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When you were a child, it must have been weird to learn that the earth was round. If
you were raised in Asia, it probably seemed ridiculous that Americans were hanging
upside down by their feet and didn’t fall off into the sky. But you got used to it.

You probably found the idea of specifying systems with math strange enough. You will
now learn things about TLA+ that even sophisticated computer scientists find weird.
But they’re pretty simple things, and you’ll get used to them. Eventually, you’ll realize
that without them, TLA+ would be as weird as a flat earth.
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THE THEOREM
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Transaction Commit

The specification in module TCommit has:
– declared variable rmState

– initial formula TCInit

– next-state formula TCNext

Its specification TCSpec is therefore:

TCSpec
∆
= TCInit ∧ 2[TCNext ]

with a single variable can omit the 〈 〉

Remember the transaction commit spec.

It was in module TCommit and had a single declared variable rmState, an
initial formula TCInit , and a next-state formula TCNext .

Its specification is therefore the temporal formula TCSpec defined like this.
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The specification in module TCommit has:
– declared variable rmState

– initial formula TCInit

– next-state formula TCNext

Its specification TCSpec is therefore:
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∆
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Because it has only a single variable, we can omit the angle brackets and
write the subscript simply like this.
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Module TwoPhase contains:

INSTANCE TCommit

THEOREM TPSpec ⇒ TCSpec

Every behavior satisfying TPSpec

satisfies TCspec .

TPSpec implements TCSpec .

Module TwoPhase contains this INSTANCE statement

which imports the definition of TCSpec as well as all other definitions from
module TCommit .

Module TwoPhase also contains this theorem

which asserts that for every behavior: if the behavior satisfies TPSpec then it
satisfies TCSpec.
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Module TwoPhase contains:

INSTANCE TCommit

THEOREM TPSpec ⇒ TCSpec

Asserts that for every behavior:
if it satisfies TPSpec

then it satisfies TCSpec .

Every behavior satisfying TPSpec

satisfies TCspec .

TPSpec implements TCSpec .

Module TwoPhase contains this INSTANCE statement
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Module TwoPhase contains:

INSTANCE TCommit

THEOREM TPSpec ⇒ TCSpec

Every behavior satisfying TPSpec

satisfies TCspec .

TPSpec implements TCSpec .

In other words, every behavior that satisfies TPSpec satisfies TCSpec.

This is what it means for TPSpec to implement TCSpec.
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THEOREM TPSpec ⇒ TCSpec

Let TLC check this theorem
by adding TCSpec as a
property to check in a model
you constructed for module
TwoPhase . TLC should find no error.

Let TLC check this theorem by adding TCSpec as a property to check in a
model you constructed for module TwoPhase.

It should find no error.
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THEOREM TPSpec ⇒ TCSpec

An assertion about behaviors
whose states assign values to
rmState, tmState, tmPrepared ,
and msgs.

An assertion about behaviors
whose states assign values to
rmState.

How can this theorem make sense?

TPSpec, which is defined in module TwoPhase, is an assertion about
behaviors whose states assign values to the four variables rmState, tmState,
tmPrepared , and m-s-g-s.
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THEOREM TPSpec ⇒ TCSpec

An assertion about behaviors
whose states assign values to
rmState, tmState, tmPrepared ,
and msgs.

An assertion about behaviors
whose states assign values to
rmState.

TCSpec, which is defined in module TCommit , is an assertion about
behaviors whose states assign a value to the single variable rmState.

Isn’t this formula relating apples and oranges?
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THEOREM TPSpec ⇒ TCSpec

⇒

TCSpec, which is defined in module TCommit , is an assertion about
behaviors whose states assign a value to the single variable rmState.

Isn’t this formula relating apples and oranges?
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A state is an assignment of values to variables.

What variables?

The variables declared in a module.

All possible variables. (There are infinitely many.)

I’ve said that a state is an assignment of values to variables.

But what variables.

Everything I’ve said so far has led you to believe that a state assigns values
to the variables declared in the current module.

But I’ve been fooling you because I wanted to delay hitting you with this bit of
weirdness:
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A state is an assignment of values to variables.

What variables?

The variables declared in a module.

All possible variables. (There are infinitely many.)

