rmState ′[r] = “prepared ”

What does this formula say?

The value of rmState[r] in the new state
is “prepared ”.

What does it say about the value of rmState[s] in the new state
for an RM s with s 6= r?

Nothing!

You have to learn to see what a formula says, not what you think it should
say.

What does this formula actually say?

It says that the value of rmState of r in the new state is the string “prepared ”.

[slide 171]

rmState ′[r] = “prepared ”

What does this formula say?

The value of rmState[r] in the new state
is “prepared ”.

What does it say about the value of rmState[s] in the new state
for an RM s with s 6= r?

Nothing!

What does it say about the value of rmState of s in the new state for a
resource manager s different from r?

Absolutely nothing!

[slide 172]

rmState ′[r] = “prepared ”

What does this formula say?

The value of rmState[r] in the new state
is “prepared ”.

What does it say about the value of rmState[s] in the new state
for an RM s with s 6= r?

Nothing!

What does it say about the value of rmState of s in the new state for a
resource manager s different from r?

Absolutely nothing!

[slide 173]

rmState ′[r] = “prepared ”

You’ll get used to it.

The spec can’t just say what the new value of rmState of r is.

It must say what the new value of the entire function rmState is.

That value must be a function with domain RM .

And we know how to write such a function.

[slide 174]

rmState ′[r] = “prepared ”

rmState ′ = [s ∈ RM 7→

You’ll get used to it.

The spec can’t just say what the new value of rmState of r is.

It must say what the new value of the entire function rmState is.

That value must be a function with domain RM .

And we know how to write such a function.

[slide 175]

rmState ′[r] = “prepared ”

rmState ′ = [s ∈ RM 7→ · · ·
↑

the new value of rmState[s]

]

You’ll get used to it.

It looks like this, where we have to replace the dot dot dot
with an expression that specifies the new value of rmState of s for each
resource manager s.

[slide 176]

rmState ′[r] = “prepared ”

rmState ′ = [s ∈ RM 7→ · · ·
↑

the new value of rmState[s]

]

You’ll get used to it.

It looks like this, where we have to replace the dot dot dot
with an expression that specifies the new value of rmState of s for each
resource manager s.

[slide 177]

rmState ′[r] = “prepared ”

rmState ′ = [s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

You’ll get used to it.

If s is resource manager r , then the value of rmState of s in the new state
should be the string prepared

Any other resource manager s should have the same value of rmState in the
new state as in the old state.

This is correct, but it’s too long-winded.
We need a shorter way to write this expression.

[slide 178]

rmState ′[r] = “prepared ”

rmState ′ = [s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

You’ll get used to it.

If s is resource manager r , then the value of rmState of s in the new state
should be the string prepared

Any other resource manager s should have the same value of rmState in the
new state as in the old state.

This is correct, but it’s too long-winded.
We need a shorter way to write this expression.

[slide 179]

rmState ′[r] = “prepared ”

rmState ′ = [s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

You’ll get used to it.

If s is resource manager r , then the value of rmState of s in the new state
should be the string prepared

Any other resource manager s should have the same value of rmState in the
new state as in the old state.

This is correct, but it’s too long-winded.
We need a shorter way to write this expression.

[slide 180]

[s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

You’ll get used to it.

If s is resource manager r , then the value of rmState of s in the new state
should be the string prepared

Any other resource manager s should have the same value of rmState in the
new state as in the old state.

This is correct, but it’s too long-winded.
We need a shorter way to write this expression.

[slide 181]

[s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

[rmState EXCEPT ![r] = “prepared ”]

You’ll get used to it.

TLA+ provides this EXCEPT construct.

Everyone hates it.

What does the exclamation point (usually read as bang) mean? It means
nothing.

It’s just syntax. But you’ll get used to it.

[slide 182]

[s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

[rmState EXCEPT ![r] = “prepared ”]

You’ll get used to it.

TLA+ provides this EXCEPT construct.

Everyone hates it.

What does the exclamation point (usually read as bang) mean? It means
nothing.

It’s just syntax. But you’ll get used to it.

[slide 183]

[s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

[rmState EXCEPT ![r] = “prepared ”]
meaningless syntax

You’ll get used to it.

TLA+ provides this EXCEPT construct.

Everyone hates it.

What does the exclamation point (usually read as bang) mean? It means
nothing.

It’s just syntax. But you’ll get used to it.

[slide 184]

[s ∈ RM 7→ IF s = r THEN “prepared ”
ELSE rmState[s]]

[rmState EXCEPT ![r] = “prepared ”]

You’ll get used to it.

TLA+ provides this EXCEPT construct.

Everyone hates it.

What does the exclamation point (usually read as bang) mean? It means
nothing.

It’s just syntax. But you’ll get used to it.

[slide 185]

So, here’s the complete definition of Prepare.

[slide 186]

Now for the definition of Decide. It describes possible steps in which resource
manager r reaches a committed or aborted state.

It’s the disjunction of two formulas.

The first describes a step in which resource manager r goes from the
prepared state to the committed state.

[slide 187]

Now for the definition of Decide. It describes possible steps in which resource
manager r reaches a committed or aborted state.

It’s the disjunction of two formulas.

The first describes a step in which resource manager r goes from the
prepared state to the committed state.

[slide 188]

?

working

?
prepared

��	 @@R

committed aborted

Describes a prepared → committed step.

Now for the definition of Decide. It describes possible steps in which resource
manager r reaches a committed or aborted state.

It’s the disjunction of two formulas.

The first describes a step in which resource manager r goes from the
prepared state to the committed state.

[slide 189]

?

working

?
prepared

��	 @@R

committed aborted

Such a step can occur only if r is in the prepared state.

r can commit only if every resource manager is in the prepared or committed
state.

This condition is written in a formula named canCommit , whose definition
we’ll look at later.

[slide 190]

?

working

?
prepared

��	 @@R

committed aborted

every RM is prepared or committed

Such a step can occur only if r is in the prepared state.

r can commit only if every resource manager is in the prepared or committed
state.

This condition is written in a formula named canCommit , whose definition
we’ll look at later.

[slide 191]

?

working

?
prepared

��	 @@R

committed aborted

Such a step can occur only if r is in the prepared state.

r can commit only if every resource manager is in the prepared or committed
state.

This condition is written in a formula named canCommit , whose definition
we’ll look at later.

[slide 192]

?

working

?
prepared

��	 @@R

committed aborted

And in the new state, r is committed and the state of every other resource
manager remains the same.

This is expressed with our friend EXCEPT .

The second disjunction describes possible transitions to the aborted state.

[slide 193]

?

working

?
prepared

��	 @@R

committed aborted

And in the new state, r is committed and the state of every other resource
manager remains the same.

This is expressed with our friend EXCEPT .

The second disjunction describes possible transitions to the aborted state.

[slide 194]

?

working

?
prepared

��	 @@R

committed aborted

Describes steps that abort.

And in the new state, r is committed and the state of every other resource
manager remains the same.

This is expressed with our friend EXCEPT .

The second disjunction describes possible transitions to the aborted state.

[slide 195]

?

working

?
prepared

��	 @@R

committed aborted

r can abort from the working or prepared state, so rmState of r must be an
element of the set consisting of the two strings working and prepared .

r can abort only when no other resource manager is committed.

This condition is written as formula notCommitted , whose definition we’ll look
at later.

[slide 196]

?

working

?
prepared

��	 @@R

committed aborted

no RM is committed

r can abort from the working or prepared state, so rmState of r must be an
element of the set consisting of the two strings working and prepared .

r can abort only when no other resource manager is committed.

This condition is written as formula notCommitted , whose definition we’ll look
at later.

[slide 197]

?

working

?
prepared

��	 @@R

committed aborted

r can abort from the working or prepared state, so rmState of r must be an
element of the set consisting of the two strings working and prepared .

r can abort only when no other resource manager is committed.

This condition is written as formula notCommitted , whose definition we’ll look
at later.

[slide 198]

?

working

?
prepared

��	 @@R

committed aborted

And the state of r changes to aborted , while the state of all other resource
managers remain the same.

We now look at the definitions of canCommit and notCommitted , but first a
digression.

[slide 199]

?

working

?
prepared

��	 @@R

committed aborted

And the state of r changes to aborted , while the state of all other resource
managers remain the same.

We now look at the definitions of canCommit and notCommitted , but first a
digression.

[slide 200]

Remember that this formula asserts:
there exists some r in the set RM for which this subformula is true.

If RM is this set of four elements, then the exists formula equals this
disjunction of four formulas.

There is a dual to this formula in which the exists symbol is replaced by this
forall symbol.

[slide 201]

There exists r in RM for which this subformula is true.

Remember that this formula asserts:
there exists some r in the set RM for which this subformula is true.

If RM is this set of four elements, then the exists formula equals this
disjunction of four formulas.

There is a dual to this formula in which the exists symbol is replaced by this
forall symbol.

[slide 202]

If RM = { “r1”, “r2”, “r3”, “r4” }

Remember that this formula asserts:
there exists some r in the set RM for which this subformula is true.

If RM is this set of four elements, then the exists formula equals this
disjunction of four formulas.

There is a dual to this formula in which the exists symbol is replaced by this
forall symbol.

[slide 203]

If RM = { “r1”, “r2”, “r3”, “r4” }

then the formula equals

∨ Prepare(“r1”) ∨Decide(“r1”)
∨ Prepare(“r2”) ∨Decide(“r2”)
∨ Prepare(“r3”) ∨Decide(“r3”)
∨ Prepare(“r4”) ∨Decide(“r4”)

Remember that this formula asserts:
there exists some r in the set RM for which this subformula is true.