A state actually assigns values to all possible variables.

That’s right, to each of the infinite number of variables that you could
(in principle) declare in a module.

Weird, huh?

upside down
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Consider this state:

Mozart = 〈−37, {14}〉
rmState = [r ∈ {“r1”, “r2”, “r3”} 7→ “working”]
tmState = “ouch”
numberOfCustomersInTimbuktuStarbucks = 42
msgs = {314}

...

TCInit is true on it iff RM equals {“r1”, “r2”, “r3”}.

because TCInit
∆
= rmState = [r ∈ RM 7→ “working”]

Consider this state. I’m just showing the values it assigns to a few of
the infinite number of variables.
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...

TCInit is true on it iff RM equals {“r1”, “r2”, “r3”}.

because TCInit
∆
= rmState = [r ∈ RM 7→ “working”]

TCInit is true on this state if and only if RM equals the set of three strings
r1, r2, and r3.

That’s because this is the definition of TCInit .

And this is the value of the variable rmState in the state.
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TCSpec contains only variable rmState .

So, we can tell if a behavior satisfies TCSpec by looking at
the value of rmState in each state.

All other variables can have any values.

TCSpec allows tmPrepared to equal

in the 1st state: {“orange”, “delicious”, “macintosh”}
in the 2nd state: 248976553

in the 3rd state: [a 7→ 22, b 7→ {13, {13}, {{13}}}]
...

The only variable formula TCSpec contains is rmState.

So we can tell whether or not a behavior satisfies TCSpec by looking only at
the value assigned to rmState by each of the behavior’s states.

All the other variables can have any values in any of its states.
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This seems weird to most people because they think of
specifications as programs.

They’re not programs; they’re mathematical formulas.

In math, when you write:

x + y = 7
2 ∗ x − y = 2

it doesn’t mean that there’s no variable z or w .

The equations say nothing about other variables.

This seems weird to most people because they think of
specifications as programs.

Specifications are not programs; they’re mathematical formulas.
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A specification does not describe the correct behavior of a system.

It describes a universe in which the system and its environment
are behaving correctly.

For example, msgs might describe an external communication
protocol used by two-phase commit.

The spec says nothing about irrelevant parts
of the universe.

A specification does not describe the correct behavior of a system.

Rather, it describes a history of the universe in which the system and its
environment are behaving correctly.

The spec describes not only the system, but other parts of the universe that
the system depends on.
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STUTTERING
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THEOREM TPSpec ⇒ TCSpec

This theorem makes sense because both formulas are assertions
about the same kind of behavior.

It asserts that every behavior satisfying TPSpec satisfies TCSpec .

But how can it be true?

Now we see that this theorem makes sense because formulas TPSpec and
TCSpec are both assertions about the same kind of behavior – one whose
states assign values to all variables.

The theorem asserts that every behavior satisfying TPSpec also satisfies
TCSpec.

But how can this statement possibly be true?
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THEOREM TPSpec ⇒ TCSpec

TPSpec
∆
= TPInit ∧ 2[TPNext ]〈...〉

TPNext allows TMAbort steps.

How can a behavior satisfying TPSpec also
satisfy TCSpec if it has a TMAbort step?

How can the theorem be true?

Formula TPSpec is defined like this where TPNext allows TMAbort steps
and TMAbort is defined like this so its UNCHANGED conjunct allows only
steps that leave rmState unchanged.
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THEOREM TPSpec ⇒ TCSpec

TPSpec
∆
= TPInit ∧ 2[TPNext ]〈...〉

TPNext allows TMAbort steps, which leave rmState unchanged.

TCSpec
∆
= TCInit ∧ 2[TCNext ]rmState

How can a behavior satisfying TPSpec also
satisfy TCSpec if it has a TMAbort step?

How can the theorem be true?

TCSpec is defined like this where all TCNext steps change the value of
rmState.

A TMAbort step therefore can’t be a TCNext step.

So how can a behavior satisfying TPSpec also satisfy TCSpec if it has a
TMAbort step? And how can this theorem be true?
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TCSpec
∆
= TCInit ∧ 2 [TCNext ]rmState

2 [TCNext ]rmState is true on a behavior iff
[TCNext ]rmState is true on every step of the behavior.