If RM is this set of four elements, then the exists formula equals this
disjunction of four formulas.

There is a dual to this formula in which the exists symbol is replaced by this
forall symbol.

[slide 204]

Remember that this formula asserts:
there exists some r in the set RM for which this subformula is true.

If RM is this set of four elements, then the exists formula equals this
disjunction of four formulas.

There is a dual to this formula in which the exists symbol is replaced by this
forall symbol.

[slide 205]

Remember that this formula asserts:
there exists some r in the set RM for which this subformula is true.

If RM is this set of four elements, then the exists formula equals this
disjunction of four formulas.

There is a dual to this formula in which the exists symbol is replaced by this
forall symbol.

[slide 206]

\A

Typed backslash A in ASCII.

This formula asserts that:
for all r in the set RM , this subformula is true.

If RM is this set of four elements,
then the forall formula equals this conjunction of four formulas.

Now to the definitions of canCommit and notCommitted .

[slide 207]

Typed backslash A in ASCII.

This formula asserts that:
for all r in the set RM , this subformula is true.

If RM is this set of four elements,
then the forall formula equals this conjunction of four formulas.

Now to the definitions of canCommit and notCommitted .

[slide 208]

For all r in RM , this subformula is true.

Typed backslash A in ASCII.

This formula asserts that:
for all r in the set RM , this subformula is true.

If RM is this set of four elements,
then the forall formula equals this conjunction of four formulas.

Now to the definitions of canCommit and notCommitted .

[slide 209]

If RM = { “r1”, “r2”, “r3”, “r4” }

then the formula equals

∧ Prepare(“r1”) ∨Decide(“r1”)
∧ Prepare(“r2”) ∨Decide(“r2”)
∧ Prepare(“r3”) ∨Decide(“r3”)
∧ Prepare(“r4”) ∨Decide(“r4”)

Typed backslash A in ASCII.

This formula asserts that:
for all r in the set RM , this subformula is true.

If RM is this set of four elements,
then the forall formula equals this conjunction of four formulas.

Now to the definitions of canCommit and notCommitted .

[slide 210]

Remember that canCommit should assert that
every resource manager is in the prepared or committed state.

This formula asserts that for every resource manager r , the value of rmState
of r is either the string prepared or the string committed .

[slide 211]

every RM is prepared or committed

Remember that canCommit should assert that
every resource manager is in the prepared or committed state.

This formula asserts that for every resource manager r , the value of rmState
of r is either the string prepared or the string committed .

[slide 212]

Remember that canCommit should assert that
every resource manager is in the prepared or committed state.

This formula asserts that for every resource manager r , the value of rmState
of r is either the string prepared or the string committed .

[slide 213]

no RM is committed

Remember that notCommitted should assert that no resource manager is
committed.

This formula asserts that, for every resource manager r , the value of
rmState[r] doesn’t equal the string committed .

[slide 214]

Remember that notCommitted should assert that no resource manager is
committed.

This formula asserts that, for every resource manager r , the value of
rmState[r] doesn’t equal the string committed .

[slide 215]

Let’s take another look at the definition of Decide.

Replacing canCommit by its definition doesn’t change the meaning of Decide
of r .

Here’s the definition of canCommit again.

Replacing canCommit by its definition yields this formula.

[slide 216]

Let’s take another look at the definition of Decide.

Replacing canCommit by its definition doesn’t change the meaning of Decide
of r .

Here’s the definition of canCommit again.

Replacing canCommit by its definition yields this formula.

[slide 217]

Let’s take another look at the definition of Decide.

Replacing canCommit by its definition doesn’t change the meaning of Decide
of r .

Here’s the definition of canCommit again.

Replacing canCommit by its definition yields this formula.

[slide 218]

Let’s take another look at the definition of Decide.

Replacing canCommit by its definition doesn’t change the meaning of Decide
of r .

Here’s the definition of canCommit again.

Replacing canCommit by its definition yields this formula.

[slide 219]

We have to change the bound variable r used in the definition of canCommit .
to some other variable like s to avoid a name conflict with this r

Similarly, we can replace notCommitted

with its definition.

[slide 220]

We have to change the bound variable r used in the definition of canCommit .
to some other variable like s to avoid a name conflict with this r

Similarly, we can replace notCommitted

with its definition.

[slide 221]

We have to change the bound variable r used in the definition of canCommit .
to some other variable like s to avoid a name conflict with this r

Similarly, we can replace notCommitted

with its definition.

[slide 222]

We have to change the bound variable r used in the definition of canCommit .
to some other variable like s to avoid a name conflict with this r

Similarly, we can replace notCommitted

with its definition.

[slide 223]

We have to change the bound variable r used in the definition of canCommit .
to some other variable like s to avoid a name conflict with this r

Similarly, we can replace notCommitted

with its definition.