[TCNext ]rmState
∆
= TCNext ∨ (UNCHANGED rmState)

The answer to this question lies in the meaning of this part of the formula
that we’ve been ignoring.

The always formula is true on a behavior if and only if this formula is true on
every step of the behavior.
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TCSpec
∆
= TCInit ∧ 2 [TCNext ]rmState

2 [TCNext ]rmState is true on a behavior iff
[TCNext ]rmState is true on every step of the behavior.

[TCNext ]rmState
∆
= TCNext ∨ (UNCHANGED rmState)

This formula is an abbreviation for the action TCNext disjunction
UNCHANGED rmState. .

So the always formula asserts that TCNext or UNCHANGED rmState is true
on every step.

which is the same as the assertion that every step satisfies TCNext or leaves
rmState unchanged.
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TCSpec
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= TCInit ∧ 2 [TCNext ]rmState

2 [TCNext ]rmState is true on a behavior iff
every step satisfies TCNext or leaves rmState unchanged.

[TCNext ]rmState
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= TCNext ∨ (UNCHANGED rmState)

This formula is an abbreviation for the action TCNext disjunction
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TCSpec
∆
= TCInit ∧ 2 [TCNext ]rmState

2 [TCNext ]rmState is true on a behavior iff
every step satisfies TCNext or leaves rmState unchanged.

If steps leaving rmState unchanged were not allowed by TCSpec. then the
theorem would not be true.
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TCSpec
∆
= TCInit ∧ 2 [TCNext ]rmState

2 [TCNext ]rmState is true on a behavior iff
every step satisfies TCNext or leaves rmState unchanged.

THEOREM TPSpec ⇒ TCSpec

would not be true otherwise.

If steps leaving rmState unchanged were not allowed by TCSpec. then the
theorem would not be true.
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TPSpec
∆
= TPInit ∧ 2 [TPNext ]〈rmState, tmState, tmPrepared,msgs〉

True on a behavior iff every step satisfies TPNext or
leaves rmState, tmState, tmPrepared , and msgs unchanged.

Similarly, for the two-phase commit spec
This always formula is true on a behavior if and only if every step of the
behavior satisfies the next-state formula TPNext or else leaves all the
specification variables unchanged.

Steps that leave all the spec’s variables unchanged are called stuttering
steps.
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True on a behavior iff every step satisfies TPNext or
leaves rmState, tmState, tmPrepared , and msgs unchanged.

stuttering steps

Similarly, for the two-phase commit spec
This always formula is true on a behavior if and only if every step of the
behavior satisfies the next-state formula TPNext or else leaves all the
specification variables unchanged.

Steps that leave all the spec’s variables unchanged are called stuttering
steps.
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Stuttering Steps

All TLA+ specs allow stuttering steps.

If they didn’t, TPSpec would allow the value of
numberOfCustomersInTimbuktuStarbucks

to change only when the protocol took a step.

The most important reason:

THEOREM TPSpec ⇒ TCSpec

Implementation is implication.

Most people find stuttering steps weird.

Every TLA+ spec allows them.

If they didn’t, the two-phase commit spec would allow the value of every
variable in the universe to change only when the two-phase commit protocol
took a step.
And that would be really weird.

upside down
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Stuttering Steps

All TLA+ specs allow stuttering steps.

If they didn’t, TPSpec would allow the value of
numberOfCustomersInTimbuktuStarbucks

to change only when the protocol took a step.

The most important reason:

THEOREM TPSpec ⇒ TCSpec

Implementation is implication.

But the most important reason to allow stuttering steps is embodied in this
theorem:
Implementation becomes simple logical implication.
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If they didn’t, TPSpec would allow the value of
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THEOREM TPSpec ⇒ TCSpec

Mathematical simplicity is not an end in itself.

It’s a sign that we’re doing things right.

Mathematical simplicity is not an end in itself.

But it is a sign that we’re doing things right.
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TERMINATION AND STOPPING
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Specification SimpleProgram of Lectures 1 and 2

– declared variables pc and i

– initial formula Init

– next-state formula Next

Init ∧ 2 [Next ]〈pc, i〉

Remember our first example: Specification SimpleProgram of Lectures 1 and
2.