[slide 224]

Definitions provide a simple and powerful way
of hierarchically decomposing formulas to make
them easier to read.

Definitions provide a simple and powerful way of hierarchically decomposing
formulas to make them easier to read.

[slide 225]

Decide(r) depends on the states of all the resource managers.

Whether a Decide of r step is possible and what it can do depends on the
states of all the resource managers.

How can this be implemented?

What programming language allows a single step to examine the states of a
whole set of processes?

We don’t care.

[slide 226]

Decide(r) depends on the states of all the resource managers.

Whether a Decide of r step is possible and what it can do depends on the
states of all the resource managers.

How can this be implemented?

What programming language allows a single step to examine the states of a
whole set of processes?

We don’t care.

[slide 227]

Decide(r) depends on the states of all the resource managers.

How can this be implemented?

What programming language allows a single step
to examine the states of a whole set of processes?

Whether a Decide of r step is possible and what it can do depends on the
states of all the resource managers.

How can this be implemented?

What programming language allows a single step to examine the states of a
whole set of processes?

We don’t care.

[slide 228]

Decide(r) depends on the states of all the resource managers.

How can this be implemented?

What programming language allows a single step
to examine the states of a whole set of processes?

Whether a Decide of r step is possible and what it can do depends on the
states of all the resource managers.

How can this be implemented?

What programming language allows a single step to examine the states of a
whole set of processes?

We don’t care.

[slide 229]

Decide(r) depends on the states of all the resource managers.

We don’t care.

We’re writing a spec of what transaction commit
should do, not how it’s implemented.

Whether a Decide of r step is possible and what it can do depends on the
states of all the resource managers.

How can this be implemented?

What programming language allows a single step to examine the states of a
whole set of processes?

We don’t care.

[slide 230]

Decide(r) depends on the states of all the resource managers.

We don’t care.

We’re writing a spec of what transaction commit
should do, not how it’s implemented.

We’re writing a spec of what transaction commit should accomplish, not how
it’s implemented.

The next video describes a protocol for implementing it.

[slide 231]

Decide(r) depends on the states of all the resource managers.

We don’t care.

We’re writing a spec of what transaction commit
should do, not how it’s implemented.

We’re writing a spec of what transaction commit should accomplish, not how
it’s implemented.

The next video describes a protocol for implementing it.

[slide 232]

Let’s take one more look at the original definition of Decide.

Decide of r is defined to be a disjunction of two formulas.

We could give a different name to each of these formulas, say DecideC of r
and DecideA of r

[slide 233]

Let’s take one more look at the original definition of Decide.

Decide of r is defined to be a disjunction of two formulas.

We could give a different name to each of these formulas, say DecideC of r
and DecideA of r

[slide 234]

Let’s take one more look at the original definition of Decide.

Decide of r is defined to be a disjunction of two formulas.

We could give a different name to each of these formulas, say DecideC of r
and DecideA of r

[slide 235]

And in the definition of TCNext replace Decide of r by the disjunction of
DecideC of r and DecideA of r

There are lots of different ways to decompose a next-state formula into
subformulas.

[slide 236]

And in the definition of TCNext replace Decide of r by the disjunction of
DecideC of r and DecideA of r

There are lots of different ways to decompose a next-state formula into
subformulas.

[slide 237]

And in the definition of TCNext replace Decide of r by the disjunction of
DecideC of r and DecideA of r

There are lots of different ways to decompose a next-state formula into
subformulas.

[slide 238]

There are many ways to decompose a
next-state formula into subformulas.

And in the definition of TCNext replace Decide of r by the disjunction of
DecideC of r and DecideA of r

There are lots of different ways to decompose a next-state formula into
subformulas.

[slide 239]

CHECKING THE SPEC

[slide 240]

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports 3 errors.

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports that it found three errors in the model.

Clicking here, raises this report.

These two errors occur . . .

[slide 241]

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports 3 errors.

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports that it found three errors in the model.

Clicking here, raises this report.

These two errors occur . . .

[slide 242]

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports 3 errors.

Click here

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports that it found three errors in the model.

Clicking here, raises this report.

These two errors occur . . .

[slide 243]

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports 3 errors.

Click here
for a list of errors.

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports that it found three errors in the model.

Clicking here, raises this report.

These two errors occur . . .

[slide 244]

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports 3 errors.

In the Toolbox, create a new model for the TCommit spec.

The Toolbox reports that it found three errors in the model.

Clicking here, raises this report.

These two errors occur . . .

[slide 245]

here.

They’re indicated by these little red Xs.

Since we didn’t use the default names Init and Next for the initial-state and
next-state formulas, you have to enter those names .

Enter them now.

[slide 246]

here.

They’re indicated by these little red Xs.

Since we didn’t use the default names Init and Next for the initial-state and
next-state formulas, you have to enter those names .