It had two variables pc and i , initial formula Init , and next-state
formula Next .

Here’s how we now write its specification as a temporal formula.
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Init ∧ 2 [Next ]〈pc, i〉

Remember our first example: Specification SimpleProgram of Lectures 1 and
2.

It had two variables pc and i , initial formula Init , and next-state
formula Next .

Here’s how we now write its specification as a temporal formula.
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Init ∧ 2 [Next ]〈pc, i〉

[
pc : “start”
i : 0

]
→
[
pc : “middle”
i : 43

]
→
[
pc : “done”
i : 44

]

Here’s how we originally would have written a behavior satisfying
this spec.
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Init ∧ 2 [Next ]〈pc, i〉

pc : “start”
i : 0

pc
...

→
pc : “middle”
i : 43

pc
...

→
pc : “done”
i : 44

pc
...



In this lecture, we saw that the states of the behavior actually assign
variables to infinitely many other variables.

Then we saw that the spec allows stuttering steps.

It also allows stuttering steps at the end.

In fact it allows an infinite number of stuttering steps at the end.
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In this lecture, we saw that the states of the behavior actually assign
variables to infinitely many other variables.

Then we saw that the spec allows stuttering steps.
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Init ∧ 2 [Next ]〈pc, i〉

pc : “start”
i : 0

pc
...

→
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i : 43

pc
...

→
pc : “middle”
i : 43
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...

→
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...
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→
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→ · · ·

In this lecture, we saw that the states of the behavior actually assign
variables to infinitely many other variables.

Then we saw that the spec allows stuttering steps.

It also allows stuttering steps at the end.

In fact it allows an infinite number of stuttering steps at the end.

[ slide 104 ]



We represent a terminating execution by a behavior ending in
an infinite sequence of stuttering steps.

The universe keeps going even if the system terminates.

All behaviors are infinite sequences of states.

We represent a terminating (or deadlocked) execution by a behavior ending
in an infinite sequence of stuttering steps.

This is natural, because a behavior represents a history of the universe, and
the universe keeps going even if the system we’re specifying terminates.

This means that all behaviors are infinite sequences of states, so we don’t
have to consider finite behaviors.
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Init ∧ 2 [Next ]〈pc, i〉

This specification is also satisfied by a behavior that starts in a state
satisfying Init ,
takes a step satisfying action Next ,
takes a stuttering step,
takes another stuttering step,
and keeps on taking stuttering steps forever.
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takes a stuttering step,
takes another stuttering step,
and keeps on taking stuttering steps forever.
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These stuttering steps are allowed by the spec.

All these stuttering steps are allowed by the spec.

This behavior represents an execution in which the program stops before
reaching a terminating state.

[ slide 114 ]



Init ∧ 2 [Next ]〈pc, i〉

pc : “start”
i : 0

pc
...

→
pc : “middle”
i : 43

pc
...

→
pc : “middle”
i : 43

pc
...

→
pc : “middle”
i : 43

pc
...

→ · · ·
This behavior represents an execution
in which the program stops before reaching
a terminating state.

All these stuttering steps are allowed by the spec.

This behavior represents an execution in which the program stops before
reaching a terminating state.
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Our specs allow a system to stop at any time.

They specify what the system may do.
They don’t specify what it must do.

Exactly what may and must mean
will be explained later.

They are very different requirements
and should be specified separately.

All the specs we have written so far allow the system being specified to stop
at any time by taking infinitely many stuttering steps.

Our specs specify what the system may do.
They don’t specify what it must do; they allow it to do nothing.

upside down
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We add must requirements by conjoining
a temporal formula to the specification.

That is the subject of the next lecture.

We add must requirements by conjoining a temporal formula to the
specification.

How that’s done is the main subject of the next lecture.
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This is a tiny part of a spec.

This is the larger and more important part.

You can write useful specs that
say what the system may do.

The must formula is just a tiny part of a spec.

The may formula is much larger and usually more important.

With what you’ve learned so far, you can write specs that are quite useful
even though they specify only what they system may do.
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You are now ready to be fruitful and specify. At least to specify what a system
may do. In the next lecture, you’ll learn how to specify what it must do.
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