Enter them now.

[slide 247]

here.

They’re indicated by these little red Xs.

Since we didn’t use the default names Init and Next for the initial-state and
next-state formulas, you have to enter those names .

Enter them now.

[slide 248]

TCInit
TCNext

here.

They’re indicated by these little red Xs.

Since we didn’t use the default names Init and Next for the initial-state and
next-state formulas, you have to enter those names .

Enter them now.

[slide 249]

This error tells us that the model has to provide a value for the declared
constant RM .

[slide 250]

This error tells us that the model has to provide a value for the declared
constant RM .

[slide 251]

Go to the What is the model? area.

And double-click on RM .

[slide 252]

Go to the What is the model? area.

And double-click on RM .

[slide 253]

We now tell the Toolbox what value the model should assign to RM .

Make sure Ordinary assignment is selected.

And enter the value here.

[slide 254]

We now tell the Toolbox what value the model should assign to RM .

Make sure Ordinary assignment is selected.

And enter the value here.

[slide 255]

We now tell the Toolbox what value the model should assign to RM .

Make sure Ordinary assignment is selected.

And enter the value here.

[slide 256]

You should usually start with the smallest possible model, which in this case
means letting the set RM have only a single element.

But this spec is so simple, let’s make it a set of three elements. The actual
elements don’t matter.

We could let it be a set of 3 integers.

[slide 257]

{6, -42, 738}

You should usually start with the smallest possible model, which in this case
means letting the set RM have only a single element.

But this spec is so simple, let’s make it a set of three elements. The actual
elements don’t matter.

We could let it be a set of 3 integers.

[slide 258]

{"r1", "r2", "r3"}

But I prefer to use strings, such as r1, r2, and r3.

Type this value and click Finish

[slide 259]

{"r1", "r2", "r3"}

But I prefer to use strings, such as r1, r2, and r3.

Type this value and click Finish

[slide 260]

We first check that the spec is type correct
by checking that TCTypeOK is an invariant.

We first check that the spec is type correct

by checking that TCTypeOK is an invariant.

Add the invariant TCTypeOK to the model.

[slide 261]

We first check that the spec is type correct
by checking that TCTypeOK is an invariant.

We first check that the spec is type correct

by checking that TCTypeOK is an invariant.

Add the invariant TCTypeOK to the model.

[slide 262]

We first check that the spec is type correct
by checking that TCTypeOK is an invariant.

We first check that the spec is type correct

by checking that TCTypeOK is an invariant.

Add the invariant TCTypeOK to the model.

[slide 263]

A behavior satisfying the spec should terminate
when all RMs have committed or aborted.

As in SimpleProgram, we have to tell TLC
not to check for deadlock.

A behavior satisfying the spec should terminate
when all resource managers have committed or aborted.

As we saw in the SimpleProgram spec of the third video, this means we have
to tell TLC not to check for deadlock.

[slide 264]

A behavior satisfying the spec should terminate
when all RMs have committed or aborted.

As in SimpleProgram, we have to tell TLC
not to check for deadlock.

A behavior satisfying the spec should terminate
when all resource managers have committed or aborted.

As we saw in the SimpleProgram spec of the third video, this means we have
to tell TLC not to check for deadlock.

[slide 265]

A behavior satisfying the spec should terminate
when all RMs have committed or aborted.

As in SimpleProgram, we have to tell TLC
not to check for deadlock.

So, uncheck this box and click on the green arrow to run TLC.

[slide 266]

A behavior satisfying the spec should terminate
when all RMs have committed or aborted.

As in SimpleProgram, we have to tell TLC
not to check for deadlock.

So, uncheck this box and click on the green arrow to run TLC.

[slide 267]

TLC should find no errors.

[slide 268]

Be Suspicious of Success

Always be suspicious of success.

Check the statistics of the TLC run.

Did TLC find a reasonable number of states that can be reached by
behaviors?

The coverage section reports how many times different subactions of the
next-state formula were used to generate new states.

[slide 269]

Be Suspicious of Success

Always be suspicious of success.

Check the statistics of the TLC run.

Did TLC find a reasonable number of states that can be reached by
behaviors?

The coverage section reports how many times different subactions of the
next-state formula were used to generate new states.

[slide 270]

Be Suspicious of Success

Always be suspicious of success.

Check the statistics of the TLC run.

Did TLC find a reasonable number of states that can be reached by
behaviors?

The coverage section reports how many times different subactions of the
next-state formula were used to generate new states.

[slide 271]

Be Suspicious of Success

Always be suspicious of success.

Check the statistics of the TLC run.

Did TLC find a reasonable number of states that can be reached by
behaviors?

The coverage section reports how many times different subactions of the
next-state formula were used to generate new states.

[slide 272]

Be Suspicious of Success

You can double click on a line to see what subaction it refers to.

A count of zero means that the subaction wasn’t used, which usually means
there’s an error in the spec.

[slide 273]

Be Suspicious of Success

You can double click on a line to see what subaction it refers to.

A count of zero means that the subaction wasn’t used, which usually means
there’s an error in the spec.

[slide 274]

Check the invariance of conditions that should be invariant.

Such a condition for TCommit is:

It’s impossible for one RM to have aborted
and another RM to have committed.

Expressed by formula TCConsistent .

You should check the invariance of conditions that should be invariant.

One such condition for the TCommit spec is the following.

It’s impossible for one resource manager to have aborted and another
resource manager to have committed.

This condition is expressed by formula TCConsistent that’s defined in the
module as follows.

[slide 275]

Check the invariance of conditions that should be invariant.

Such a condition for TCommit is:

It’s impossible for one RM to have aborted
and another RM to have committed.

Expressed by formula TCConsistent .

You should check the invariance of conditions that should be invariant.

One such condition for the TCommit spec is the following.

It’s impossible for one resource manager to have aborted and another
resource manager to have committed.

This condition is expressed by formula TCConsistent that’s defined in the
module as follows.

[slide 276]

Check the invariance of conditions that should be invariant.

Such a condition for TCommit is:

It’s impossible for one RM to have aborted
and another RM to have committed.

Expressed by formula TCConsistent .

You should check the invariance of conditions that should be invariant.

One such condition for the TCommit spec is the following.

It’s impossible for one resource manager to have aborted and another
resource manager to have committed.

This condition is expressed by formula TCConsistent that’s defined in the
module as follows.

[slide 277]

Check the invariance of conditions that should be invariant.

Such a condition for TCommit is:

It’s impossible for one RM to have aborted
and another RM to have committed.

Expressed by formula TCConsistent .

You should check the invariance of conditions that should be invariant.

One such condition for the TCommit spec is the following.

It’s impossible for one resource manager to have aborted and another
resource manager to have committed.

This condition is expressed by formula TCConsistent that’s defined in the
module as follows.

[slide 278]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

For all r1 and r2 in RM it is the case that:

This is an abbreviation for:
For all r1 in RM it’s the case that for all r2 in RM it’s the case that:

It is not true that

[slide 279]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

For all r1 and r2 in RM it is the case that:

This is an abbreviation for:
For all r1 in RM it’s the case that for all r2 in RM it’s the case that:

It is not true that

[slide 280]

An abbreviation for ∀ r1 ∈ RM : ∀ r2 ∈ RM :

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

For all r1 and r2 in RM it is the case that:

This is an abbreviation for:
For all r1 in RM it’s the case that for all r2 in RM it’s the case that:

It is not true that

[slide 281]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

For all r1 and r2 in RM it is the case that:

This is an abbreviation for:
For all r1 in RM it’s the case that for all r2 in RM it’s the case that:

It is not true that

[slide 282]

written ! in C

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

This negation operator is written as exclamation point in C

In TLA+ its written as tilde.

So, TCConsistent asserts that for all r1 and r2 in RM it’s not true that

rmState of r1 equals aborted and rmState of r2 equals committed .

[slide 283]

written ~ in ASCII

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

This negation operator is written as exclamation point in C

In TLA+ its written as tilde.

So, TCConsistent asserts that for all r1 and r2 in RM it’s not true that

rmState of r1 equals aborted and rmState of r2 equals committed .

[slide 284]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

This negation operator is written as exclamation point in C

In TLA+ its written as tilde.

So, TCConsistent asserts that for all r1 and r2 in RM it’s not true that

rmState of r1 equals aborted and rmState of r2 equals committed .

[slide 285]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

This negation operator is written as exclamation point in C

In TLA+ its written as tilde.

So, TCConsistent asserts that for all r1 and r2 in RM it’s not true that

rmState of r1 equals aborted and rmState of r2 equals committed .

[slide 286]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

Add the invariant TCConsistent to the model.

And run TLC on the model.

TLC should find no error.

[slide 287]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

Add the invariant TCConsistent to the model.

And run TLC on the model.

TLC should find no error.

[slide 288]

Add the invariant TCConsistent .

Run TLC on the model.

TLC should find no error.

Add the invariant TCConsistent to the model.

And run TLC on the model.

TLC should find no error.

[slide 289]

A PARSING NOTE

[slide 290]

The scope of ∀ and ∃ extends as far as possible.

The expression

∀ x ∈ S : . . .

extends to the end of its enclosing expression
unless explicitly ended

– by parentheses

– or by the end of a list item (which adds implicit parentheses)

The scope of forall and exists extends as far as possible.

For example, this expression extends to the end of its enclosing expression
unless explicitly ended

by enclosing parentheses

or similar brackets or braces

[slide 291]

The scope of ∀ and ∃ extends as far as possible.

The expression

∀ x ∈ S : . . .

extends to the end of its enclosing expression
unless explicitly ended

– by parentheses

– or by the end of a list item (which adds implicit parentheses)

The scope of forall and exists extends as far as possible.

For example, this expression extends to the end of its enclosing expression
unless explicitly ended

by enclosing parentheses

or similar brackets or braces

[slide 292]

The scope of ∀ and ∃ extends as far as possible.

The expression

∀ x ∈ S : . . .

extends to the end of its enclosing expression
unless explicitly ended

– by parentheses

– or by the end of a list item (which adds implicit parentheses)

The scope of forall and exists extends as far as possible.

For example, this expression extends to the end of its enclosing expression
unless explicitly ended

by enclosing parentheses

or similar brackets or braces

[slide 293]

The scope of ∀ and ∃ extends as far as possible.

The expression

(∀ x ∈ S : . . .)

extends to the end of its enclosing expression
unless explicitly ended

– by parentheses

– or by the end of a list item (which adds implicit parentheses)

The scope of forall and exists extends as far as possible.

For example, this expression extends to the end of its enclosing expression
unless explicitly ended

by enclosing parentheses

or similar brackets or braces

[slide 294]

The scope of ∀ and ∃ extends as far as possible.

The expression

[r ∈ T 7→ ∀ x ∈ S : . . .]

extends to the end of its enclosing expression
unless explicitly ended

– by parentheses

– or by the end of a list item (which adds implicit parentheses)

The scope of forall and exists extends as far as possible.

For example, this expression extends to the end of its enclosing expression
unless explicitly ended

by enclosing parentheses

or similar brackets or braces

[slide 295]

The scope of ∀ and ∃ extends as far as possible.

The expression
∧
∧(
∧
∀ x ∈ S : . . .

extends to the end of its enclosing expression
unless explicitly ended

– by parentheses

– or by the end of a list item (which adds implicit parentheses)

or by the end of a conjunction or disjunction list item
which adds implicit parentheses

[slide 296]

The scope of ∀ and ∃ extends as far as possible.

The expression
∧
∧(
∧
∀ x ∈ S : . . .)

extends to the end of its enclosing expression
unless explicitly ended

– by parentheses

– or by the end of a list item (which adds implicit parentheses)

or by the end of a conjunction or disjunction list item
which adds implicit parentheses

[slide 297]

∀ x ∈ S : . . .

∧ ∀ x ∈ T : . . .

This expression is parsed like this
which is the same as this.

The expression is illegal because x is declared here
when it’s already declared here.

For example, this expression is parsed as if these parentheses were added,
which is easier to read if we indent the second line.

[slide 298]

∀ x ∈ S : (. . .

∧ ∀ x ∈ T : . . .)

This expression is parsed like this
which is the same as this.

The expression is illegal because x is declared here
when it’s already declared here.

For example, this expression is parsed as if these parentheses were added,
which is easier to read if we indent the second line.

[slide 299]

∀ x ∈ S : (. . .

∧ ∧ ∀ x ∈ T : . . .)

This expression is parsed like this,
which is the same as this.

The expression is illegal because x is declared here
when it’s already declared here.

For example, this expression is parsed as if these parentheses were added,
which is easier to read if we indent the second line.

[slide 300]

∀ x ∈ S : (. . .

∧ ∧ ∀ x ∈ T : . . .)

This expression is parsed like this
which is the same as this.

The expression is illegal because x is declared here
when it’s already declared here.

So the expression is illegal because this x , which is declared in the inner
forall

is already declared in the outer forall. And in TLA+ it’s illegal to
redeclare an identifier that’s already declared.

[slide 301]

∀ x ∈ S : (. . .

∧ ∧ ∀ x ∈ T : . . .)

This expression is parsed like this
which is the same as this.

The expression is illegal because x is declared here
when it’s already declared here.

So the expression is illegal because this x , which is declared in the inner
forall

is already declared in the outer forall. And in TLA+ it’s illegal to
redeclare an identifier that’s already declared.

[slide 302]

COMMENTS

Let’s now look at comments in TLA+.

[slide 303]

TLA+ has two kinds of comments.

x’ = x + 1 * An end of line comment.

x’ = x + (* This is a silly place
for a comment *) 1

TLA+ provides two kinds of comments.

An end of line comment begins with backslash asterisk.

Other comments are enclosed by these delimiters.

[slide 304]

TLA+ has two kinds of comments.

x’ = x + 1 * An end of line comment.

x’ = x + (* This is a silly place
for a comment *) 1

TLA+ provides two kinds of comments.

An end of line comment begins with backslash asterisk.

Other comments are enclosed by these delimiters.

[slide 305]

TLA+ has two kinds of comments.

x’ = x + 1 * An end of line comment.

x’ = x + (* This is a silly place
for a comment *) 1

TLA+ provides two kinds of comments.

An end of line comment begins with backslash asterisk.

Other comments are enclosed by these delimiters.

[slide 306]

TLA+ has two kinds of comments.

x’ = x + 1 * An end of line comment.

x’ = x + (* This is a silly place
for a comment *) 1

TLA+ provides two kinds of comments.

An end of line comment begins with backslash asterisk.

Other comments are enclosed by these delimiters.

[slide 307]

TLA+ has two kinds of comments.

x’ = x + 1 * An end of line comment.

x’ = x + (* This is a silly place
for a comment *) 1

TLA+ provides two kinds of comments.

An end of line comment begins with backslash asterisk.

Other comments are enclosed by these delimiters.

[slide 308]

x’ = x + 1 (*****************************)
(* This is a boxed comment. *)
(* It looks very nice when *)
(* it’s pretty-printed. *)
(*****************************)

Typing boxed comments is easy with Toolbox editor commands

Boxed comments like this look nice when they’re pretty-printed.

It’s easy to type boxed comments using the Toolbox’s editing commands.

[slide 309]

x’ = x + 1 (*****************************)
(* This is a boxed comment. *)
(* It looks very nice when *)
(* it’s pretty-printed. *)
(*****************************)

Typing boxed comments is easy with Toolbox editor commands

Boxed comments like this look nice when they’re pretty-printed.

It’s easy to type boxed comments using the Toolbox’s editing commands.

[slide 310]

x’ = x + 1 (*****************************)
(* This is a boxed comment. *)
(* It looks very nice when *)
(* it’s pretty-printed. *)
(*****************************)

Typing boxed comments is easy with Toolbox editor commands

Boxed comments like this look nice when they’re pretty-printed.

It’s easy to type boxed comments using the Toolbox’s editing commands.

[slide 311]

Typing Boxed Comments

To find out how to type boxed comments, See the Toolbox’s Help pages.

To do that, click help then Dynamic Help.

Then Click Contents.

[slide 312]

Typing Boxed Comments

See the Toolbox’s Help.

To find out how to type boxed comments, See the Toolbox’s Help pages.

To do that, click help then Dynamic Help.

Then Click Contents.

[slide 313]

Typing Boxed Comments

To find out how to type boxed comments, See the Toolbox’s Help pages.

To do that, click help then Dynamic Help.

Then Click Contents.

[slide 314]

Typing Boxed Comments

To find out how to type boxed comments, See the Toolbox’s Help pages.

To do that, click help then Dynamic Help.

Then Click Contents.

[slide 315]

Typing Boxed Comments

To find out how to type boxed comments, See the Toolbox’s Help pages.

To do that, click help then Dynamic Help.

Then Click Contents.

[slide 316]

Typing Boxed Comments

To find out how to type boxed comments, See the Toolbox’s Help pages.

To do that, click help then Dynamic Help.

Then Click Contents.

[slide 317]

Typing Boxed Comments

Open the Toolbox User Guide and find the Editing Modules page.

On that page go to Editing Comments.

The Editing Modules page also has lots of other useful information.

[slide 318]

Typing Boxed Comments

Open the Toolbox User Guide and find the Editing Modules page.

On that page go to Editing Comments.

The Editing Modules page also has lots of other useful information.

[slide 319]

Typing Boxed Comments

Open the Toolbox User Guide and find the Editing Modules page.

On that page go to Editing Comments.

The Editing Modules page also has lots of other useful information.

[slide 320]

Typing Boxed Comments

Open the Toolbox User Guide and find the Editing Modules page.

On that page go to Editing Comments.

The Editing Modules page also has lots of other useful information.

[slide 321]

Typing Boxed Comments

This page has lots more useful information.

Open the Toolbox User Guide and find the Editing Modules page.

On that page go to Editing Comments.

The Editing Modules page also has lots of other useful information.

[slide 322]

A separator line:

Pretty printed like:

Purely decorative.

You can make a spec easier to read by adding horizontal separator lines like
this.

The line is pretty printed like this.

These lines are purely decorative. They go between statements.

[slide 323]

A separator line:

Pretty printed like:

Purely decorative.

You can make a spec easier to read by adding horizontal separator lines like
this.

The line is pretty printed like this.

These lines are purely decorative. They go between statements.

[slide 324]

A separator line:

Pretty printed like:

Purely decorative.

You can make a spec easier to read by adding horizontal separator lines like
this.

The line is pretty printed like this.

These lines are purely decorative. They go between statements.

[slide 325]

The specification of Transaction Commit, like the Die Hard specification, is
very simple. But it moved us a tiny bit closer to real computer systems. And
you’ve now learned a lot of the TLA+ you need to specify those systems.

Next, we examine two-phase commit – an algorithm for implementing
transaction commit.

[slide 326]

TLA+ Video Course

End of Lecture 5

TRANSACTION COMMIT

[slide 327]

